OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)

Size: px
Start display at page:

Download "OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)"

Transcription

1 OUTCOMES PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation Compare the structure of RNA and DNA Outline DNA transcription in terms of the formation of an RNA strand complementary to the DNA strand by RNA polymerase Describe the genetic code in terms of codons composed of triplets of bases Explain the process of translation, leading to polypeptide formation Discuss the relationship between one gene and one polypeptide. OVERVIEW ANIMATION irefly/ CONTEXT Genes are instructions on how to make proteins. Proteins are made in two steps: 1. Transcription The gene information is made into an mrna messenger that goes to a ribosome 2. Translation The ribosome translates the messenger into a sequence of amino acids that will join together to make a functioning protein RIBONUCLEIC ACID (RNA) RNA is single stranded RNA uses the sugar Ribose RNA uses the base Uracil instead of Thymine

2 STRUCTURES OF DNA AND RNA DNA Contains the 5 carbon sugar deoxyribose Contains thymine Is in the shape of a double helix There is only 1 type of DNA DNA can t leave the nucleus RNA Contains the 5 carbon sugar ribose Contains uracil instead of thymine Is a single strand There are 3 types of RNA: m-rna, t-rna, r-rna RNA leaves the nucleus DNA TRANSCRIPTION Transcription is the process by which a strand of RNA is produced from a DNA template. As seen above, DNA cannot leave the nucleus; it is too valuable. Instead, it makes a copy of its code in the form of mrna which can leave the nucleus. The mrna can carry the information needed (genetic code) from the nucleus out into the cytoplasm and to the ribosome where the polypeptide or protein will be formed. DNA is much longer RNA is shorter strands TRANSCRIPTION Transcription is the process by which the base sequence of DNA is copied into an mrna molecule. Transcription involves the following steps which are carried out by the enzyme RNA polymerase. 1. The double helix structure of the DNA molecule unwinds and the two strands separate. This means the hydrogen bonds between the nitrogen bases must be broken. 2. One of the sides of the DNA strand is used as a template to build the mrna strand using free floating nucleotides. Transcription occurs in one direction (5 to 3 ).

3 3. The nucleotides of the new mrna strand are bonded together and then the mrna separates from the strand of DNA. The hydrogen bonds will form again between the complementary base pairs in the DNA strand and it will return to its double helix form. 4. The newly formed mrna strand is identical to the complementary side of the DNA template strand except uracil replaces thymine. THE GENETIC CODE The genetic code is located on strands of DNA and it is read in triplets known as codons. Three nitrogen bases code for a single amino acid and this triplet of bases is known as a codon. There are 64 codons in total.

4 TRANSLATION The process of translation involves reading the code on the mrna and using that code to build a polypeptide. Translation takes place inside the ribosomes of eukaryotic cells. Translation also involves another type of RNA known as trna or transfer RNA. This molecule is located in the cytoplasm of the cells and it contains a special triplet of bases known as the anticodon. The anticodon allows the trna to carry a specific amino acid to the ribosome where it is needed in the synthesis of the polypeptide. The mrna that has been produced during transcription binds with the small subunit of the ribosome. The mrna is carrying the genetic code in a sequence of codons which each code for a particular amino acid. The attachment of the mrna to the small subunit brings in a trna molecule that binds with the complementary codon on the mrna. Then the larger subunit of the ribosome attaches forming a functional ribosome. The ribosome begins reading (translating) the genetic code of the mrna and the corresponding trna molecules will bind to the ribosome in one of two sites located inside the ribosome. The trna molecule will only bind if it carries the anticodon that is complementary to the codon being read on the mrna. The trna molecules are carrying the amino acids needed in the formation of the polypeptide. The two amino acids inside the ribosome form a peptide bond. The first trna molecule (in the p site) will detach and leave the ribosome. The second trna molecule (in the a site) will shift over making room for the next trna molecule and its corresponding amino acid.

5 The ribosome continues moving down the strand of mrna and each time it reads a new codon a new amino acid is attached to the polypeptide until the entire polypeptide is formed. INITIATION Once the polypeptide is complete (a stop codon has been read) the ribosome breaks into its subunits and releases the mrna and the newly formed polypeptide. ELONGATION TERMINATION LET S TRY IT TOGETHER... ranscribe/

6 GENES AND POLYPEPTIDES Polypeptides, also known as proteins, are long chains of amino acids that can be differentiated by their particular sequence. Each polypeptide must be linked in a precise sequence to form the correct protein and the code for this sequence is located in a sequence of bases on genes. Genes store the code for each polypeptide and the information stored in that code is copied and decoded during the processes of transcription and translation. ONE GENE ONE POLYPEPTIDE? The one gene, one polypeptide hypothesis that has been taught for years suggests that only one gene could produce a specific protein. However recent research, particularly that of the human genome project, has shown us that some genes do not work that way. Some genes code for a single strand of mrna which can then be modified in several different ways resulting in several different possible proteins.

7

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes HEREDITY = passing on of characteristics from parents to offspring How?...DNA! I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin=

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

Translation Study Guide

Translation Study Guide Translation Study Guide This study guide is a written version of the material you have seen presented in the replication unit. In translation, the cell uses the genetic information contained in mrna to

More information

13.2 Ribosomes & Protein Synthesis

13.2 Ribosomes & Protein Synthesis 13.2 Ribosomes & Protein Synthesis Introduction: *A specific sequence of bases in DNA carries the directions for forming a polypeptide, a chain of amino acids (there are 20 different types of amino acid).

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled Biology 101 Chapter 14 Name: Fill-in-the-Blanks Which base follows the next in a strand of DNA is referred to. as the base (1) Sequence. The region of DNA that calls for the assembly of specific amino

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme. Provincial Exam Questions Unit: Cell Biology: Protein Synthesis (B7 & B8) 2010 Jan 3. Describe the process of translation. (4 marks) 2009 Sample 8. What is the role of ribosomes in protein synthesis? A.

More information

Lab #5: DNA, RNA & Protein Synthesis. Heredity & Human Affairs (Biology 1605) Spring 2012

Lab #5: DNA, RNA & Protein Synthesis. Heredity & Human Affairs (Biology 1605) Spring 2012 Lab #5: DNA, RNA & Protein Synthesis Heredity & Human Affairs (Biology 1605) Spring 2012 DNA Stands for : Deoxyribonucleic Acid Double-stranded helix Made up of nucleotides Each nucleotide= 1. 5-carbon

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

Transcription Study Guide

Transcription Study Guide Transcription Study Guide This study guide is a written version of the material you have seen presented in the transcription unit. The cell s DNA contains the instructions for carrying out the work of

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Ms. Campbell Protein Synthesis Practice Questions Regents L.E. Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide

More information

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown 1 DNA Coloring - Transcription & Translation Transcription RNA, Ribonucleic Acid is very similar to DNA. RNA normally exists as a single strand (and not the double stranded double helix of DNA). It contains

More information

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

The Steps. 1. Transcription. 2. Transferal. 3. Translation

The Steps. 1. Transcription. 2. Transferal. 3. Translation Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Protein Synthesis How Genes Become Constituent Molecules

Protein Synthesis How Genes Become Constituent Molecules Protein Synthesis Protein Synthesis How Genes Become Constituent Molecules Mendel and The Idea of Gene What is a Chromosome? A chromosome is a molecule of DNA 50% 50% 1. True 2. False True False Protein

More information

To be able to describe polypeptide synthesis including transcription and splicing

To be able to describe polypeptide synthesis including transcription and splicing Thursday 8th March COPY LO: To be able to describe polypeptide synthesis including transcription and splicing Starter Explain the difference between transcription and translation BATS Describe and explain

More information

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3

DNA, RNA, Protein synthesis, and Mutations. Chapters 12-13.3 DNA, RNA, Protein synthesis, and Mutations Chapters 12-13.3 1A)Identify the components of DNA and explain its role in heredity. DNA s Role in heredity: Contains the genetic information of a cell that can

More information

RNA and Protein Synthesis

RNA and Protein Synthesis RNA and Protein Synthesis Answer Key Vocabulary: amino acid, anticodon, codon, gene, messenger RNA, nucleotide, ribosome, RNA, RNA polymerase, transcription, transfer RNA, translation Prior Knowledge Questions

More information

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein Assignment 3 Michele Owens Vocabulary Gene: A sequence of DNA that instructs a cell to produce a particular protein Promoter a control sequence near the start of a gene Coding sequence the sequence of

More information

DNA & Protein Synthesis Exam

DNA & Protein Synthesis Exam DNA & Protein Synthesis Exam DO NOT WRITE ON EXAM EXAM # VER. B Multiple choice Directions: Answer the following questions based on the following diagram. (1pt. each) 5. The above nucleotide is purine

More information

Nucleotides and Nucleic Acids

Nucleotides and Nucleic Acids Nucleotides and Nucleic Acids Brief History 1 1869 - Miescher Isolated nuclein from soiled bandages 1902 - Garrod Studied rare genetic disorder: Alkaptonuria; concluded that specific gene is associated

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Section 1 Workbook (unit 2) ANSWERS

Section 1 Workbook (unit 2) ANSWERS Section 1 Workbook (unit 2) ANSWERS Complete the following table: nucleotide DNA RN Name: B5. Describe DNA replication 1) Label each base given in the diagram below and describe the 4 primary characteristics

More information

From DNA to Protein

From DNA to Protein Nucleus Control center of the cell contains the genetic library encoded in the sequences of nucleotides in molecules of DNA code for the amino acid sequences of all proteins determines which specific proteins

More information

Academic Nucleic Acids and Protein Synthesis Test

Academic Nucleic Acids and Protein Synthesis Test Academic Nucleic Acids and Protein Synthesis Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Each organism has a unique combination

More information

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i From Gene to Protein Transcription and Translation i How do the genes in our DNA influence our characteristics? For example, how can a gene determine whether a person is an albino with very pale skin and

More information

CCR Biology - Chapter 8 Practice Test - Summer 2012

CCR Biology - Chapter 8 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 8 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What did Hershey and Chase know

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why?

Unit 9: DNA, RNA, and Proteins. Pig and elephant DNA just don t splice, but why? Unit 9: DNA, RNA, and Proteins Pig and elephant DNA just don t splice, but why? BONUS - History of DNA Structure of DNA 3.3.1 - Outline DNA nucleotide structure in terms of sugar (deoxyribose), base and

More information

The vast majority of RNA functions are concerned with protein synthesis.

The vast majority of RNA functions are concerned with protein synthesis. RNA Structure, Function, and Synthesis RNA RNA differs from DNA in both structural and functional respects. RNA has two major structural differences: each of the ribose rings contains a 2 -hydroxyl, and

More information

2.1 Nucleic acids the molecules of life

2.1 Nucleic acids the molecules of life 1 2.1 Nucleic acids the molecules of life Nucleic acids information molecules of the cells form new cells stored in chromosomes in nucleus of the cell in the form of a code in DNA / parts of the code are

More information

3120-1 - Page 1. Name:

3120-1 - Page 1. Name: Name: 1) Which series is arranged in correct order according to decreasing size of structures? A) DNA, nucleus, chromosome, nucleotide, nitrogenous base B) chromosome, nucleus, nitrogenous base, nucleotide,

More information

RNA and Protein Synthesis

RNA and Protein Synthesis Name lass Date RN and Protein Synthesis Information and Heredity Q: How does information fl ow from DN to RN to direct the synthesis of proteins? 13.1 What is RN? WHT I KNOW SMPLE NSWER: RN is a nucleic

More information

Chapter 17: From Gene to Protein

Chapter 17: From Gene to Protein Name Period This is going to be a very long journey, but it is crucial to your understanding of biology. Work on this chapter a single concept at a time, and expect to spend at least 6 hours to truly master

More information

Name: Date: Period: DNA Unit: DNA Webquest

Name: Date: Period: DNA Unit: DNA Webquest Name: Date: Period: DNA Unit: DNA Webquest Part 1 History, DNA Structure, DNA Replication DNA History http://www.dnaftb.org/dnaftb/1/concept/index.html Read the text and answer the following questions.

More information

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized: Module 3F Protein Synthesis So far in this unit, we have examined: How genes are transmitted from one generation to the next Where genes are located What genes are made of How genes are replicated How

More information

CHAPTER 4: CELLULAR METABOLISM. 2. Distinguish between kinetic and potential energy, and give examples of each.

CHAPTER 4: CELLULAR METABOLISM. 2. Distinguish between kinetic and potential energy, and give examples of each. OBJECTIVES: 1. Compare and contrast the major divisions of metabolism, in terms of a general descriptive sentence, additional descriptive terms, how energy is involved, whether bonds or formed or broken,

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into

More information

Translation. Translation: Assembly of polypeptides on a ribosome

Translation. Translation: Assembly of polypeptides on a ribosome Translation Translation: Assembly of polypeptides on a ribosome Living cells devote more energy to the synthesis of proteins than to any other aspect of metabolism. About a third of the dry mass of a cell

More information

Modeling DNA Replication and Protein Synthesis

Modeling DNA Replication and Protein Synthesis Skills Practice Lab Modeling DNA Replication and Protein Synthesis OBJECTIVES Construct and analyze a model of DNA. Use a model to simulate the process of replication. Use a model to simulate the process

More information

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary Protein Synthesis Vocabulary Transcription Translation Translocation Chromosomal mutation Deoxyribonucleic acid Frame shift mutation Gene expression Mutation Point mutation Page 41 Page 41 Page 44 Page

More information

Chapter 4 Cellular Metabolism

Chapter 4 Cellular Metabolism Chapter 4 Cellular Metabolism Metabolic processes all chemical reactions that occur in the body Two types of metabolic reactions Anabolism larger molecules are made requires energy Catabolism larger molecules

More information

v vi vii viii ix 1 2 for high school students. For this, research needed to be done to to find a popular and engaging style of animation for this age group. The third step was to design the animation so

More information

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. Name lass Date hapter 12 DN and RN hapter Test Multiple hoice Write the letter that best answers the question or completes the statement on the line provided. Pearson Education, Inc. ll rights reserved.

More information

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms! Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

CHAPTER 30: PROTEIN SYNTHESIS

CHAPTER 30: PROTEIN SYNTHESIS CHAPTER 30: PROTEIN SYNTHESIS (Translation) Translation: mrna protein LECTURE TOPICS Complexity, stages, rate, accuracy Amino acid activation [trna charging] trnas and translating the Genetic Code - Amino

More information

Announcements. Chapter 15. Proteins: Function. Proteins: Function. Proteins: Structure. Peptide Bonds. Lab Next Week. Help Session: Monday 6pm LSS 277

Announcements. Chapter 15. Proteins: Function. Proteins: Function. Proteins: Structure. Peptide Bonds. Lab Next Week. Help Session: Monday 6pm LSS 277 Lab Next Week Announcements Help Session: Monday 6pm LSS 277 Office Hours Chapter 15 and Translation Proteins: Function Proteins: Function Enzymes Transport Structural Components Regulation Communication

More information

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional

More information

Activity 7.21 Transcription factors

Activity 7.21 Transcription factors Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation

More information

Lab # 12: DNA and RNA

Lab # 12: DNA and RNA 115 116 Concepts to be explored: Structure of DNA Nucleotides Amino Acids Proteins Genetic Code Mutation RNA Transcription to RNA Translation to a Protein Figure 12. 1: DNA double helix Introduction Long

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS Period Date REGENTS REVIEW: PROTEIN SYNTHESIS 1. The diagram at the right represents a portion of a type of organic molecule present in the cells of organisms. What will most likely happen if there is

More information

Chapter 17: From Gene to Protein

Chapter 17: From Gene to Protein AP Biology Reading Guide Fred and Theresa Holtzclaw Julia Keller 12d Chapter 17: From Gene to Protein 1. What is gene expression? Gene expression is the process by which DNA directs the synthesis of proteins

More information

Basic Characteristics of Cells. Cell Structure and Function. Each Cell Has Three Primary Regions. Basic Characteristics of Cells. The Plasma Membrane

Basic Characteristics of Cells. Cell Structure and Function. Each Cell Has Three Primary Regions. Basic Characteristics of Cells. The Plasma Membrane Basic Characteristics of Cells Cell Structure and Function Chapter 3 Smallest living subdivision of the human body Diverse in structure and function Small Basic Characteristics of Cells Each Cell Has Three

More information

TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS

TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS Central Dogma of Protein Synthesis Proteins constitute the major part by dry weight of an actively growing cell. They are widely

More information

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes Page 1 of 22 Introduction Indiana students enrolled in Biology I participated in the ISTEP+: Biology I Graduation Examination

More information

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams. Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.

More information

T C T G G C C G A C C T;

T C T G G C C G A C C T; 1. (a) Gene is a (length) of DNA; Gene is a sequence of bases/chain of nucleotides; Triplet (base) code/read in three s; On sense/coding strand; Triplet coding for amino acid; Degenerate code; non-overlapping;

More information

BCH401G Lecture 39 Andres

BCH401G Lecture 39 Andres BCH401G Lecture 39 Andres Lecture Summary: Ribosome: Understand its role in translation and differences between translation in prokaryotes and eukaryotes. Translation: Understand the chemistry of this

More information

Transcription: Writing again Translation: Changing languages

Transcription: Writing again Translation: Changing languages How? 1 Why? Transcription: Writing again Translation: Changing languages 2 Today we ll go from here... Text To here Off to see the wizard... 3 Sending messages out from DNA DNA replication both strands

More information

2006 7.012 Problem Set 3 KEY

2006 7.012 Problem Set 3 KEY 2006 7.012 Problem Set 3 KEY Due before 5 PM on FRIDAY, October 13, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Which reaction is catalyzed by each

More information

Chapter 11: Molecular Structure of DNA and RNA

Chapter 11: Molecular Structure of DNA and RNA Chapter 11: Molecular Structure of DNA and RNA Student Learning Objectives Upon completion of this chapter you should be able to: 1. Understand the major experiments that led to the discovery of DNA as

More information

4Unit One. Metabolic Processes How chemistry becomes Biology! URLs.

4Unit One. Metabolic Processes How chemistry becomes Biology! URLs. 4Unit One URLs http://biology.clc.uc.edu/courses/bio104/cellresp.htm http://users.rcn.com/jkimball.ma.ultranet/biologypages/c/ CellularRespiration.html Chapter 4 http://tidepool.st.usm.edu/crswr/110respiration.html

More information

Transcription: RNA Synthesis, Processing & Modification

Transcription: RNA Synthesis, Processing & Modification Transcription: RNA Synthesis, Processing & Modification 1 Central dogma DNA RNA Protein Reverse transcription 2 Transcription The process of making RNA from DNA Produces all type of RNA mrna, trna, rrna,

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

Lecture 4. Polypeptide Synthesis Overview

Lecture 4. Polypeptide Synthesis Overview Initiation of Protein Synthesis (4.1) Lecture 4 Polypeptide Synthesis Overview Polypeptide synthesis proceeds sequentially from N Terminus to C terminus. Amino acids are not pre-positioned on a template.

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH)

DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) directionality along the backbone 5 (phosphate) to 3 (OH) DNA, RNA, replication, translation, and transcription Overview Recall the central dogma of biology: DNA (genetic information in genes) RNA (copies of genes) proteins (functional molecules) DNA structure

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

DNA is a double helix with two sugar phosphate backbones and nucleotide bases bridging the two chains.

DNA is a double helix with two sugar phosphate backbones and nucleotide bases bridging the two chains. BENG 100 Frontiers of Biomedical Engineering Professor Mark Saltzman Chapter 3 SUMMARY Nucleic acids are linear polymers made up of monomer units called nucleotides. Each nucleotide is composed of a pentose

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be Honors Biology Practice Questions #1 1. Donkeys have 68 chromosomes in each body cell. If a donkey cell undergoes meiosis, how many chromosomes should be in each gamete? A. 18 B. 34 C. 68 D. 132 2. A sperm

More information

Basic Principles of Transcription and Translation

Basic Principles of Transcription and Translation The Flow of Genetic Information The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific traits by dictating the synthesis of

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu. Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.au What is Gene Expression & Gene Regulation? 1. Gene Expression

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

RNA Structure and folding

RNA Structure and folding RNA Structure and folding Overview: The main functional biomolecules in cells are polymers DNA, RNA and proteins For RNA and Proteins, the specific sequence of the polymer dictates its final structure

More information