CHAPTER 20 GENES AND MEDICAL GENETICS

Size: px
Start display at page:

Download "CHAPTER 20 GENES AND MEDICAL GENETICS"

Transcription

1 CHAPTER 20 GENES AND MEDICAL GENETICS BEHAVIORAL OBJECTIVES 1. Recognize the conventions biologists use to represent alleles using letters. [20.1, p.404, Fig. 20.2] 2. Distinguish between phenotype and genotype, dominant and recessive, and homozygous and heterozygous. [20.1, p.404] 3. Understand how gametes carry only one gene for each trait. [20.2, po. 405, Fig. 20.3] 4. List a variety of simple recessive and dominant traits in humans. [20.2, p. 405, Fig. 20.4] 5. Solve one-trait autosomal genetics problems using a Punnett square. [20.2, p. 406, Fig ] 6. Describe disorders that are inherited as recessive genes. [20. 2, p.407, Fig. 20.7] 7. Describe disorders that are inherited as a dominant gene. [20.2, p.408, Fig. 20.8] 8. Explain how to interpret pedigree charts. [20.2, p.409, Fig. 20.9, 20.10, 20.15] 9. Discuss one trait inherited as a polygenic trait. [20.3, p.411, Fig ] 10. Explain what is meant by multiple alleles and give an example. [20.3, p.412, Fig, 20.12] 11. Explain what is meant by incomplete dominance and give an example. [20.4, p.413, Fig ] 12. Show how sex-linked traits are generally inherited on the X chromosome. [20.4, p.414, Fig ] 13. Discuss several sex-linked disorders. [20.4, pp , Figs ] 14. Distinguish between sex-linked and sex-influenced traits. [20.4, pp ] 15. Understand and use the bold-faced and italicized terms included in this chapter. [Understanding Key Terms, p.419] EXTENDED LECTURE OUTLINE 20.1 Genotype and Phenotype The genotype represents the actual genes of an individual. Alleles are alternate forms of a gene at the same gene locus. Individuals can be homozygous dominant (EE) for a trait, heterozygous (Ee), or homozygous recessive (ee). The phenotype refers to the outward expression of the genotype (e.g., red hair). Mader VRL CD-ROM Image 0383l.jpg (Fig. 20.1) Image 0384l.jpg (Fig. 20.2) Transparencies 288 (Fig. 20.2) Genetics/Classical Genetics/Introduction 20.2 Dominant/Recessive Traits Forming the Gametes During oogenesis and spermatogenesis (collectively, gametogenesis), chromosome number is reduced to half, and each gene pair for a trait is separated, so that the offspring receives one gene for each trait from each parent. Figuring the Odds A parent who is homozygous dominant or homo zygous recessive for a trait can pass on only one type of gamete in each case. Heterozygous parents can pass on either the dominant or the recessive gene for a given trait. A Punnett square is useful for determining the possible outcomes of a genetic cross. A cross of two individuals who are both homozygous for a trait results in a 100% chance of having an offspring who is homozygous for the trait. A cross of two heterozygotes results in a 25% chance that the offspring will be homozygous recessive, a 50% chance that the offspring will be heterozygous, and a 25% chance that the offspring will be homozygous dominant. Each offspring has a 25% chance of being homozygous recessive or of being homozygous dominant. 109

2 Recessive Disorders Tay-Sachs Disease Tay-Sachs disease is inherited as an autosomal recessive. Between four and six months of age, an affected infant shows neurological impairment. The child gradually becomes blind, helpless, and paralyzed, and usually dies by age four. Tay-Sachs results from a lack of hexosaminidase A and the storage of its substrate, glycosphingolipid in lysosomes. This disease is most prevalent in Jewish people from central and eastern European descent. Cystic Fibrosis Cystic fibrosis is the most common lethal genetic disease among U.S. Caucasians. The thick mucus in bronchial passageways and pancreatic ducts interferes with the functioning of these organs. The defect lies in a chloride ion transport protein within plasma membranes. When chloride passes through, water normally follows. In cystic fibrosis patients, a lack of water following through results in the thick mucus. The gene for the defect is on chromosome 7. Phenylketonuria (PKU) Individuals with phenylketonuria lack an enzyme needed for the normal metabolism of phenylalanine. Phenylketone thus accumulates in the urine. If the infant is not put on a phenylalanine-restrictive diet in infancy until age seven, brain damage and severe mental retardation result. Dominant Disorders Neurofibromatosis Neurofibromatosis (von Recklinghausen disease) is inherited as an autosomal dominant. People with this condition develop benign neurofibromas under the skin and in various organs. The effects can range from mild to severe, and some neurological impairment if possible. The gene for this trait is a nested gene on chromosome 17. Huntington Disease Huntington disease is also inherited as an autosomal dominant and is characterized by progressive neurological degeneration of brain cells, resulting in personality disorders and muscle spasms. No treatment exists, and death occurs a decade or so after the symptoms appear. Individuals are more likely to be affected if the disorder is inherited from their fathers, a characteristic of genomic imprinting. Pedigree Charts Pedigree charts are a means of constructing a family tree and indicate which individuals are affected by a trait. Since recessive and dominant traits exhibit different patterns of inheritance, pattern of inheritance can be partially determined by examining a pedigree chart. Carriers are normal individuals capable of producing affected children. Mader VRL CD-ROM Image 0385l.jpg (Fig. 20.3) Image 0386al.jpg (Fig. 20.4a, b) Image 0386bl.jpg (Fig. 20.4c, d) Image 0386cl.jpg (Fig. 20.4e, f) Image 0386dl.jpg (Fig. 20.4g, h) Image 0387l.jpg (Fig. 20.5) Image 0388l.jpg (Fig. 20.6) Image 0389l.jpg (Fig. 20.7) Image 0390l.jpg (Fig. 20.8) Image 0391l.jpg (Fig. TA20.1) Image 0392l.jpg (Fig. 20.9) Image 0393l.jpg (Fig ) Principles of Inheritance/Genetics/ Monohybrid Cross Done by Mendel Principles of Inheritance/Genetics/ Independent Assortment 110

3 Genetics/Classical Genetics/Monohybrid Cross Transparencies 289 (Fig. 20.3) 290 (Fig. 20.5) 291 (Fig. 20.6) 292 (Fig. 20.9) 293 (Fig ) 20.3 Beyond Simple Inheritance Patterns Polygenic Inheritance Polygenic traits are those governed by more than one gene pair. Several pairs of genes may be involved in determining phenotype. Skin Color The inheritance of skin color, determined by an unknown number of gene pairs, is a classic example of polygenic inheritance. Polygenic Disorders Many human traits, like allergies, schizophrenia, cleft lip, and hypertension, among others, appear to be inherited as polygenic traits. The expression of some genes is subject to environmental influences (e.g., a child allergic to ragweed will never express that trait while living in the Arctic). Multiple Allelic Traits In multiple alleles, more than two alternative types exist for a gene pair. ABO blood grouping is an example. ABO Blood Types The ABO blood grouping represents surface marker proteins on red blood cells. A person can have a gene for an A marker or a B marker, which are codominant, or lack an A or B marker, designated type O, which is recessive. Human ABO blood types can then be type A (which can be AA or AO), type B (BB or BO), type AB (AB), or type O (OO). Incompletely Dominant Traits Patterns of dominance often go beyond simple dominant or recessive traits. Codominance means that both alleles are expressed (type AB blood). Incomplete dominance is exhibited when the heterozygote shows not the dominant trait but an intermediate phenotype, representing a sort of blending of traits (e.g., skin color or hair type). Sickle-Cell Disease Sickle -cell disease is an example of incomplete dominance. An individual with two genes for normal hemoglobin has normal hemoglobin. A heterozygote has a normal gene and a gene for sickled hemoglobin. An individual with two sickling genes has sickle -cell disease. What may have maintained this apparently detrimental gene in equatorial Africa is that heterozygotes for this trait have a marked resistance to the malarial parasite prevalent in the region. Mader VRL CD-ROM Image 0394al.jpg (Fig a) Image 0394bl.jpg (Fig b) Image 0395l.jpg (Fig ) Image 0396l.jpg (Fig ) Principles of Inheritance/Genetics/ Incomplete Dominance Principles of Inheritance/Genetics/ Inheritance of Sickle-Cell Disease Genetics/Classical Genetics/Beyond Mendel 111

4 Transparencies 294 (Fig b) 295 (Fig ) 296 (Fig ) 20.4 Sex-Linked Traits Sex-linked traits are genes (traits) carried most frequently on the X chromosome. (The Y chromosome is too small.) X-Linked Alleles In X-linked traits, the gene is carried on the X chromosome. Since males have only one copy of the X chromosome, they show the phenotype for the allele they possess and are thus much more likely than females to show a recessive trait. A female must have two copies of a recessive trait (one on each X chromosome) to display it. If a female has only one copy of a recessive gene, she is said to be a carrier and will pass the trait on to 50% of her sons, on average. X-Linked Disorders Color Blindness Three types of cones are in the retina: those that detect red, those that detect green, and those that detect blue. Genes for blue cones are autosomal; those for red and green cones are on the X chromosome. Males are much more likely to have red/green colorblindness than are females. Muscular Dystrophy Duchenne muscular dystrophy is X-linked and is characterized by progressive muscle deterioration during childhood. The absence of the protein dystrophin causes the disorder. Hemophilia Hemophilia (bleeder s disease) can be traced to Queen Victoria of England and is characterized by the absence or minimal presence of one of two different clotting factors. Again, males are much more prone to this trait than females and often require blood transfusions. Sex-Influenced Traits Some traits carried on autosomes such as male-pattern baldness, can be influenced by gender. In this instance, the male hormone testosterone is the culprit. Mader VRL CD-ROM Image 0397l.jpg (Fig ) Image 0398l.jpg (Fig ) Image 0399l.jpg (Fig ) Image 0400l.jpg (Fig. 20A) Image 0401l.jpg (Fig ) Image 0402l.jpg (Fig. TA20.2) Transparencies 297 (Fig ) Principles of Inheritance/Genetics/X-Linked Inheritance Genetics/Classical Genetics/Beyond Mendel 298 (Fig ) 299 (Fig ) 300 (Fig ) 301 (Fig. TA20.1) 112

5 SEVENTH EDITION CHANGES New/Revised Text: This was chapter 19 in the previous edition. This chapter has been fewer A heads. The new section 20.3 Beyond Simple Inheritance Patterns includes polygenic inheritance, multiple allelic traits, and incompletely dominant traits. Four sets of Practice Problems have been added Dominant/Recessive Traits. Recessive Disorders are now discussed before dominant disorders. Pedigree Charts makes it clear that with recessive genetic disorders, when both parents are affected, all children are affected (and why); and with dominant genetic disorders, two affected parents can have an unaffected child (and why). This information will help the student be able to understand and successfully answer the related practice problems Beyond Simple Inheritance Patterns includes polygenic inheritance, multiple allelic traits, and incompletely dominant traits. New Bioethical Focus: Genetic Profiling New/Revised Figures: 20.2 Genetic inheritance; 20.9 Autosomal recessive pedigree chart; Autosomal dominant pedigree chart; Inheritance of blood type; Incomplete dominance; Cross involving an X-linked allele; X-linked recessive pedigree chart; 20A Genetic profiling STUDENT ACTIVITIES The Century of the Gene 1. Ask students to read Introduction: The Biotech Century (Time, January 11, 1999, page 42). Then have them read Michael Lemonick s Designer Babies (pp.64-66). [Ask the library to hold this issue on reserve or make copies of these articles for your students to use.] Use these articles to generate a discussion of which are appropriate uses of this new technology and which are not. Bioethics of Genetic Profiling 2. Read the Bioethical Focus for this chapter (p. 417) aloud to your students. According to this reading, genetic profiling can be used in two ways: to benefit patients, and to discriminate against them. Initiate a discussion with your students. Health insurance companies are already beginning to deny or cancel insurance for women carrying the breast cancer gene. Is this ethical? Should other people insured through the same company pay higher rates to help cover the claims of women who have breast cancer treatment? Would it be better to have the insurance company pay for or require prophylactic removal of both breasts prior to cancer development? Should women carrying this or another deleterious gene be sterilized? Address some of the other questions raised in the Bioethical Focus. Genetics of Your Students 3. Certain obvious human traits can demonstrate the idea of dominant and recessive traits, and can even be discussed in the greater context of population genetics. Canvas your class to see how many fall into each of the following categories: Expression of Dominant Trait Expression of Recessive Trait Dark hair color Light or red hair color Farsightedness Normal vision Freckles No freckles Dark eyes Blue eyes Free earlobes Attached earlobes Six fingers or toes Five fingers or toes Cheek dimples Lack of dimples Full lips Thin lips Widow s peak Straight hair line Tongue roller Cannot roll tongue 113

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 3 Heredity and Environment PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community College-Bloomington

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Genetics Review for USMLE (Part 2)

Genetics Review for USMLE (Part 2) Single Gene Disorders Genetics Review for USMLE (Part 2) Some Definitions Alleles variants of a given DNA sequence at a particular location (locus) in the genome. Often used more narrowly to describe alternative

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

UNIT 13 (OPTION) Genetic Abnormalities

UNIT 13 (OPTION) Genetic Abnormalities Unit 13 Genetic Abnormailities 1 UNIT 13 (OPTION) Genetic Abnormalities Originally developed by: Hildur Helgedottir RN, MN Revised (2000) by: Marlene Reimer RN, PhD, CCN (C) Associate Professor Faculty

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Introduction: Cystic fibrosis (CF) is an inherited chronic disease that affects the lungs and

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com The Effect of Discovery Learning through Biotechnology on the Knowledge and Perception of Sickle Cell Anemia and It s Genetics on Lower Income Students Saffiyah Y. Manboard Biology Instructor Seagull Alternative

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

Cystic Fibrosis. Cystic fibrosis affects various systems in children and young adults, including the following:

Cystic Fibrosis. Cystic fibrosis affects various systems in children and young adults, including the following: Cystic Fibrosis What is cystic fibrosis? Cystic fibrosis (CF) is an inherited disease characterized by an abnormality in the glands that produce sweat and mucus. It is chronic, progressive, and is usually

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

Genetics Part 1: Inheritance of Traits

Genetics Part 1: Inheritance of Traits Genetics Part 1: Inheritance of Traits Genetics is the study of how traits are passed from parents to offspring. Offspring usually show some traits of each parent. For a long time, scientists did not understand

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

Gene mutation and molecular medicine Chapter 15

Gene mutation and molecular medicine Chapter 15 Gene mutation and molecular medicine Chapter 15 Lecture Objectives What Are Mutations? How Are DNA Molecules and Mutations Analyzed? How Do Defective Proteins Lead to Diseases? What DNA Changes Lead to

More information

Blood Stains at the Crime Scene Forensic Investigation

Blood Stains at the Crime Scene Forensic Investigation Blood Stains at the Crime Scene Forensic Investigation Introduction Blood stains at a crime scene can be crucial in solving the crime. Numerous analytical techniques can be used to study blood stains.

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

Part I Failure to Thrive

Part I Failure to Thrive Part I Failure to Thrive Emma and Jacob Miller were so excited at the birth of their baby Matthew. Jacob, he s just so perfect! Just one problem though, it looks like he has your hairline! Emma teased

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics

AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics AP Biology PowerPoint Notes Chapter 11 & 12 Patterns of Heredity and Human Genetics Mendelism and Genotype Genotype must be considered an integrated whole of all the genes because genes often work together

More information

Influences on Birth Defects

Influences on Birth Defects Influences on Birth Defects FACTS About 150,000 babies are born each year with birth defects. The parents of one out of every 28 babies receive the frightening news that their baby has a birth defect There

More information

Genetic Testing in Research & Healthcare

Genetic Testing in Research & Healthcare We Innovate Healthcare Genetic Testing in Research & Healthcare We Innovate Healthcare Genetic Testing in Research and Healthcare Human genetic testing is a growing science. It is used to study genes

More information

Why are some drugs only available on prescription? Depressants. Pain killers. Stimulants. Performance enhancers. Hallucinogens

Why are some drugs only available on prescription? Depressants. Pain killers. Stimulants. Performance enhancers. Hallucinogens Explain the terms Addiction Tolerance How are drugs classified? Class A = Class C= In tobacco smoke what do the following cause? Explain the effect of a depressant on the synapse CO Withdrawal symptoms

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

Using Blood Tests to Identify Babies and Criminals

Using Blood Tests to Identify Babies and Criminals Using Blood Tests to Identify Babies and Criminals Copyright, 2012, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Short answer (show your work or thinking to get partial credit): 1. In four-o'clock flowers, red flower color (R) is incompletely dominant

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

Color Vision Defects - Color Blindness

Color Vision Defects - Color Blindness Color Vision Defects - Color Blindness Introduction A color vision defect causes a person to see colors differently than most people. Color vision defects are sometimes called color blindness. There are

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells Using Blood Tests to Identify Babies and Criminals Copyright, 2010, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

CHAPTER 10 BLOOD GROUPS: ABO AND Rh

CHAPTER 10 BLOOD GROUPS: ABO AND Rh CHAPTER 10 BLOOD GROUPS: ABO AND Rh The success of human blood transfusions requires compatibility for the two major blood group antigen systems, namely ABO and Rh. The ABO system is defined by two red

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other?

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other? Marrying a relative Is there an increased chance that a child will have genetic problems if its parents are related to each other? The simple answer to this question is Yes, there is an increased chance.

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

edtpa: Task 1 Secondary Science

edtpa: Task 1 Secondary Science PART A - About the School Where You Are Teaching a. In what type of school do you teach? Middle School: High School: High School 9-12 Other (please describe): Urban: Suburban: Suburban school setting Rural:

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DragonGeneticsProtocol Mendelian Genetics lab Student.doc DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of

More information

About The Causes of Hearing Loss

About The Causes of Hearing Loss About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently. Name Section 7.014 Problem Set 5 Please print out this problem set and record your answers on the printed copy. Answers to this problem set are to be turned in to the box outside 68-120 by 5:00pm on Friday

More information

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs)

Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Lecture 6: Single nucleotide polymorphisms (SNPs) and Restriction Fragment Length Polymorphisms (RFLPs) Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur

More information

Insurance. Chapter 7. Introduction

Insurance. Chapter 7. Introduction 65 Chapter 7 Insurance Introduction 7.1 The subject of genetic screening in relation to insurance is not new. In 1935 R A Fisher addressed the International Congress of Life Assurance Medicine on the topic,

More information

The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Muscular Dystrophy. By. Tina Strauss

Muscular Dystrophy. By. Tina Strauss Muscular Dystrophy By. Tina Strauss Story Outline for Presentation on Muscular Dystrophy What is Muscular Dystrophy? Signs & Symptoms Types When to seek medical attention? Screening and Diagnosis Treatment

More information

Patient Information. for Childhood

Patient Information. for Childhood Patient Information Genetic Testing for Childhood Hearing Loss Introduction This document describes the most common genetic cause of childhood hearing loss and explains the role of genetic testing. Childhood

More information

Genetics in Paediatrics. Diagnostics Aetiology Treatment Prognosis Prediktion Advise Research

Genetics in Paediatrics. Diagnostics Aetiology Treatment Prognosis Prediktion Advise Research Genetics in Paediatrics Diagnostics Aetiology Treatment Prognosis Prediktion Advise Research Genetic nomenclature,, abbreviations.. Mendels first law: Random transmittance to off-spring of the two chromosomes

More information

A Guide to Prenatal Genetic Testing

A Guide to Prenatal Genetic Testing Patient Education Page 29 A Guide to Prenatal Genetic Testing This section describes prenatal tests that give information about your baby s health. It is your choice whether or not to have these tests

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions

More information

Genetic Disorder Brochure Project

Genetic Disorder Brochure Project Genetic Disorder Brochure Project (modified from a project found on the Robbinsdale School District website) Overview Create a tri-fold brochure for a doctor s office waiting room. The brochure should

More information

Ringneck Doves. A Handbook of Care & Breeding

Ringneck Doves. A Handbook of Care & Breeding Ringneck Doves A Handbook of Care & Breeding With over 100 Full Color Photos, Including Examples and Descriptions of 33 Different Colors and Varieties. K. Wade Oliver Table of Contents Introduction, 4

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron BIO 184 Page 1 Spring 2013 EXAM 3: KEY Instructions: PRINT your Name and Exam version Number on your Scantron Example: PAULA SMITH, EXAM 2 VERSION 1 Write your name CLEARLY at the top of every page of

More information

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Session # : 46 Day/Time: Friday, May 1, 2015, 1:00 4:00 pm Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Presenter: Kathleen S. Arnos, PhD, Gallaudet University This presentation

More information

Optional Tests Offered Before and During Pregnancy

Optional Tests Offered Before and During Pregnancy Plano Women s Healthcare Optional Tests Offered Before and During Pregnancy Alpha-Fetoprotein Test (AFP) and Quad Screen These are screening tests that can assess your baby s risk of having such birth

More information

Test Two Study Guide

Test Two Study Guide Test Two Study Guide 1. Describe what is happening inside a cell during the following phases (pictures may help but try to use words): Interphase: : Consists of G1 / S / G2. Growing stage, cell doubles

More information

EXERCISE 11 MENDELIAN GENETICS PROBLEMS

EXERCISE 11 MENDELIAN GENETICS PROBLEMS EXERCISE 11 MENDELIAN GENETICS PROBLEMS These problems are divided into subdivisions composed of problems that require application of a specific genetic principle. These problems are intended to complement

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

Recovering the Romanovs

Recovering the Romanovs Recovering the Romanovs ACTIVITY 1 The Romanov Family: Screen #4 Inheritance of a Sex-linked Trait Key: H=normal allele; h=hemophilia allele; X=X chromosome; Y=Y chromosome 1. Use a Punnett square to show

More information

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat)

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Introduction: figure 1.1 (Blood type n.d.) figure 1.2 (Blood type, Antigens-Antibodies n.d.) Multiple

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father.

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father. AP Psychology 2.2 Behavioral Genetics Article Chromosomal Abnormalities About 1 in 150 babies is born with a chromosomal abnormality (1, 2). These are caused by errors in the number or structure of chromosomes.

More information

Known Donor Questionnaire

Known Donor Questionnaire Known Donor Questionnaire Your donor s answers to these questions will provide you with a wealth of information about his health. You ll probably need assistance from a health care provider to interpret

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information