Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on"

Transcription

1 Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions Regarding Dominance and Recessiveness Polygenic Inheritance Chapter Outline Genetic and Environmental Factors Mitochondrial Inheritance New Frontiers Modern Evolutionary Theory Factors That Produce and Redistribute Variation Natural Selection Acts on Variation 1

2 Gene4cs The study of gene structure and action and of the patterns of inheritance of traits from parent to offspring. Genetic mechanisms are the underlying foundation for evolutionary change. The Cell Cells are the basic units of life in all living things. In some forms, such as bacteria, a single cell constitutes the entire organism. More complex multi- cellular forms, such as plants, insects, birds, and mammals, are composed of billions of cells. An adult human is made up of as many as 1,000 billion cells, all functioning to promote survival. Structure of a Generalized Eukaryo4c Cell 2

3 Parts of a Eukaryo4c Cell Nucleus - A structure found in all eukaryotic cells; contains chromosomes (nuclear DNA). Molecules - Structures made up of two or more atoms. They can combine with other molecules to form more complex structures. Deoxyribonucleic acid (DNA) - The double- stranded molecule that contains the genetic code. Parts of a Eukaryo4c Cell" Ribonucleic acid (RNA) - A molecule, similar in structure to DNA. Three single- stranded forms of RNA are essential to protein synthesis. Cytoplasm - The portion of the cell contained within the cell membrane, excluding the nucleus Consists of a semifluid material and contains numerous structures involved with cell function. Proteins Three- dimensional molecules that serve a wide variety of functions through their ability to bind to other molecules. Protein Synthesis - The assembly of chains of amino acids into functional protein molecules. The process is directed by DNA. Occurs in ribosomes 3

4 Two Types of Cells Somatic cells All the cells in the body except those involved with reproduction. Gametes (sex cells) Reproductive cells (eggs and sperm in animals) developed from precursor cells in ovaries and testes. Gametes (Sex Cells) Their sole function is to unite with a gamete from another individual to form a zygote. Zygotes contain the full complement of chromosomes (in humans, 46) and has the potential of developing into an entire organism. Nucleo4des Basic units of the DNA molecule, composed of a sugar, a phosphate unit, and one of four DNA bases. 4

5 Part of a DNA Molecule DNA Replica4on A cell can t function without the appropriate amount of DNA, and for new cells to receive DNA, the DNA must replicate. Prior to cell division, enzymes break the bonds between bases in the DNA molecule, leaving the two previously joined strands of nucleotides with their bases exposed. The exposed bases attract unattached nucleotides, which are free- floating in the nucleus. 5

6 DNA Replica4on Because one base can be joined to only one other, the attraction between bases occurs in a complementary fashion. Each of the two previously joined parental nucleotide chains serve as models for the formation of a new strand of nucleotides. As each new strand is formed, its bases are joined to the bases of an original strand. When the process is complete, there are two double- stranded DNA molecules exactly like the original, and each consists of one original nucleotide chain joined to a newly formed one. Enzymes Specialized proteins that initiate and direct chemical reactions in the body. One function is to break bonds of DNA molecules to permit replication. Hemoglobin and other Proteins A protein molecule that occurs in red blood cells and binds to oxygen molecules. Example of a very important protein that is essential to life. Lactose is another example. 6

7 Hormones A class of proteins. Specialized cells produce and release hormones into the bloodstream to circulate to other areas of the body, where they produce specific effects in tissues and organs. Insulin is one example. Regulatory hormones, switching genes on and off, are another example. Proteins and Amino Acids Proteins are made up of chains of smaller molecules called amino acids. There are 20 amino acids, which are combined to produce millions of proteins. What makes proteins different from one another is the number of amino acids involved and the sequence in which they are arranged. Proteins and Amino Acids The sequence of DNA bases determine the order of amino acids in a protein molecule. In the DNA instructions, groups of three bases specifies a particular amino acid. E.g. Alanine: CGA, CGG, CGT, CGC 7

8 Protein Synthesis Protein synthesis involves an additional molecule similar to DNA called RNA (ribonucleic acid). DNA provides the instructions for protein synthesis and RNA reads the instructions and assembles amino acids to form proteins. RNA acts as intermediary in producing amino acids of specified type. Genes A gene is a segment of DNA that dictates the sequence of amino acids in a particular protein. A gene may consist of only a few hundred bases, or it may be composed of thousands. Muta4on A change in DNA. The term can refer to changes in DNA bases as well as changes in chromosome number or structure. If the sequence of DNA bases is altered through mutation, some proteins may not be manufactured, and the cell (or the organism) may not function. 8

9 Homeobox (Hox) Genes An evolutionary ancient family of regulatory genes. Hox genes direct the segmentation and patterning of the overall body plan during embryonic development. Cell Division Cell division results in the production of new cells. During this process, the DNA becomes tightly coiled and is visible under a light microscope as chromosomes. A chromosome is composed of a DNA molecule and associated proteins. Cell Division During the early stages of cell division, chromosomes are made up of two strands joined at a constricted area called the centromere. Every species is characterized by a specific number of chromosomes in somatic cells. In humans there are 46 chromosomes, 23 pairs. One member of each pair is inherited from the father and the other member is inherited from the mother. 9

10 Two Types of Chromosomes Autosomes carry genetic information that governs all characteristics except primary sex determination. Sex chromosomes are the X and Y chromosomes All genetically normal females have two X chromosomes (XX). All genetically normal males have one X and one Y chromosome (XY). Normal human somatic cells have 22 pairs of autosomes and one pair of sex chromosomes. Model of Human Chromosome Standard Chromosomal Complement in Various Organisms 10

11 Mitosis Cell division in somatic cells. Mitosis occurs during growth of the individual. It also permits healing of injured tissues and replaces older cells with newer ones. Mitosis is referred to as simple cell division because a somatic cell divides one time to produce two daughter cells that are genetically identical to each other and to the original cell. Mitosis Mitosis 11

12 Meiosis Cell division in specialized cells in ovaries and testes. Meiosis involves two divisions and results in four daughter cells, each containing only half the original number of chromosomes. These cells can develop into gametes. Meiosis Meiosis 12

13 Mitosis and Meiosis Compared Recombina4on The exchange of DNA between paired chromosomes during meiosis; also called crossing over. Crucially important because increases genetic combination potential Means that genes are shuffled in infinite combinations, so offspring not same as either parent. Gregor Mendel ( ) Mendel was a monk living in an abbey in what is now the Czech Republic. When he began his research, he had already studied botany, physics, and mathematics and performed experiments in the monastery gardens. These experiments led him to explore how physical traits, such as color or height, could be expressed in plant hybrids. 13

14 Principle of Segrega4on Genes (alleles) occur in pairs (because chromosomes occur in pairs). During gamete production, the members of each gene pair separate, so that each gamete contains one member of each pair. During fertilization, the full number of chromosomes is restored, and members of gene or allele pairs are reunited. Traits Mendel Studied in Peas Alleles Alternate forms of a gene. Alleles occur at the same locus on paired chromosomes and thus govern the same trait. However, because they are different, their action may result in different expressions of that trait. The term allele is often used synonymously with gene. 14

15 Locus The position on a chromosome where a given gene occurs. The term is sometimes used interchangeably with gene. If the same allele occurs in the pair, the individual is homozygous for that allele. If different alleles occur in the pair, the individual is heterozygous for that allele. Alleles Dominant A trait governed by an allele that can be expressed in the presence of another, different allele (that is, in heterozygotes). Dominant alleles prevent the expression of recessive alleles in heterozygotes. (This is the definition of complete dominance.) 15

16 Recessive A trait that is not expressed in heterozygotes; also refers to the allele that governs the trait. For a recessive allele to be expressed, there must be two copies of the allele (that is, the individual must be homozygous). Results of Crosses When Only One Trait at a Time Is Considered PunneT Square 16

17 Genotype The genetic makeup of an individual. Genotype can refer to an organism s entire genetic makeup or to the alleles at a particular locus. Phenotypes The observable or detectable physical characteristics of an organism; the detectable expressions of genotypes. Principle of Independent Assortment The distribution of one pair of alleles into gametes does not influence the distribution of another pair. The genes controlling different traits are inherited independently of one another. 17

18 Mendelian Traits Characteristics that are influenced by alleles at only one genetic locus. Examples include many blood types, such as ABO. Many genetic disorders, including sickle- cell anemia and Tay- Sachs disease, are Mendelian traits. Some Mendelian Traits in Humans: Dominant Condi4on Achondroplasia Brachydactyly Hun4ngton disease Manifesta4ons Dwarfism due to growth defects involving the long bones of the arms and legs; trunk and head size usually normal. Shortened fingers and toes. Progressive degenera4on of the disease nervous system accompanied by demen4a and seizures; age of onset is commonly between 30 and 40 years. Some Mendelian Traits in Humans: Recessive Condi4on Tay- Sachs disease Albinism Sickle- cell anemia Manifesta4ons Most common among Ashkenazi Jews; degenera4on of the nervous system begins at 6 months of age; lethal by age 2 or 3. Inability to produce normal amounts of melanin; results in untannable skin, light blond hair, and light eyes. Caused by an abnormal form of hemoglobin that results in collapsed red blood cells, blockage of capillaries and reduced blood flow to organs. 18

19 An4gens Large molecules found on the surface of cells. Several different loci governing antigens on red and white blood cells are known. Foreign antigens provoke an immune response in individuals. Codominance The expression of two alleles in heterozygotes. In this situation, neither is dominant or recessive, so that both influence the phenotype. ABO Genotypes and Associated Phenotypes 19

20 Discon4nuous Distribu4on of a Mendelian Trait Bar chart of the frequency of the ABO blood type in a hypothetical population. 60% of the popula4on has blood type O. AB is the least common blood type. Polygenic Traits Traits governed by two or more loci, with each locus making a contribution to the phenotype. Human height is one example. An example in humans is skin color, and the single most important factor influencing skin color is the amount of melanin. Melanin production is believed to be influenced by 3 to 6 genetic loci, with each locus having at least two alleles, neither of which is dominant. Con4nuous Distribu4on of a Mendelian Trait Histogram of a polygenic trait (height) in a large group of people. From this chart, we can see that the average height is 66 inches and that the tallest individuals measure 80 inches. 20

21 A Comparison of Mendelian and Polygenic Traits Mitochondria Structures contained within the cytoplasm of eukaryotic cells that convert energy, derived from nutrients, into a form that is used by the cell. Mitochondrial DNA (mtdna) is DNA found in the mitochondria; it is inherited only through the maternal line. Polymerase Chain Reac4on (PCR) A technique scientists can use to make thousands of copies of a DNA sample as small as one molecule. This technique, developed in 1986, is important since DNA samples obtained from crime scenes or fossils are frequently too small to permit a reliable analysis of nucleotide sequences. Using PCR, scientists have been able to examine nucleotide sequences in Neandertal fossils and Egyptian mummies. 21

22 Clone An organism that is genetically identical to another organism. The term may also be used to refer to genetically identical DNA segments and molecules. Recombinant DNA Technology A process in which genes from the cell of one species are transferred to somatic cells or gametes of another species. Human Genome Project An international effort aimed at sequencing and mapping the entire human genome now completed. Genome The entire genetic makeup of an individual or species. In humans, it is estimated that each person possesses approximately 3 billion DNA nucleotides. 22

23 The Modern Synthesis Define evolution as a two- stage process: The production and redistribution of variation. Natural selection acting on this variation, whereby inherited differences, or variation, among individuals differentially affect their ability to successfully reproduce. Varia4on In genetics, inherited differences among individuals; the basis of all evolutionary change genetic differences. Evolu4on (Modern Gene4c Defini4on) A change in the frequency of alleles from one generation to the next. In a population, the percentage of all the alleles at a locus accounted for by one specific allele is the allele frequency. A population is a community of individuals within a species where mates are usually found. 23

24 Microevolu4on & Macroevolu4on Microevolution Small changes occurring within species, such as a change in allele frequencies. Macroevolution Changes produced only after many generations, such as the appearance of a new species. Gene Flow Exchange of genes between populations. Term migration also sometimes used. Few population are genetically isolated today. African Americans: between 4% (deep South) and 25% (large urban centers) of genetic migration has occurred through intermarriage. Gene4c Drih Evolutionary changes; changes in allele frequencies produced by random factors. Genetic drift is a result of small population size. When individuals move to isolated area, founder effect can occur. 24

25 Founder Effect A type of genetic drift in which allele frequencies are altered in small populations that are taken from, or are remnants of, larger populations. Succeeding generations are more genetically uniform than the original population. Genetic bottleneck of limited selection causes reduced diversity. Natural Selec4on and Varia4on Occurrence of sickle- cell anemia example of trait affected by natural selection. Individuals homozygous for trait have serious illness usually have shortened life expectancy (45 years). But individuals who are heterozygous for the sickle trait have reduced susceptibility to malaria. Advantage in tropical areas- environmental influence on allele frequencies. Frequency Map of Sickle- cell Distribu4on in the Old World 25

26 Distribu4on of Malaria in the Old World 26

Genetics & Inheritance

Genetics & Inheritance Genetics & Inheritance Part 1 Earth Day Creature! Genetics Terminology Genes are DNA sequences that contain instructions for building proteins or RNA molecules with enzymatic functions. Chromosomes are

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Genetics (20%) Sample Test Prep Questions

Genetics (20%) Sample Test Prep Questions Genetics (20%) Sample Test Prep Questions Grade 7 (2a Genetics) Students know the differences between the life cycles and reproduction methods of sexual and asexual organisms. (pg. 106 Science Framework)

More information

14-1 Notes. Human Heredity

14-1 Notes. Human Heredity 14-1 Notes Human Heredity Human Chromosomes Biologists can make a karyotype by cutting chromosomes out of photographs. There are 46 total chromosomes in a human body cell 23 from a haploid sperm 23 from

More information

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 We all know that children tend to resemble their parents in appearance.

More information

Chapter 18. Genes and Medical Genetics

Chapter 18. Genes and Medical Genetics 1 Chapter 18 Genes and Medical Genetics 2 1 Outline Genotype vs. Phenotype Dominant vs. Recessive Traits Punnett Squares Autosomal Recessive Disorders Autosomal Dominant Disorders Pedigree Charts Multiple

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

CIBI Midterm Examination III November 2005

CIBI Midterm Examination III November 2005 Name: CIBI3031-070 Midterm Examination III November 2005 Multiple Choice In each blank, identify the letter of the choice that best completes the statement or answers the question. 1. If a parent cell

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa).

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa). 1 NAME PER DATE GENETICS REVIEW We all know that children tend to resemble their parents in appearance. Parents and children generally have similar eye color, hair texture, height and other characteristics

More information

Topic 6: Genetics. 1. The transfer of genes from parents to their offspring is known as

Topic 6: Genetics. 1. The transfer of genes from parents to their offspring is known as 1. The transfer of genes from parents to their offspring is known as 5. The diagram below represents a reproductive process that takes place in humans. (1) differentiation (2) heredity (3) immunity (4)

More information

BIOLOGY I Study Guide # 5: Topic Genetics 1

BIOLOGY I Study Guide # 5: Topic Genetics 1 BIOLOGY I Study Guide # 5: Topic Genetics 1 Biology Textbook pg. 262 285, 340-365 Name: I. Mendelian Genetics (pg. 263 272) Define: a. genetics: b. fertilization: c. true-breeding: d. trait: e. hybrid:

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Genetics. PART I: Mitosis & Meiosis prerequisites for inheritance. A. Mitosis. Review: A closer look inside of the nucleus: DNA: chromatin:

Genetics. PART I: Mitosis & Meiosis prerequisites for inheritance. A. Mitosis. Review: A closer look inside of the nucleus: DNA: chromatin: Genetics PART I: Mitosis & Meiosis prerequisites for inheritance A. Mitosis Review: A closer look inside of the nucleus: DNA: chromatin: chromosome: parts: chromatid: centromere: telomere: 1 Mitosis &

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Name Period Date GENETICS

Name Period Date GENETICS Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

More information

Population Genetics (Outline)

Population Genetics (Outline) Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be Honors Biology Practice Questions #1 1. Donkeys have 68 chromosomes in each body cell. If a donkey cell undergoes meiosis, how many chromosomes should be in each gamete? A. 18 B. 34 C. 68 D. 132 2. A sperm

More information

Problem Set 4 BILD10 / Winter 2014

Problem Set 4 BILD10 / Winter 2014 1) The DNA in linear eukaryotic chromosomes is wrapped around proteins called, which keep the DNA from getting tangled and enable an orderly, tight, and efficient packing of the DNA inside the cell. A)

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE THE ROLE OF DNA IN INHERITANCE (2013:2) (a) Use the diagram above to help you explain the relationship

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Forensic DNA Testing Terminology

Forensic DNA Testing Terminology Forensic DNA Testing Terminology ABI 310 Genetic Analyzer a capillary electrophoresis instrument used by forensic DNA laboratories to separate short tandem repeat (STR) loci on the basis of their size.

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Genetic engineering. GENETIC ENGINEERING Genetic engineering is a process whereby genes are transferred from one organism to another.

Genetic engineering. GENETIC ENGINEERING Genetic engineering is a process whereby genes are transferred from one organism to another. Name: 2.5 Genetics Objectives 2.5.9 Genetic Engineering 1. Define Genetic Engineering 2. Understand that GE alters DNA 3. Understand the function of restriction enzymes 4. Be able to explain the following

More information

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics STATE FRAMEWORKS 3. Genetics Chapter 11 Genetics Central Concepts: Genes allow for the storage and transmission of genetic information. They are a set of instructions encoded in the nucleotide sequence

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

Biology 3 Mendelian Inheritance (CH 7)

Biology 3 Mendelian Inheritance (CH 7) Biology 3 Mendelian Inheritance (CH 7) Dr. Terence Lee Genetics Genetics 1 2.20 DNA holds the genetic information to build an organism. 2.21 RNA is a universal translator, reading DNA and directing protein

More information

Life. In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things.

Life. In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things. Computat onal Biology Lecture 1 Life In nature, we find living things and non living things. Living things can move, reproduce, as opposed to non living things. Both are composed of the same atoms and

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

Genetics Test Biology I

Genetics Test Biology I Genetics Test Biology I Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Avery s experiments showed that bacteria are transformed by a. RNA. c. proteins.

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment TEST NAME: Genetics unit test TEST ID: 437885 GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment Genetics unit test Page 1 of 12 Student: Class: Date: 1. There are four blood

More information

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance 1. When neither allele is dominant, so that a heterzygote has a phenotype that is a blending of each of the homozygous phenotypes (such as one red color allele and one white color allele producing pink

More information

Chapter 11. Classical (Mendelian) Genetics

Chapter 11. Classical (Mendelian) Genetics Chapter 11 Classical (Mendelian) Genetics The study of how genes bring about characteristics, or traits, in living things and how those characteristics are inherited. Genetics Geneticist A scientist who

More information

Inheritance. Genes What STUDENT HANDOUT. Module 9

Inheritance. Genes What STUDENT HANDOUT. Module 9 Inheritance Genes What It sare thethey law!good for? Module 9 Genetics for Kids: Module 9 Inheritance It s the law! Part I: Introduction The History of Heredity In the 860 s, an Austrian monk, named Gregor

More information

The Continuity of Life How Cells Reproduce

The Continuity of Life How Cells Reproduce The Continuity of Life How Cells Reproduce Cell division is at the heart of the reproduction of cells and organisms Organisms can reproduce sexually or asexually. Some organisms make exact copies of themselves,

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

ECO-1.1: I can describe the processes that move carbon and nitrogen through ecosystems.

ECO-1.1: I can describe the processes that move carbon and nitrogen through ecosystems. Cycles of Matter ECO-1.1: I can describe the processes that move carbon and nitrogen through ecosystems. ECO-1.2: I can explain how carbon and nitrogen are stored in ecosystems. ECO-1.3: I can describe

More information

Multiple Choice Review Mendelian Genetics & Inheritance Patterns

Multiple Choice Review Mendelian Genetics & Inheritance Patterns Multiple Choice Review Mendelian Genetics & 1. Jean-Baptiste Lamarck introduced a theory about inheritance in the early 1800s. Which of the following accurately describes his Theory of Acquired Characteristics?

More information

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Foundations of Genetics 8.1 Mendel and the Garden Pea The tendency for traits to be passed from parent to offspring is called heredity Gregor Mendel (1822-1884) The first person to systematically study

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

Overview: Variations on a Theme Genetics Heredity Variation Concept 13.1: Offspring acquire genes from parents by inheriting chromosomes

Overview: Variations on a Theme Genetics Heredity Variation Concept 13.1: Offspring acquire genes from parents by inheriting chromosomes Overview: Variations on a Theme Living organisms are distinguished by their ability to reproduce their own kind Genetics is the scientific study of heredity and variation Heredity is the transmission of

More information

3 Genetics. Chapter summary a reminder of the issues to be revised

3 Genetics. Chapter summary a reminder of the issues to be revised 3 Genetics Chapter summary a reminder of the issues to be revised 1 Every living organism inherits a blueprint for life from its parents. Genetics is the study of inheritance. Many characteristics of organisms

More information

2. For example, tall plant, round seed, violet flower, etc. are dominant characters in a pea plant.

2. For example, tall plant, round seed, violet flower, etc. are dominant characters in a pea plant. Principles of Inheritance and Variation Class 12 Chapter 5 Principles of Inheritance and Variation Exercise Solutions Exercise : Solutions of Questions on Page Number : 93 Q1 : Mention the advantages of

More information

Keystone Review Practice Test Module B Continuity and Unity of Life

Keystone Review Practice Test Module B Continuity and Unity of Life Keystone Review Practice Test Module B Continuity and Unity of Life 1. Which event most likely occurs next in mitosis? a. The chromatin condenses. b. The nuclear envelope dissolves. c. The chromosomes

More information

Behavior of Cell Cycle

Behavior of Cell Cycle CH 13 Meiosis Inheritance of genes Genes are the units of heredity, and are made up of segments of DNA. Genes are passed to the next generation via reproductive cells called gametes (sperm and eggs). Each

More information

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS:

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: CHROMOSOME GENE DNA TRAIT HEREDITY INTERPHASE MITOSIS CYTOKINESIS ASEXUAL BINARY FISSION CELL CYCLE GENETIC DIVERSITY

More information

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes

II. DNA Deoxyribonucleic Acid Located in the nucleus of the cell Codes for your genes HEREDITY = passing on of characteristics from parents to offspring How?...DNA! I. DNA, Chromosomes, Chromatin, and Genes DNA = blueprint of life (has the instructions for making an organism) Chromatin=

More information

Exam #2 BSC Fall. NAME Key answers in bold

Exam #2 BSC Fall. NAME Key answers in bold Exam #2 BSC 2011 2004 Fall NAME Key answers in bold _ FORM B Before you begin, please write your name and social security number on the computerized score sheet. Mark in the corresponding bubbles under

More information

Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402)

Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402) Ingenious Genes Curriculum Links for AQA AS (7401) and A-Level Biology (7402) 3.1.1 Monomers and Polymers 3.1.4 Proteins 3.1.5 Nucleic acids are important information-carrying molecules 3.2.1 Cell structure

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes

INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes Monohybrid Crosses Incomplete Dominance and Co-dominance Incomplete dominance: when the dominant gene allele is not able to completely

More information

To understand the importance of genetics, one needs to understand some anatomy at the organ and cellular levels.

To understand the importance of genetics, one needs to understand some anatomy at the organ and cellular levels. Early History Why do certain characteristics run in families? Humans have always been curious about inheritance. Until the 1800s, the mechanism of how traits were passed from parents to children was debated

More information

How are the processes of aerobic respiration and photosynthesis linked? What s another name for the second stage of photosynthesis?

How are the processes of aerobic respiration and photosynthesis linked? What s another name for the second stage of photosynthesis? Exam #2 Study Guide Use your book as a reference if you don t understand something, or better yet, ask me! Photosynthesis only worry about 2 nd stage How are the processes of aerobic respiration and photosynthesis

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences.

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences. Q. The diagrams show one of Mendel s experiments. He bred pea plants. Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

MCAS Biology. Review Packet

MCAS Biology. Review Packet MCAS Biology Review Packet 1 Name Class Date 1. Define organic. THE CHEMISTRY OF LIFE 2. All living things are made up of 6 essential elements: SPONCH. Name the six elements of life. S N P C O H 3. Elements

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS

CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS State Standards Standard 2: CHAPTER 8 CELLULAR REPRODUCTION: CELLS FROM CELLS Standard 5a: Standard 5b: Standard 2a: Standard 2b: The life cycle of a multicellular organism includes This sea star embryo

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

What is Genetics? Genetics is the scientific study of heredity

What is Genetics? Genetics is the scientific study of heredity What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly

More information

Home work, notebo oks, quizzes and test. Home work, notebo oks, quizzes and test

Home work, notebo oks, quizzes and test. Home work, notebo oks, quizzes and test Science: Biology Grade Six Mr. Barry Jordan Curwensville Area School District 1st Quarter Lesson 1 Objectives Skills Assess ment the characteristic s of Cells * will describe the relationship between cells

More information

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders Human genetics: Why? Human Genetics Introduction Determine genotypic basis of variant phenotypes to facilitate: Understanding biological basis of human genetic diversity Prenatal diagnosis Predictive testing

More information

Genetics Practice. 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope.

Genetics Practice. 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope. Name: Date: 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope. Which of the following questions may best be answered by studying an organism s chromosomes?.

More information

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Chapter 24 Genetics and Genomics

Chapter 24 Genetics and Genomics Chapter 24 Genetics and Genomics Genetics study of inheritance of characteristics Genome complete set of genetic instructions Genomics field in which the body is studied in terms of multiple, interacting

More information

1. chose the pea plant for 3 reasons: a. structure of the pea flower (more later) b. presence of distinctive traits c. rapid reproductive cycle 2.

1. chose the pea plant for 3 reasons: a. structure of the pea flower (more later) b. presence of distinctive traits c. rapid reproductive cycle 2. Genetics I. Genetics A. genetics: scientific study of heredity 1. we have known for centuries that traits are passed from parents to offspring 2. we didn t know how the traits were determined B. recall

More information

2. A chromosome with a centromere at the very end is called telocentric.

2. A chromosome with a centromere at the very end is called telocentric. Problem Set 1A Due August 31 1. A diploid somatic cell from a rat has a total of 42 chromosomes (2n = 42). As in humans, sex chromosomes determine sex: XX in females and XY in males. i. What is the total

More information

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) NCEA Level 1 Science (90948) 2013 page 1 of 7 Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Evidence Statement Expected Coverage

More information

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas.

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas. GENETICS Genetics The study of heredity. Gregor Mendel (1860 s) discovered the fundamental principles of genetics by breeding garden peas. Genetics Alleles 1. Alternative forms of genes. 2. Units that

More information

WHAT CELL REPRODUCTION ACCOMPLISHES. Reproduction

WHAT CELL REPRODUCTION ACCOMPLISHES. Reproduction WHAT CELL REPRODUCTION ACCOMPLISHES Reproduction may result in the birth of new organisms but more commonly involves the production of new cells. When a cell undergoes reproduction, or cell division, two

More information

DNA, genes and chromosomes

DNA, genes and chromosomes DNA, genes and chromosomes Learning objectives By the end of this learning material you would have learnt about the components of a DNA and the process of DNA replication, gene types and sequencing and

More information

Name Period _. Regents Biology Date _ REVIEW 5: GENETICS

Name Period _. Regents Biology Date _ REVIEW 5: GENETICS Name Period _ Regents Biology Date _ REVIEW 5: GENETICS 1. Chromosomes: a. Humans have 46 chromosomes, or _23 _ homologous pairs. Homologous: _Chromosomes of the same position and size b. Chromosome pairs

More information

Chapter 16 How Populations Evolve

Chapter 16 How Populations Evolve Title Chapter 16 How Populations Evolve Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Population Genetics A population is all of the members of a single species

More information

Biology 201 (Genetics) Exam #1 21 September 2004

Biology 201 (Genetics) Exam #1 21 September 2004 Name KEY Biology 201 (Genetics) Exam #1 21 September 2004 Read the question carefully before answering. Think before you write. Be concise. You will have up to 85 minutes hour to take this exam. After

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Introduction to Medical Genetics. 1. Introduction to Medical Genetics

Introduction to Medical Genetics. 1. Introduction to Medical Genetics Introduction to Medical Genetics 1 2 1: Introduction 2: Chromosomes and chromosome abnormalities 3: Single gene disorders 4: Polygenic Disorders 5: Mutation and human disease 6: Genes in Populations 7:

More information

Name: Period: Date: PAP Meiosis, Genetics & Heredity Test Review KEY

Name: Period: Date: PAP Meiosis, Genetics & Heredity Test Review KEY Name: Period: Date: PAP Meiosis, Genetics & Heredity Test Review KEY 1. How are an organism s complex traits determined? DNA contains codes for proteins which are necessary for growth an functioning in

More information

MCB142/IB163 Mendelian and Population Genetics 9/19/02

MCB142/IB163 Mendelian and Population Genetics 9/19/02 MCB142/IB163 Mendelian and Population Genetics 9/19/02 Practice questions lectures 5-12 (Hardy Weinberg, chi-square test, Mendel s second law, gene interactions, linkage maps, mapping human diseases, non-random

More information

II B. Gene Flow. II C. Assortative Mating. II D. Genetic Drift. II E. Natural Selection. Northern Elephant Seal: Example of Bottleneck

II B. Gene Flow. II C. Assortative Mating. II D. Genetic Drift. II E. Natural Selection. Northern Elephant Seal: Example of Bottleneck I. What is Evolution? Agents of Evolutionary Change The Five Forces of Evolution and How We Measure Them A. First, remember that Evolution is a two-stage process: 1. Production and redistribution of variation

More information

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928 Name: Period: Date: = passing on of characteristics from parents to offspring How?...! I. DNA, Chromosomes, Chromatin, and Genes = blueprint of life (has the instructions for making an organism) = uncoiled

More information

Genetics: The Science of Heredity

Genetics: The Science of Heredity Chapter 3 Genetics: The Science of Heredity Objectives Describe the results of Mendel's Experiment. Identify the role of alleles in controlling the inheritance of traits. Page 70 This Baby Koala What is

More information

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States:

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 4.1 Cell Division and Genetic Material pg. 160 The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 1. All living things are composed of one or more cells.

More information

not to be republished NCERT Heredity and Evolution CHAPTER 9 Multiple Choice Questions

not to be republished NCERT Heredity and Evolution CHAPTER 9 Multiple Choice Questions CHAPTER 9 Heredity and Evolution Multiple Choice Questions 1. Exchange of genetic material takes place in (a) vegetative reproduction (b) asexual reproduction (c) sexual reproduction (d) budding 2. Two

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

6/2/2015. (Sperm could also be XY)

6/2/2015. (Sperm could also be XY) Chapter 6 Genetics and Inheritance Sometimes there is not one clear dominant allele In a heterozygous individual, both alleles are expressed Phenotype is a blend of both traits Lecture 2: Genetics and

More information