The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Developing Person Through the Life Span 8e by Kathleen Stassen Berger"

Transcription

1 The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 3 Heredity and Environment PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community College-Bloomington Reviewed by Raquel Henry Lone Star College, Kingwood

2 The Genetic Code What Genes Are DNA (deoxyribonucleic acid) Molecule that contains the chemical instructions for cells to manufacture various proteins Promotes growth and sustains life

3 What Genes Are Chromosomes: Molecules of DNA DNA consists of 46 chromosomes arranged in 23 pairs

4 What Genes Are Genes Specific sections of a chromosome carry instructions via four chemicals. Chemicals organized in four pairs (A-T, T-A, C-G, G-C). Each person has about 3 billion pairs.

5 Allele What Genes Are A variation that makes a gene different in some way from other genes for the same characteristics Many genes never vary; others have several possible alleles Genome The full set of genes that are the instructions to make an individual member of a certain species

6 The Beginnings of Life Gametes Reproductive cells (sperm and ova) Each consists of 23 chromosomes. Zygote Two gametes (sperm and ovum) combine and produce a new individual with 23 chromosomes from each parent.

7 The Beginnings of Life

8 Matching Genes Genes are passed down from generation to generation Genotype An organism s genetic inheritance, or genetic potential Unique for each organism

9 Matching Genes Homozygous Two genes of one pair that are exactly the same in every letter of their code. Heterozygous Two genes of one pair that differ in some way. Typically one allele has only a few base pairs that differ from the other member of the pair.

10 Male or Female? Humans usually possess 46 chromosomes. 44 autosomes and 2 sex chromosomes termed the 23 rd pair Females: XX Males: XY Sex of offspring depends on whether the father s Y sperm or X sperm fertilizes the ovum.

11 Male and Female

12 The Beginnings of Life The zygote begins duplication and division then differentiation and specialization occur. Cells change from being stem cells, those from which any other specialized type of cell can form, to being only one kind of cell.

13 Twins Monozygotic (identical) twins Originate from one zygote that splits very early in development Same genotype Dizygotic (fraternal) twins Result from fertilization of two separate ova by two separate sperm Incidence is genetic and varies by ethnicity and age.

14 Assisted Reproduction Assisted reproductive technology (ART) a general term for the techniques that help infertile couples conceive and sustain a pregnancy In vitro fertilization (IVF) takes place outside a woman s body involves mixing sperm with ova surgically removed from the woman s ovary if a zygote is produced, it is inserted into a woman s uterus, where it may implant and develop into a baby.

15 From One Cell to Many Phenotype The observable characteristics of a person, including appearance personality, intelligence, and all other traits Intimately connected with genotype Almost every trait is: polygenic (affected by many genes) multifactorial (influenced by many factors)

16 Epigenetics Referring to environmental factors that affect genes and genetic expression

17 Gene-Gene Interactions Human Genome Project International effort to map the complete human genetic code Essentially completed in 2001; analysis is ongoing Found only about 20,000 genes in humans Exact number is unknown

18 Additive Heredity Additive genes Genes that add something to some aspect of the phenotype Effects of additive genes add up to make the phenotype Example: Height is affected by the contributions of about 100 genes

19 Dominant-Recessive Heredity Dominant-recessive pattern - Dominant gene is more influential than the recessive gene (non-additive). Dominant gene can completely control the phenotype with no noticeable effect of recessive gene. Genes for blood type B and Rh-positive blood are dominant.

20 Dominant-Recessive Heredity Carrier: a person whose genotype includes a gene that is not expressed in the phenotype Unexpressed gene occurs in half of the carrier s gametes and is passed on to half of the carrier s offspring Offspring can be carrier or express the gene in the phenotype (e.g. when unexpressed gene is inherited by both parents)

21 Dominant-Recessive Heredity X-linked: A gene carried on the x chromosome

22 Alcoholism Alcoholism probably has a genetic basis Genes can cause an overpowering addictive pull in some people Environmental conditions can modify the genetic effects Nature and nurture combine to create an alcoholic

23 Nearsightedness Termed myopia Low nearsightedness runs in families and is associated with minor variations in the Pax6 gene Environment also plays a role Increase in nearsightedness among East Asian schoolchildren Increased schoolwork may have caused nearsightedness in children with a Pax6 allelle

24 Heritability Statistical term that indicates what portion of the variation in a particular trait within a particular population is inherited. Example: 90% of the height differences among children of the same age is genetic. Environment can affect the expression of inherited genes.

25 Not Exactly 46 Down Syndrome (Trisomy-21) Three copies of chromosome 21 Specific facial characteristics (thick tongue, round face, slanted eyes) Hearing losses, heart abnormalities, muscle weakness, short stature Slow to develop language Accelerated aging (cataracts, dementia, certain forms of cancer common at age 40)

26 Gene Disorders a) Dominant-Gene Disorders Half of the offspring of parents with a dominant disorder will have the disorder. Most dominant disorders begin in adulthood (fatal dominant childhood conditions cannot be passed on). Many dominant disorders have relatively mild or variable symptoms. Tourette syndrome Some who inherit the dominant gene exhibit uncontrollable tics and explosive outbursts Most have milder, barely noticeable symptoms

27 Gene Disorders b) Recessive Disorders Fragile X syndrome Most common form of inherited mental retardation Additional symptoms include muscle weakness, shyness, and poor social skills Sickle-cell trait Offers some protection against malaria African carriers are more likely than non-carriers to survive

28 Genetic Problems

29 Genetic Counseling and Testing Genetic Counseling Consultation and testing by trained professionals Enables prospective parents to learn about their genetic heritage, including harmful conditions that may be passed on to their offspring Ethical Guidelines Test results are kept confidential Decisions regarding sterilization, adoption, abortion, or carrying a pregnancy to term are made by the clients

30 Genetic Counseling and Testing Phenylketonuria (PKU) Recessive condition Results in inability to metabolize phenylalanine (amino acid found in many foods) Buildup of phenylalanine causes brain damage, progressive mental retardation, and other symptoms Early testing and a special diet usually results in normal development

Heredity and Environment

Heredity and Environment 3 CHAPTER Heredity and Environment Chapter Preview Much is determined at the moment of conception, when a sperm and ovum unite to initiate the developmental processes that will culminate in the birth of

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

Lab 5: Human Genetic Disorders

Lab 5: Human Genetic Disorders Lab 5: Human Genetic Disorders Adapted from Learn.Genetics http://learn.genetics.utah.edu/content/disorders/whataregd/ and Bio10 Laboratory Activities by V. Annen A genetic disorder is a disease that is

More information

I. Types of Genetic Disorders

I. Types of Genetic Disorders I. Types of Genetic Disorders Sex-Linked Disorders Diseases caused by alleles on sex chromosomes Autosomal Dominant Diseases caused by dominant alleles Autosomal Recessive Diseases caused by recessive

More information

2. For example, tall plant, round seed, violet flower, etc. are dominant characters in a pea plant.

2. For example, tall plant, round seed, violet flower, etc. are dominant characters in a pea plant. Principles of Inheritance and Variation Class 12 Chapter 5 Principles of Inheritance and Variation Exercise Solutions Exercise : Solutions of Questions on Page Number : 93 Q1 : Mention the advantages of

More information

Chapter 24 Genetics and Genomics

Chapter 24 Genetics and Genomics Chapter 24 Genetics and Genomics Genetics study of inheritance of characteristics Genome complete set of genetic instructions Genomics field in which the body is studied in terms of multiple, interacting

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Chapter 2. Scientific basis

Chapter 2. Scientific basis 7 Chapter 2 Scientific basis What genes are 2.1 The inheritance of all our characteristics, including susceptibility to genetic diseases, is dependent on genes and chromosomes. Genes are large molecules

More information

Introduction to Medical Genetics. 1. Introduction to Medical Genetics

Introduction to Medical Genetics. 1. Introduction to Medical Genetics Introduction to Medical Genetics 1 2 1: Introduction 2: Chromosomes and chromosome abnormalities 3: Single gene disorders 4: Polygenic Disorders 5: Mutation and human disease 6: Genes in Populations 7:

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

BABY LAB. Let E = the dominant form of the gene / unattached earlobes Let e = the recessive form of the gene / attached earlobes E E

BABY LAB. Let E = the dominant form of the gene / unattached earlobes Let e = the recessive form of the gene / attached earlobes E E Baby Face 1 NAME BABY LAB BACKGROUND INFORMATION: Heredity is the passing of traits from parents to children. Hair color, eye color, eye shape, blood type and some diseases are all examples of traits that

More information

What are genetic disorders?

What are genetic disorders? What are genetic disorders? A disease caused by abnormalities in an individual s genetic material (genome) There are four types of genetic disorders 1. Single-gene (also called Mendelian or monogenic)

More information

14-1 Notes. Human Heredity

14-1 Notes. Human Heredity 14-1 Notes Human Heredity Human Chromosomes Biologists can make a karyotype by cutting chromosomes out of photographs. There are 46 total chromosomes in a human body cell 23 from a haploid sperm 23 from

More information

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. Chapter 14 The Human Genome Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are shown in a karyotype?

More information

LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES

LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES LESSON #1.8: SEX-LINKED TRAITS, PEDIGREE CHARTS, MULTIPLE ALLELES PART A: SEX-LINKED TRAITS Sex-linked traits are controlled by genes located on the sex chromosomes. A recessive trait located on the X

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS:

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: CHROMOSOME GENE DNA TRAIT HEREDITY INTERPHASE MITOSIS CYTOKINESIS ASEXUAL BINARY FISSION CELL CYCLE GENETIC DIVERSITY

More information

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 We all know that children tend to resemble their parents in appearance.

More information

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance 1. When neither allele is dominant, so that a heterzygote has a phenotype that is a blending of each of the homozygous phenotypes (such as one red color allele and one white color allele producing pink

More information

Genetic Disorders. Things Can Go Wrong With DNA and Chromosomes

Genetic Disorders. Things Can Go Wrong With DNA and Chromosomes Genetic Disorders Things Can Go Wrong With DNA and Chromosomes I. Overview of DNA Structure A. Review 1. A gene is a segment of DNA that codes for a particular protein 2. Proteins determine the physical

More information

BIOLOGY I Study Guide # 5: Topic Genetics 1

BIOLOGY I Study Guide # 5: Topic Genetics 1 BIOLOGY I Study Guide # 5: Topic Genetics 1 Biology Textbook pg. 262 285, 340-365 Name: I. Mendelian Genetics (pg. 263 272) Define: a. genetics: b. fertilization: c. true-breeding: d. trait: e. hybrid:

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Congenital and Genetic Disorders. Review of Genetic Control. Human Karyotype BIO 375. Pathophysiology

Congenital and Genetic Disorders. Review of Genetic Control. Human Karyotype BIO 375. Pathophysiology Congenital and Genetic Disorders BIO 375 Pathophysiology Review of Genetic Control Genetic information for each cell is stored on chromosomes: Each body cell contains 2 sets (diploid) of chromosomes; one

More information

Chapter 18. Genes and Medical Genetics

Chapter 18. Genes and Medical Genetics 1 Chapter 18 Genes and Medical Genetics 2 1 Outline Genotype vs. Phenotype Dominant vs. Recessive Traits Punnett Squares Autosomal Recessive Disorders Autosomal Dominant Disorders Pedigree Charts Multiple

More information

Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many

Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many Not all traits are simply inherited by dominant and recessive alleles (Mendelian Genetics). In some traits, neither allele is dominant or many alleles control the trait. Below are different ways in which

More information

Ch. 15: Chromosomal Abnormalities

Ch. 15: Chromosomal Abnormalities Ch 15: Chromosomal Abnormalities Abnormalities in Chromosomal Number Abnormalities in Chromosomal Structure: Rearrangements Fragile Sites Define: nondisjunction polyploidy aneupoidy trisomy monosomy Abnormalities

More information

INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes

INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes INHERITANCE & VARIATION 22 APRIL 2015 Section A: Summary Content Notes Monohybrid Crosses Incomplete Dominance and Co-dominance Incomplete dominance: when the dominant gene allele is not able to completely

More information

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences.

Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following sentences. Q. The diagrams show one of Mendel s experiments. He bred pea plants. Mendel suggested that flower colour was controlled by inherited factors. Draw a ring around the correct answer to complete the following

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics STATE FRAMEWORKS 3. Genetics Chapter 11 Genetics Central Concepts: Genes allow for the storage and transmission of genetic information. They are a set of instructions encoded in the nucleotide sequence

More information

Genetics (20%) Sample Test Prep Questions

Genetics (20%) Sample Test Prep Questions Genetics (20%) Sample Test Prep Questions Grade 7 (2a Genetics) Students know the differences between the life cycles and reproduction methods of sexual and asexual organisms. (pg. 106 Science Framework)

More information

Multiple Choice Review Mendelian Genetics & Inheritance Patterns

Multiple Choice Review Mendelian Genetics & Inheritance Patterns Multiple Choice Review Mendelian Genetics & 1. Jean-Baptiste Lamarck introduced a theory about inheritance in the early 1800s. Which of the following accurately describes his Theory of Acquired Characteristics?

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa).

NAME PER DATE. We'll analyze inheritance for the case where each parent has one A allele and one a allele (i.e. both parents are Aa). 1 NAME PER DATE GENETICS REVIEW We all know that children tend to resemble their parents in appearance. Parents and children generally have similar eye color, hair texture, height and other characteristics

More information

Population Genetics (Outline)

Population Genetics (Outline) Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

More information

Genetic Disorders During Meiosis Karyotypes Genetic Technologies

Genetic Disorders During Meiosis Karyotypes Genetic Technologies Genetic Disorders During Meiosis Karyotypes Genetic Technologies Learning goals Understand the errors that can occur during meiosis and identify some disorders using karyotypes Understand Mendel s 2 laws

More information

Genetics. The connection between Gene expression and Genetics. Genotype is the genetic make up of an organism (gene), which codes for a protein.

Genetics. The connection between Gene expression and Genetics. Genotype is the genetic make up of an organism (gene), which codes for a protein. Genetics The connection between Gene expression and Genetics Genotype is the genetic make up of an organism (gene), which codes for a protein. The protein has a specific function which produces a trait.

More information

Genetics II Answered Review Questions Explain the incomplete dominance inheritance pattern.

Genetics II Answered Review Questions Explain the incomplete dominance inheritance pattern. Genetics II Answered Review Questions 1. Explain the incomplete dominance inheritance pattern. Alleles can show different degrees of dominance and recessiveness in relation to each other. We refer to this

More information

Exam #2 BSC Fall. NAME Key answers in bold

Exam #2 BSC Fall. NAME Key answers in bold Exam #2 BSC 2011 2004 Fall NAME Key answers in bold _ FORM B Before you begin, please write your name and social security number on the computerized score sheet. Mark in the corresponding bubbles under

More information

2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring that are AA or aa?

2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring that are AA or aa? Heredity 1. Technology Enhanced Questions are not available in Word format. 2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Genetics & Inheritance

Genetics & Inheritance Genetics & Inheritance Part 1 Earth Day Creature! Genetics Terminology Genes are DNA sequences that contain instructions for building proteins or RNA molecules with enzymatic functions. Chromosomes are

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Name Period Date GENETICS

Name Period Date GENETICS Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

More information

Our understanding of Mendelian inheritance in humans is based on the analysis of family pedigrees or the results of mating that have already occurred.

Our understanding of Mendelian inheritance in humans is based on the analysis of family pedigrees or the results of mating that have already occurred. Advanced Biology Notes: Human Disorder Pedigree analysis: Our understanding of Mendelian inheritance in humans is based on the analysis of family pedigrees or the results of mating that have already occurred.

More information

Mr and Mrs Brown do not have cystic fibrosis but they have a child with cystic fibrosis.

Mr and Mrs Brown do not have cystic fibrosis but they have a child with cystic fibrosis. Q. Cystic fibrosis is an inherited disorder. Mr and Mrs Brown do not have cystic fibrosis but they have a child with cystic fibrosis. (a) Draw a ring around the correct answer to complete each sentence.

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Period Chapter 15: The Chromosomal Basis of Inheritance Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? The

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

About The Causes of Hearing Loss

About The Causes of Hearing Loss About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections

More information

Section 1 Chromosomes and Inheritance. Section 2 Human Genetics. Resources

Section 1 Chromosomes and Inheritance. Section 2 Human Genetics. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE THE ROLE OF DNA IN INHERITANCE (2013:2) (a) Use the diagram above to help you explain the relationship

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

6/2/2015. (Sperm could also be XY)

6/2/2015. (Sperm could also be XY) Chapter 6 Genetics and Inheritance Sometimes there is not one clear dominant allele In a heterozygous individual, both alleles are expressed Phenotype is a blend of both traits Lecture 2: Genetics and

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Fact Sheet 1 AN INTRODUCTION TO DNA, GENES AND CHROMOSOMES

Fact Sheet 1 AN INTRODUCTION TO DNA, GENES AND CHROMOSOMES 10:23 AM11111 DNA contains the instructions for growth and development in humans and all living things. Our DNA is packaged into chromosomes that contain all of our genes. In summary DNA stands for (DeoxyriboNucleic

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Foundations of Genetics 8.1 Mendel and the Garden Pea The tendency for traits to be passed from parent to offspring is called heredity Gregor Mendel (1822-1884) The first person to systematically study

More information

Genetics Packet ~ Punnett Square Practice KEY

Genetics Packet ~ Punnett Square Practice KEY Basics Name: Date: Block: Genetics Packet ~ Punnett Square Practice KEY 1. The following pairs of letters represent alleles of different genotypes. Indicate which pairs are Heterozygous and which are Homozygous.

More information

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders

Human Mendelian Disorders. Genetic Technology. What is Genetics? Genes are DNA 9/3/2008. Multifactorial Disorders Human genetics: Why? Human Genetics Introduction Determine genotypic basis of variant phenotypes to facilitate: Understanding biological basis of human genetic diversity Prenatal diagnosis Predictive testing

More information

The more varied population is older because the mtdna has had more time to accumulate mutations.

The more varied population is older because the mtdna has had more time to accumulate mutations. Practice problems (with answers) This is the degree of difficulty of the questions that will be on the test. This is not a practice test because I did not consider how long it would take to finish these

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father.

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father. AP Psychology 2.2 Behavioral Genetics Article Chromosomal Abnormalities About 1 in 150 babies is born with a chromosomal abnormality (1, 2). These are caused by errors in the number or structure of chromosomes.

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

Introduction to genetics

Introduction to genetics Introduction to genetics Biology chapter 11 Mr. Hines 11.1 The work of Gregor Mendel What makes you unique? A. Nearly all living things are unique in some way. B. Humans for example all have different

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

CHAPTER 2 NATURE WITH NURTURE

CHAPTER 2 NATURE WITH NURTURE CHAPTER 2 NATURE WITH NURTURE IN THIS CHAPTER How have ideas about nature and nurture changed? What are genes? What exactly do they do? What is the environment? How do the genetic code and environmental

More information

Genetics Practice. 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope.

Genetics Practice. 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope. Name: Date: 1. The diagram below shows the chromosomes from a cell after they were photographed under a microscope. Which of the following questions may best be answered by studying an organism s chromosomes?.

More information

Biology Lesson Plan: Connecting Meiosis and Inheritance

Biology Lesson Plan: Connecting Meiosis and Inheritance Biology Lesson Plan: Connecting Meiosis and Inheritance Amy Dewees, Angela Maresco, and Melissa Parente Biology 501 July 25, 2006 1 Table of Contents Lesson Plan Introduction 3 Teacher Information for

More information

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 17 Emerging Adulthood: Biosocial Development PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community

More information

Chromosomes and Karyotypes

Chromosomes and Karyotypes Chromosomes and Karyotypes Review of Chromosomes Super coiled DNA Structure: It may be A single coiled DNA molecule Chromosomes Or after replication, it may be two coiled DNA molecules held together at

More information

Multicellular. Organisms

Multicellular. Organisms Multicellular Organisms Part 3 Genetic information 1 Genetic Information Success Criteria LI To understand the definition of the term species LI To understand the definition of the term variation and give

More information

CHAPTER 20 GENES AND MEDICAL GENETICS

CHAPTER 20 GENES AND MEDICAL GENETICS CHAPTER 20 GENES AND MEDICAL GENETICS BEHAVIORAL OBJECTIVES 1. Recognize the conventions biologists use to represent alleles using letters. [20.1, p.404, Fig. 20.2] 2. Distinguish between phenotype and

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Genetics. Genetics Disorders

Genetics. Genetics Disorders Genetics Nsg 3027 Women s Health Introduction Genetic disorders occur approximately 1 in 20 or 30% of pediatric admissions National Health Care Goals: Increase prenatal screening to 90% of pregnancies.

More information

2. In humans, brown eye color (B) is dominant over blue eye color (b). What are the phenotypes of the following genotypes? A. BB B. bb C.

2. In humans, brown eye color (B) is dominant over blue eye color (b). What are the phenotypes of the following genotypes? A. BB B. bb C. Name: Period: Genetics Packet The Basics 1. The following pairs of letters represent alleles of different genotypes. Indicate which pairs are Heterozygous and which are Homozygous. Also indicate whether

More information

Genetics & Heredity. Stand up for Candy!

Genetics & Heredity. Stand up for Candy! Genetics & Heredity Stand up for Candy! Heredity or Environment? Color of hair Color of eyes Color of Skin General health Personality traits Strength of eyesight Physical strength IQ Height Relationship

More information

InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics

InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics InGen: Dino Genetics Lab Post-Lab Activity: DNA and Genetics This activity is meant to extend your students knowledge of the topics covered in our DNA and Genetics lab. Through this activity, pairs of

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information

To understand the importance of genetics, one needs to understand some anatomy at the organ and cellular levels.

To understand the importance of genetics, one needs to understand some anatomy at the organ and cellular levels. Early History Why do certain characteristics run in families? Humans have always been curious about inheritance. Until the 1800s, the mechanism of how traits were passed from parents to children was debated

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

Teacher Preparation Notes for Genetics 1

Teacher Preparation Notes for Genetics 1 Teacher Preparation Notes for Genetics 1 This activity helps students to understand basic principles of genetics, including: how genotype influences phenotype how genes are transmitted from parents to

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

CIBI Midterm Examination III November 2005

CIBI Midterm Examination III November 2005 Name: CIBI3031-070 Midterm Examination III November 2005 Multiple Choice In each blank, identify the letter of the choice that best completes the statement or answers the question. 1. If a parent cell

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

Name: Period: Genetics Problems

Name: Period: Genetics Problems Name: Period: Genetics Problems Basics 1. The following pairs of letters represent alleles of different genotypes. Indicate which pairs are Heterozygous and which are Homozygous. Also indicate whether

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

BASIC GENETICS VOCABULARY

BASIC GENETICS VOCABULARY Name: Date: Period: Genetics Problem Sets Introduction: How do organisms come to look and act the way they do? How are characteristics passed from generation to generation? Genetics, the study of inheritance,

More information

Reproductive System & Development: Practice Questions #1

Reproductive System & Development: Practice Questions #1 Reproductive System & Development: Practice Questions #1 1. Which two glands in the diagram produce gametes? A. glands A and B B. glands B and E C. glands C and F D. glands E and F 2. Base your answer

More information

The Continuity of Life How Cells Reproduce

The Continuity of Life How Cells Reproduce The Continuity of Life How Cells Reproduce Cell division is at the heart of the reproduction of cells and organisms Organisms can reproduce sexually or asexually. Some organisms make exact copies of themselves,

More information

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents.

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents. Meiosis The main reason we have meiosis is for sexual reproduction. It mixes up our genes (more on that later). But before we start to investigate this, let's talk a bit about reproduction in general:

More information

1. Focus. Heredity. Section 4. Section 4

1. Focus. Heredity. Section 4. Section 4 Section 4 Heredity Objectives Before class begins, write the objectives on the board. Have students copy the objectives into their notebooks at the start of class. 1. Focus Warm-Up Quick Quiz Use the clickers

More information

Notes: Types of Inheritance

Notes: Types of Inheritance Notes: Types of Inheritance Think about it You have a purple flower, you know purple is the dominate allele, but you do not know the genotype of the plant. How could you figure out it s genotype? Assume

More information