The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

Size: px
Start display at page:

Download "The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes."

Transcription

1 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome and males only have one X d. Because the allele is located on the Y chromosome and only males have Y chromosomes A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. B. Answer b is incorrect. The white-eye gene is recessive; however, this does not explain why it is always observed in males. Because the allele is located on the X chromosome and males only have one X C. Answer c is correct. Because the gene is located on the X chromosome, and the Y chromosome lacks most X chromosome genes, any male carrying the white-eye allele will show the phenotype. D. Answer d is incorrect. The allele is located on the X chromosome as demonstrated by the testcross. The Y chromosome does not carry many genes that are expressed. 2. An autosome is a chromosome that a. contains genetic information to determine the sex of an organism b. determines all other traits of an organism other than sex c. is only inherited from the mother (maternal inheritance) d. has no matching chromosome within an organism s genome A. Answer a is incorrect. The sex of an organism is determined by the sex chromosomes. determines all other traits of an organisms other than sex B. Answer b is correct. Autosomes are the chromosomes that carry the majority of genetic information that determines the overall phenotype of an organism. The sex chromosomes, in contrast, determine the sex of the organism. C. Answer c is incorrect. The autosomes are inherited from both parents. D. Answer d is incorrect. The autosomes exist as homologous pairs. 3. Sex linkage in humans occurs when a. an allele is located on both the X and Y chromosomes b. all allele is located on the X chromosome c. an allele is located on an autosome

2 d. a phenotype is only observed in females A. Answer a is incorrect. An allele is sex-linked if it is present on only one of the sex chromosomes. Few of the genes found on the Y chromosome are expressed. an allele is located on the X chromosome B. Answer b is correct. The phenotype of genes present on the X chromosome will be observed in human males since there is not a second X available. Males cannot be heterozygous for a recessive allele located on the X chromosome. C. Answer c is incorrect. Autosomal inheritance is the usual mode of inheritance and does not include sex-linked traits. D. Answer d is incorrect. Female humans are XX. There are two alleles for any gene present on the X chromosome; this will prevent the expression of a recessive phenotype in heterozygous individuals. 4. What are Barr bodies? a. Barr bodies are X chromosomes inactivated to prevent overexpression of the alleles found on the X chromosome in females. b. Barr bodies are highly condensed Y chromosomes in males. c. Barr bodies are X chromosomes inactivated to allow for expression of the malesspecific phenotype. d. Barr bodies are inactive autosomal chromosomes specific to females. Barr bodies are X chromosomes inactivated to prevent overexpression of the alleles found on the X chromosome in females. A. Answer a is correct. Inactivation of one X chromosome in females allows for dosage compensation. B. Answer b is incorrect. Although Y chromosomes are highly condensed, a Barr body is an inactivated X chromosome. C. Answer c is incorrect. X inactivation only occurs in females to allow for dosage compensation. D. Answer d is incorrect. Inactivation only applies to the X chromosome, not to autosomal chromosomes. 5. How does maternal inheritance of mitochondrial genes differ from sex linkage? a. Mitochondrial genes do not contribute to the phenotype of an individual. b. Because mitochondria are inherited from the mother, only females are affected.

3 c. Since mitochondria are inherited from the mother, females and males are equally affected. d. Mitochondrial genes must be dominant. Sex-linked traits are typically recessive. A. Answer a is incorrect. Mitochondrial genes influence the phenotype of an individual since they can alter the function of the individual s mitochondria. B. Answer b is incorrect. Maternal inheritance means that both males and females receive mitochondria from their mothers. Since mitochondria are inherited from the mother, females and males are equally affected. C. Answer c is correct. The mitochondria found in the fertilized egg become the mitochondria for the new individual, independent of gender. D. Answer d is incorrect. The idea of dominant and recessive does not apply in this case since there are no homologous mitochondria. 6. What cellular process is responsible for genetic recombination? a. Independent assortment b. Separation of the homologues in meiosis 1 c. Separation of the chromatids during meiosis II d. Crossing over A. Answer a is incorrect. Independent assortment refers to the distribution of homologous chromosomes during meiosis. It does not result in genetic recombination. B. Answer b is incorrect. Genetic recombination refers to changes in the genes present on a single chromosome. C. Answer c is incorrect. Anaphase of meiosis II does not alter the genetic makeup of the sister chromatids. Crossing over D. Answer d is correct. Crossing over results in a physical change in the genes present on a chromosome. 7. The number of map units between two genes is determined by a. the recombination frequency b. the frequency of parental types c. the total number of genes within a given piece of DNA d. the number of linked genes within a chromosome

4 the recombination frequency A. Answer a is correct. Map units are defined as percent recombination. B. Answer b is incorrect. The recombination frequency is the value used to determine map units. C. Answer c is incorrect. The number of genes on a chromosome is not relevant to the determination of map units. D. Answer d is incorrect. The number of linked genes is not relevant to the determination of map units. 8. How many map units separate two alleles if the recombination frequency is 0.07? a. 700 cm b. 70 cm c. 7 cm d. 0.7 cm A. Answer a is incorrect. One centimorgan (cm) is equal to a recombination frequency of 1%. The recombination frequency would have to be 700% for this answer to be correct. B. Answer b is incorrect. One centimorgan (cm) is equal to a recombination frequency of 1%. The recombination frequency would have to be 70% for this answer to be correct. 7 cm C. Answer c is correct. One centimorgan (cm) is equal to a recombination frequency of 1%. A recombination frequency of 0.07% equals 7 cm. D. Answer d is incorrect. One centimorgan (cm) is equal to a recombination frequency of 1%. The recombination frequency would have to be for this answer to be correct. 9. Multiple crossovers lead to a. restoration of the paternal combination of genes b. increased genetic diversity c. increased numbers of recombinant progeny d. anueploidy restoration of the paternal combination of genes A. Answer a is correct. Two crossovers will return the alleles to their original location. B. Answer b is incorrect. Crossovers represent exchanges between homologous chromosomes; they do not alter the genes themselves.

5 C. Answer c is incorrect. Multiple crossovers can restore the parental combination, therefore even though crossovers occurred, the progeny will have the parental phenotype. D. Answer d is incorrect. Anueploidy occurs when there is too much or too little genetic information. Crossovers only exchange information. 10. The disease sickle cell anemia is a caused by a. an altered expression of the Hbβ gene b. a change of a single amino acid in the protein hemoglobin c. a change in the Hbβ gene d. both b and c A. Answer a is incorrect. This disease is a consequence of a change in the gene and the gene product, not in the expression of the gene. B. Answer b is incorrect. Although there is a single amino acid change in the sickle cell hemoglobin, the change in the amino acid is the result of a change in the gene. C. Answer c is incorrect. The change in the Hbβ gene alters the Hbβ protein. It is the altered hemoglobin protein that represents the disease phenotype. both b and c D. Answer d is correct. The disease is the result of the combined effects of a change in a gene leading to a change in a protein 11. What determines whether an individual is a genetic mosaic? a. The presence of different alleles on the autosomal chromosomes b. The inactivation of an allele on an autosomal chromosome c. The inactivation of an allele on the X chromosome of a heterozygous female d. The inactivation of an allele on the X chromosome of a homozygous male A. Answer a is incorrect. An individual that is heterozygous is not a genetic mosaic. B. Answer b is incorrect. Autosomal chromosomes do not undergo inactivation. The inactivation of an allele on the X chromosome of a heterozygous female C. Answer c is correct. The cells of a female have only one active X chromosome. They are a mosaic since the specific X chromosome that has been inactivated varies between cells.

6 D. Answer d is incorrect. The X chromosome does not become inactive in a male. 12. Down syndrome is the result of a. a single-base substitution on human chromosome 21 b. nondisjunction of chromosome 21 during meiosis c. inactivation of chromosome 21 d. nondisjunction of chromosome 21 during mitosis in early development A. Answer a is incorrect. Down syndrome is an example of a trisomy. Trisomy results when there is an extra copy of a chromosome occurs in a cell. nondisjunction of chromosome 21 during meiosis B. Answer b is correct. The failure of the homologues of chromosome 21 to separate during anaphase of meiosis I leads to the trisomic condition. C. Answer c is incorrect. Down syndrome is the result of too much genetic information. Inactivation removes genetic information from a cell. D. Answer d is incorrect. Nondisjunction must occur during meiosis (the production of gametes) in order for the organism to become trisomic. 13. Which of the following examples of nondisjunction of sex chromosomes is lethal? a. XXX b. XXY c. OY d. XO A. Answer a is incorrect. Triple X females are viable. They have a single active X chromosome and two Barr bodies. B. Answer b is incorrect. Klinefelter males are viable. OY C. Answer c is correct. An embryo that lacks an X chromosome cannot survive. D. Answer d is incorrect. These individuals are viable. 14. What is imprinting? a. The blending of a phenotype due to the genetic contribution of both parents b. The expression of a dominant allele c. The development of a phenotype in response to interactions between distinct alleles

7 d. The expression of different phenotypes dependent upon the parent from which the allele was inherited A. Answer a is incorrect. Imprinting occurs when one allele is inactive. The phenotype would appear to be homozygous. B. Answer b is incorrect. Imprinting results in variable expression of an allele, depending on whether that allele was inherited from the mother or father, not on whether the allele is dominant or recessive. C. Answer c is incorrect. Interactions between distinct alleles leading to an altered phenotype are called epistasis. The expression of different phenotypes dependent upon the parent from which the allele was inherited D. Answer d is correct. Specific alleles can be inactivated by methylation of the DNA. For some genes the methylation of an allele follows a pattern based on whether the source of the alleles is maternal or paternal 15. Which of the following is NOT a method used in genetic counseling? a. Ultrasound b. Chorionic villi sampling c. Amniocentesis d. Pedigree analysis Ultrasound A. Answer a is correct. Ultrasound can provide a visual image of a developing fetus; however, it does not provide any information about genotype. B. Answer b is incorrect. Chorionic villi sampling is a method that provides fetal cells that can be used to examine chromosome number and other biochemical tests. C. Answer c is incorrect. Amniocentesis provides a sample of fetal cells that can be examined using karyotyping. D. Answer d is incorrect. Pedigree analysis is a noninvasive method used by genetic counselors to predict the possibility of a genetic defect being inherited by a child based on family history.

8 Challenge Questions 1. Color blindness is caused by a sex-linked, recessive gene. If a woman, heterozygous for the color blind allele, marries a man with normal color vision, what percentage of their children will be color blind? What sex will the color blind children be? Answer Use a simple Punnett square to calculate the percentage of color blind children. X (color blind) X (normal) X (normal) Y Theoretically, 25% of the children from this cross will be color blind. All of the color blind children will be male and 50% of the males will be color blind. 2. What conditions would have to exist to produce a color blind female? Answer A female would have to inherit the color blind gene from both parents. For this to happen the father would have to be color blind and the mother would have to be heterozygous for the color blind allele. XX (normal)(color blind) XY (color blind) XX (normal)(normal) XY (normal) X (color blind) X (normal) X (color blind) Y XX (color blind)(color blind) XY (color blind) XX (color blind)(normal) XY (normal) 3. Imagine that the genes for seed color and seed shape are located on the same chromosome. A cross was made between two, true-breeding plants. One plant produces green wrinkled seed (rryy) and the second parent produced round yellow seeds (RRYY). A testcross is made between the F 1 generation with the following results: green, wrinkled 645 green, round 36 yellow, wrinkled 29 yellow, round 590 Calculate the distance between the two loci.

9 Answer To answer this question it is first necessary to determine which of the progeny are expressing the parental phenotypes and which are the recombinants (that is, the progeny with phenotypes that are different from the parental). In this problem the original parents had the phenotypes green, wrinkled and yellow, round. That means that the recombinants are the green, round and yellow, wrinkled. The next step is to add up the total number of recombinant ( = 65) and then divide that number by the total number of progeny ( = 1300) 65/1300 = Each 1% of recombination is a map unit. For this problem the number of map units between the two genes is 5 cm. 4. Is it possible to have a calico cat that is male? Why or why not? Answer Male calico cats are very rare. The coloration that is associated with calico cats is the product of X inactivation. X inactivation only occurs in females as a response to dosage levels of the X-linked genes. Females that are heterozygous for coat color will have different regions or patches of colored fur, representing the differential inactivation of the black or orange pigment genes. The only way to get a male calico is to be heterozygous for the color gene and to be the equivalent of a Klinefelters male (XXY).

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Chromosomal Basis of Inheritance. Ch. 3

Chromosomal Basis of Inheritance. Ch. 3 Chromosomal Basis of Inheritance Ch. 3 THE CHROMOSOME THEORY OF INHERITANCE AND SEX CHROMOSOMES! The chromosome theory of inheritance describes how the transmission of chromosomes account for the Mendelian

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

Inheritance Patterns and Human Genetics. Chapter 12. Table of Contents. Section 1 Chromosomes and Inheritance Section 2 Human Genetics

Inheritance Patterns and Human Genetics. Chapter 12. Table of Contents. Section 1 Chromosomes and Inheritance Section 2 Human Genetics Inheritance Patterns and Human Genetics Table of Contents Section 1 Chromosomes and Inheritance Section 1 Chromosomes and Inheritance Objectives Distinguish between sex chromosomes and autosomes. Explain

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

The more varied population is older because the mtdna has had more time to accumulate mutations.

The more varied population is older because the mtdna has had more time to accumulate mutations. Practice problems (with answers) This is the degree of difficulty of the questions that will be on the test. This is not a practice test because I did not consider how long it would take to finish these

More information

Figure S1 Clicker questions and their associated learning objectives and Bloom s level

Figure S1 Clicker questions and their associated learning objectives and Bloom s level Figure S1 Clicker questions and their associated learning objectives and Bloom s level Mitosis and Meiosis questions Q1: Which of the following events does not occur during mitosis? A.Breakdown of the

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Meiosis and Sexual Life Cycles Chapter 13 1 Ojectives Distinguish between the following terms: somatic cell and gamete; autosome and sex chromosomes; haploid and diploid. List the phases of meiosis I and

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction. Meiosis I Meiosis II Centromere-linked markers

Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction. Meiosis I Meiosis II Centromere-linked markers Lecture 32: Numerical Chromosomal Abnormalities and Nondisjunction Meiosis I Meiosis II Centromere-linked markers Female Male 46,XX 46,XY Human chromosomal abnormalities may be numerical or structural.

More information

Sex Linkage. Reciprocal Cross. Exceptions 8/26/10

Sex Linkage. Reciprocal Cross. Exceptions 8/26/10 Sex Linkage Reciprocal Cross Organisms that have different sexes can be crossed in two different ways Phenotype A male X Phenotype B female Phenotype B male X Phenotype A female Mendel concluded that reciprocal

More information

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points

Exam 1. CSS/Hort 430. 2008 All questions worth 2 points Exam 1. CSS/Hort 430. 2008 All questions worth 2 points 1. A general definition of plants is they are eukaryotic, multi-cellular organisms and are usually photosynthetic. In this definition, eukaryotic

More information

Linkage, recombination and gene mapping. Why are linkage relationships important?

Linkage, recombination and gene mapping. Why are linkage relationships important? Transmission patterns of linked genes Linkage, recombination and gene mapping Why are linkage relationships important? Linkage and independent assortment - statistical tests of hypotheses Recombination

More information

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n)

Meiosis. The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) MEIOSIS Meiosis The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) Meiosis is sexual reproduction. Two divisions (meiosis I and meiosis

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents.

Asexual - in this case, chromosomes come from a single parent. The text makes the point that you are not exact copies of your parents. Meiosis The main reason we have meiosis is for sexual reproduction. It mixes up our genes (more on that later). But before we start to investigate this, let's talk a bit about reproduction in general:

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics

Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Name Biology 160 Lab Module 10 Meiosis Activity & Mendelian Genetics Introduction During your lifetime you have grown from a single celled zygote into an organism made up of trillions of cells. The vast

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Multiple Choice Review Mitosis & Meiosis

Multiple Choice Review Mitosis & Meiosis Multiple Choice Review Mitosis & Meiosis 1. Which of the following accurately describes the one of the major divisions of mitosis? a. During the mitotic phase, cells are performing their primary function

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Nature of Genetic Material. Nature of Genetic Material

Nature of Genetic Material. Nature of Genetic Material Core Category Nature of Genetic Material Nature of Genetic Material Core Concepts in Genetics (in bold)/example Learning Objectives How is DNA organized? Describe the types of DNA regions that do not encode

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Lecture 4 Linkage and Recombination

Lecture 4 Linkage and Recombination Lecture 4 Linkage and Recombination CAMPBELL BIOLOGY Chapter 9 Notes at: tcd.ie/biology_teaching_centre/local/ junior-freshman/ by1101local This is an Irish family with an autosomal dominant disease mutation

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis 4.2 Meiosis Assessment statements State that meiosis is a reduction division of a diploid nucleus to form haploid nuclei. Define homologous chromosomes. Outline the process of meiosis, including pairing

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

11.4 Meiosis. Lesson Objectives. Lesson Summary

11.4 Meiosis. Lesson Objectives. Lesson Summary 11.4 Meiosis Lesson Objectives Contrast the number of chromosomes in body cells and in gametes. Summarize the events of meiosis. Contrast meiosis and mitosis. Describe how alleles from different genes

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as

5. The cells of a multicellular organism, other than gametes and the germ cells from which it develops, are known as 1. True or false? The chi square statistical test is used to determine how well the observed genetic data agree with the expectations derived from a hypothesis. True 2. True or false? Chromosomes in prokaryotic

More information

Bio 101 Section 001: Practice Questions for First Exam

Bio 101 Section 001: Practice Questions for First Exam Do the Practice Exam under exam conditions. Time yourself! MULTIPLE CHOICE: 1. The substrate fits in the of an enzyme: (A) allosteric site (B) active site (C) reaction groove (D) Golgi body (E) inhibitor

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

4 SEX CHROMOSOMES AND SEX DETERMINATION

4 SEX CHROMOSOMES AND SEX DETERMINATION 4 SEX CHROMOSOMES AND SEX DETERMINATION 4.1 Sex chromosomes and Sex Determination Sex- chromosomes. If present, sex chromosomes may not have the same size, shape, or genetic potential. In humans, females

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Build Your Own Baby. Trait 0 Gender

Build Your Own Baby. Trait 0 Gender Build Your Own Baby In this activity, you and your partner will be reproducing to produce a child. We already know humans have 23 pairs of chromosomes, 22 autosomes and 1 sex chromosome. You and your partner

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Punnett Square: Monohybird Crosses

Punnett Square: Monohybird Crosses Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

More information

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome.

Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Chromosomes, Karyotyping, and Abnormalities (Learning Objectives) Learn the components and parts of a metaphase chromosome. Define the terms karyotype, autosomal and sex chromosomes. Explain how many of

More information

Chapter 8: The Cellular Basis of Reproduction and Inheritance

Chapter 8: The Cellular Basis of Reproduction and Inheritance Chapter 8: The Cellular Basis of Reproduction and Inheritance Introduction Stages of an Organism s Life Cycle: Development: All changes that occur from a fertilized egg or an initial cell to an adult organism.

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Genetics test questions

Genetics test questions Class: Date: Genetics test questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Pea plants were particularly well suited for use in

More information

UNIT 13 (OPTION) Genetic Abnormalities

UNIT 13 (OPTION) Genetic Abnormalities Unit 13 Genetic Abnormailities 1 UNIT 13 (OPTION) Genetic Abnormalities Originally developed by: Hildur Helgedottir RN, MN Revised (2000) by: Marlene Reimer RN, PhD, CCN (C) Associate Professor Faculty

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be

Honors Biology Practice Questions #1. Name. 6. Seastars have a diploid number of 24 chromosomes. The haploid number would be Honors Biology Practice Questions #1 1. Donkeys have 68 chromosomes in each body cell. If a donkey cell undergoes meiosis, how many chromosomes should be in each gamete? A. 18 B. 34 C. 68 D. 132 2. A sperm

More information

Genetics Part 1: Inheritance of Traits

Genetics Part 1: Inheritance of Traits Genetics Part 1: Inheritance of Traits Genetics is the study of how traits are passed from parents to offspring. Offspring usually show some traits of each parent. For a long time, scientists did not understand

More information

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD

Meiosis Worksheet. Do you have ALL your parents' chromosomes? Introduction to Meiosis. Haploid vs. Diploid. Overview of Meiosis NAME - PERIOD Meiosis Worksheet NAME - PERIOD Do you have ALL your parents' chromosomes? No, you only received half of your mother's chromosomes and half of your father's chromosomes. If you inherited them all, you

More information

Chapter 8 Cell division. Review

Chapter 8 Cell division. Review Chapter 8 Cell division Mitosis/Meiosis Review This spot that holds the 2 chromatid copies together is called a centromere The phase of the cell cycle in which cells stop dividing all together. G 0 Cell

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father.

Each person normally has 23 pairs of chromosomes, or 46 in all. We inherit one chromosome per pair from our mother and one from our father. AP Psychology 2.2 Behavioral Genetics Article Chromosomal Abnormalities About 1 in 150 babies is born with a chromosomal abnormality (1, 2). These are caused by errors in the number or structure of chromosomes.

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

www.njctl.org PSI Biology Mitosis & Meiosis

www.njctl.org PSI Biology Mitosis & Meiosis Mitosis and Meiosis Mitosis Classwork 1. Identify two differences between meiosis and mitosis. 2. Provide an example of a type of cell in the human body that would undergo mitosis. 3. Does cell division

More information

Eukaryotic Cells and the Cell Cycle

Eukaryotic Cells and the Cell Cycle Eukaryotic Cells and the Cell Cycle Mitosis, Meiosis, & Fertilization Learning Goals: After completing this laboratory exercise you will be able to: 1. Identify the stages of the cell cycle. 2. Follow

More information

Lecture 2: Mitosis and meiosis

Lecture 2: Mitosis and meiosis Lecture 2: Mitosis and meiosis 1. Chromosomes 2. Diploid life cycle 3. Cell cycle 4. Mitosis 5. Meiosis 6. Parallel behavior of genes and chromosomes Basic morphology of chromosomes telomere short arm

More information

Lecture 3 Cell division: mitosis and meiosis

Lecture 3 Cell division: mitosis and meiosis Lecture 3 Cell division: mitosis and meiosis CAMPBELL BIOLOGY Chapter 8 1 The Cell Division Cycle Almost 90% of the cycle is taken up with Interphase during which DNA in the nucleus is replicated Mitosis

More information

Biology and Society, Exam II

Biology and Society, Exam II iology and Society, Exam II Name There are 50 multiple choice questions. Answer A for true, for false. Write your NAME on the scantron and above, and ID NUMER in the identification number blank on the

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

12.1 The Role of DNA in Heredity

12.1 The Role of DNA in Heredity 12.1 The Role of DNA in Heredity Only in the last 50 years have scientists understood the role of DNA in heredity. That understanding began with the discovery of DNA s structure. In 1952, Rosalind Franklin

More information

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis

BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis BioSci 2200 General Genetics Problem Set 1 Answer Key Introduction and Mitosis/ Meiosis Introduction - Fields of Genetics To answer the following question, review the three traditional subdivisions of

More information

Fact Sheet 14 EPIGENETICS

Fact Sheet 14 EPIGENETICS This fact sheet describes epigenetics which refers to factors that can influence the way our genes are expressed in the cells of our body. In summary Epigenetics is a phenomenon that affects the way cells

More information

Practice Problems 4. (a) 19. (b) 36. (c) 17

Practice Problems 4. (a) 19. (b) 36. (c) 17 Chapter 10 Practice Problems Practice Problems 4 1. The diploid chromosome number in a variety of chrysanthemum is 18. What would you call varieties with the following chromosome numbers? (a) 19 (b) 36

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

1.1.1 Which of the following is NOT part of a deoxyribonucleic acid (DNA) molecule?

1.1.1 Which of the following is NOT part of a deoxyribonucleic acid (DNA) molecule? MATRIC LIFE SCIENCES PAPER 1 2009 1 Tissues, cells & molecular studies; Life systems SECTION A QUESTION 1 1.1 Various possible options are provided as answers to the following questions. Choose the correct

More information

Linkage and Recombination. T. H. Morgan Calvin B. Bridges Alfred H. Sturtevant Herman Joseph. Muller Nobel Prize 1933 Nobel Prize 1946

Linkage and Recombination. T. H. Morgan Calvin B. Bridges Alfred H. Sturtevant Herman Joseph. Muller Nobel Prize 1933 Nobel Prize 1946 Linkage and Recombination T. H. Morgan Calvin B. Bridges Alfred H. Sturtevant Herman Joseph. Muller Nobel Prize 1933 Nobel Prize 1946 Mendel studied 7 traits and every pair of traits that he reported in

More information

Test Two Study Guide

Test Two Study Guide Test Two Study Guide 1. Describe what is happening inside a cell during the following phases (pictures may help but try to use words): Interphase: : Consists of G1 / S / G2. Growing stage, cell doubles

More information

About The Causes of Hearing Loss

About The Causes of Hearing Loss About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections

More information

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Page 1 of 5 Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA Genetics Exercise: Understanding how meiosis affects genetic inheritance and DNA patterns

More information

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on Chapter 3 Heredity and Evolu4on Chapter Outline The Cell DNA Structure and Function Cell Division: Mitosis and Meiosis The Genetic Principles Discovered by Mendel Mendelian Inheritance in Humans Misconceptions

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

Name Date. Meiosis Worksheet

Name Date. Meiosis Worksheet Name Date Meiosis Worksheet Identifying Processes On the lines provided, order the different stages of meiosis I THROUGH meiosis II, including interphase in the proper sequence. 1. homologous chromosome

More information

Linkage, Recombination, and Crossing Over

Linkage, Recombination, and Crossing Over Linkage, Recombination, and Crossing Over Mendel said.. Heterozygous for two traits GgRr Independent segregation Gametes: GR; Gr; gr; gr; 25% each Phenotypes: YeRo YeWr GrRo GrWr 9 3 3 1 But sometimes

More information

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 3 Heredity and Environment PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community College-Bloomington

More information

5 GENETIC LINKAGE AND MAPPING

5 GENETIC LINKAGE AND MAPPING 5 GENETIC LINKAGE AND MAPPING 5.1 Genetic Linkage So far, we have considered traits that are affected by one or two genes, and if there are two genes, we have assumed that they assort independently. However,

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 8 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

and the Mapping of Genes on Chromosomes

and the Mapping of Genes on Chromosomes Lecture 5 Linkage, Recombination, and the Mapping of Genes on Chromosomes http://lms.ls.ntou.edu.tw/course/136 1 Outline Part 1 Linkage and meiotic recombination Genes linked together on the same chromosome

More information

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES

Sexual Reproduction. The specialized cells that are required for sexual reproduction are known as. And come from the process of: GAMETES Sexual Reproduction Sexual Reproduction We know all about asexual reproduction 1. Only one parent required. 2. Offspring are identical to parents. 3. The cells that produce the offspring are not usually

More information