GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics"

Transcription

1 GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics OBJECTIVES: Understand Mendel s laws of segregation and independent assortment. Differentiate between an organism s genotype and phenotype. Recognize different patterns of inheritance. Perform monohybrid and dihybrid crosses. Use pedigree analysis to identify inheritance patterns. INTRODUCTION: Through his studies of the inheritance patterns of the garden pea, Pisum sativum, Gregor Mendel changed our understanding of heredity. Mendel studied characters/traits that differed between plants and designed cross-fertilization experiments to understand how these characters transmit to the next generation. The results of Mendel s work refuted the prevailing hypothesis of blending inheritance and provided a new framework for understanding genetics. Ultimately, Mendel postulated two laws to explain heredity: (1) the law of segregation and (2) the law of independent assortment. Monohybrid crosses and the law of segregation The law of segregation, also termed the first law, states that during gamete formation the alternate forms of a gene (i.e. alleles) on a pair of chromosomes segregate randomly so that each allele in the pair is received by a different gamete. For example, if you were to examine the gene responsible for petal color, you may discover that the gene can be expressed as either yellow or white flowers. In this scenario, the gene is petal color, while the alleles are yellow and white. Depending on which allele is expressed, petal color will vary. Examine Figure 1 below making sure that you can follow the path of each allele from parent to offspring. Figure 1. Schematic of Mendel s law of segregation 1

2 In diploid organisms, all alleles exist in pairs; identical alleles within a pair are homozygous, while different alleles are heterozygous. Allele forms are represented by a single letter that explains whether a particular trait is dominant or recessive. Dominant alleles are assigned an uppercase letter (E), while recessive alleles are lowercase (e).in general, a dominant trait is expressed when at least one of the alleles present in the resulting allelic pair is dominant (EE or Ee). In contrast, for a recessive trait to be expressed, both alleles within the pair must be recessive (ee). For example, when considering ear lobe shape, two forms (attached and unattached) are apparent (Fig. 2). This trait is regulated by a single gene where unattached ear lobes are dominant (E) while attached ear lobes (e) are recessive. Figure 2. (a) Unattached (EE or Ee) vs. (b) attached earlobes (ee) An organism s genotype (EE, Ee, ee) is the combination of alleles present whereas the phenotype is the physical expression of the genotype. In the earlobe shape example above, an individual can have a genotype of EE, Ee or ee. People with EE or Ee genotypes have the unattached earlobe phenotype (Fig 2a), while those with an ee genotype express the attached earlobe form (Fig 2b). Note that dominant traits can be either homozygous (EE) or heterozygous (Ee) while recessive traits are always homozygous (ee). Question: Given that the allele for brown eyes (B) is dominant and the allele for blue eyes (b) is recessive, which of the following genotypes would result in individuals with brown eyes? Which genotype(s) is/are homozygous and which is/are heterozygous? BB: Bb: bb: 2

3 In today s lab you will use the concepts of Mendelian Genetics to solve problems regarding inheritance. TASK 1 Patterns of Inheritance I: Simple Dominance Simple dominance is the term used to describe a common outcome of allelic combinations, where one allele, if present, will dominate over the other and will be expressed. Information about alleles present in a parental population can be used to determine the probability of different genotypic and phenotypic ratios for a variety of traits in the offspring. In instances when only 1 or 2 traits are being considered the Punnett square (Fig. 3) approach is used to predict the possible outcomes of the parental cross. When only one trait is being considered the cross is monohybrid while a dihybrid cross involves 2 traits. General instructions on how to perform a cross using the Punnett square approach: 1. Write down the genotypes of the parents 2. Note the gametes that each parent can contribute 3. Draw a Punnett Square 4. Across the top write the gametes that one parent contributes and along the side write the gametes contributed by the other parent 5. Perform the cross 6. Determine the genotypic and phenotypic ratios Figure 3. Example of a Monohybrid cross In the example above (Fig. 3), the genotypic ratio is 1:2:1 (1: CC, 2: Cc, 1: cc) while the phenotypic ratio is 3:1. Since C = curly hair and c = straight hair, ¾ of the possible offspring will have curly hair while only ¼ will have straight hair. 3

4 Procedure: 1. You will now simulate a cross between two heterozygous individuals, Tt and Tt. Each group should obtain two coins from your TA. You will flip the coins simultaneously to represent the potential outcomes of a cross between two Tt individuals. A head represents the dominant tall allele (T) while a tail symbolizes the recessive dwarf allele (t). Before you begin flipping the coins, perform the Tt x Tt cross in the Punnett square below to estimate the expected genotypic and phenotypic ratios. Parent 1 Parent 2 Based on this cross, what do you anticipate the genotypic and phenotypic ratios to be? Write your hypotheses (H o and H a ) in Table 1. Table 1: Expected Genotypic Ratio Expected Phenotypic Ratio 2. Begin flipping the two coins simultaneously for a total of 64 times. Record your results in Table 2. 4

5 Table 2: Response Number TT Tt tt Questions: a. What ratio of allele combinations did you observe? b. What genotypes and phenotypes result from these crosses? c. What are the genotypic and phenotypic ratios? d. How did your results compare to your expectations? Do your results support or reject your null hypothesis? 5

6 e. Do you think your results would have been closer if you flipped the coins 6400 times instead of just 64? Why or why not? 3. Albinism, a recessively inherited trait, results in organisms that lack pigment in the skin, hair or eyes. A female with normal pigmentation, but who had an albino mother, mates with an albino male. They have one child. Using the information you have learned so far complete Table 3. Table 3: Genotype of child s mother Genotype of child s father Possible gametes of mother Possible gametes of father Possible genotype and phenotype of the offspring Genotypic ratio of children Phenotypic ratio of children TASK 2 - Patterns of inheritance II: Incomplete vs. Complete Dominance & Codominance Inheritance of traits can occur in multiple forms. So far you have considered complete dominance, where a homozygous dominant or a heterozygous individual expresses the dominant phenotype, while an individual that is homozygous recessive expresses the recessive phenotype. However, in certain cases a cross between two different allele forms results in a phenotypic expression that combines the two allelic traits. This type of inheritance is known as incomplete dominance. For example, if an offspring resulting from a cross between a red (RR) and a white (rr) snapdragon plant receives the dominant allele for red flower color (R) from one parent and the allele for white flower color (r) from the other, the resulting genotype will be Rr. The heterozygous form (Rr) of the plant will bear pink flowers since neither allele is completely dominant over the other (Fig. 4). 6

7 Figure 4. Pink snapdragons are an example of incomplete dominance 1. Determine the possible phenotypes of the F1 offspring when two pink snapdragons are crossed. Show your work in the space provided below. Parent 2 Parent 1 2. What would be the resulting genotypes of a cross between a pink and a white snapdragon? Show your work in the space provided below. Parent 2 Parent 1 7

8 Expression of both alleles of a particular gene is known as codominance. When alleles are inherited codominantly, both phenotypes are expressed at the same time in the heterozygous condition in contrast to incomplete dominance where the heterozygote is an intermediate between the two homozygotes (Fig. 5). Figure 5. Different types of inheritance The ABO blood type system is an excellent example of codominance. Humans have four blood types, namely, A, B, AB and O. All individuals carry two alleles, one from each parent. In this system, both alleles inherited determine one s blood type, where a person with Type AB blood possesses phenotypic traits of both A and B blood types (Table 4). Blood type (phenotype) Genotype Type A I A I A or I A i, Type B I B I B or I B i, Type AB I A I B Type O i i Table 4. Relationship between blood type and genotype For example, an individual with Type B blood can have two possible genotypes, I B I B or I B i, where I (dominant) and i (recessive) represent an allele from each parent (Table 4). The different blood types are characterized by the presence of a particular sugar molecule attached to the proteins on the surface of red blood cells (Fig 4). In Type A blood, the attached sugar molecule is galactosamine, while in Type B blood it is galactose. In contrast, individuals with Type O blood, have no sugars present on the surface of their red blood cells. These protein-sugar complexes are antigens that act as recognition markers for the immune system. The immune system is tolerant to its own antigens but produces antibodies against antigens that differ from 8

9 its own. The antibodies formed bind to the antigens causing agglutination (clumping) and lysis of the foreign red blood cells. Therefore, an individual with Type A blood could not receive a blood transfusion from a Type B blood donor because the antigens on the donor s red blood cells will trigger an immune response from the recipient s antibodies. Thus, the Type A recipient will produce antibodies against the donor s Type B antigens. Figure 6. Human ABO blood types When the wrong blood type is given to a patient, agglutination of the blood occurs and this can ultimately lead to death. Table 5 provides a quick overview of which blood types can donate to which, and which types can receive from which. A plus indicates that mixing of the donor and recipient blood types results in agglutination whereas a blank cell means that no agglutination occurs when the blood types are mixed. Recipient (Antibodies) Donor A B AB O (Antigens) A + + B + + AB O Questions: Table 5. Effects of mixing different blood types 1. Given the information above, why do you think that Type O is the universal donor and AB is the universal recipient? 9

10 2. There was a mix of up children in the maternity ward of a hospital. The children in question and their blood types are listed below. Child 1: type A (genotype I A I A or I A i) Child 2: type B (genotype I B I B or I B i) Child 3: type AB (genotype I A I B ) Child 4: type O (genotype ii) Which child or children could belong to a couple having AB and O blood types? 3. Based on the previous question, is it possible to prove paternity based on blood types? Explain. 4. A woman with Type O blood has a child with the same blood type. Can the child s father have Type AB blood? Why or why not? Another trait involved in blood typing is the Rh factor. The Rh factor works along the principle of simple dominance instead of codominance. An individual who is Rh positive possesses the Rh antigen on his/her blood cells while someone who is Rh negative lacks Rh antigens. Generally, the Rh status of an individual is always included with the blood type. For example, a person that is AB+ has Type AB blood and is Rh positive. This information is 10

11 particularly important during pregnancy since Rh incompatibility can develop in women that are Rh- and who have an Rh+ baby. Mixing of maternal and fetal blood through the placenta can cause the mother to develop antibodies against the Rh antigens from the baby. This condition is usually not harmful to the first child but may cause mild to severe symptoms (depending on the amount of Rh antibodies created) during subsequent pregnancies since the mother s Rh antibodies attack the Rh antigens of the developing fetus. Determining blood type Procedure: 1. Prepare your station by obtaining the following supplies: a. 4 small plastic blood typing trays b. Toothpicks for mixing c. Four bottles of blood (on your table) representing four different individuals d. One bottle representing A antibodies e. One bottle representing B antibodies f. One bottle representing Rh antibodies 2. You will use each blood typing tray to determine the blood type of a particular individual. Note that each tray contains 3 wells, labeled A, B and Rh. 3. Add 3 drops of blood from individual 1 to every well in a blood typing tray. 4. Add 3 drops from the bottle labeled A antibodies to the well labeled A. 5. Add 3 drops of B antibodies to the well labeled B. 6. Add 3 drops of Rh factor solution to the well labeled Rh. 7. Mix each well with a toothpick. Note: Use a different toothpick for each well and tray. 8. After 1 min, examine the tray for the presence of crystals. Presence of crystals, indicates agglutination and a positive test* for a particular blood type and Rh factor. 9. Repeat steps 3-8 for the remaining individuals. *Important note: In this particular experiment, agglutination indicates a positive test for a particular blood type. For example, if agglutination occurs in well A, then the individual has blood type A. However, when working with real blood (i.e. for the purposes of transfusions), agglutination would be a negative result. With regular blood, agglutination would indicate that the antibodies of one s blood detected a foreign substance (an antigen), causing an immune response and cell lysis. 10. Record your results in Table 6. Note which wells agglutination occurs in each tray. Based on your results, determine the blood type of the four individuals examined. 11

12 Table 6: Agglutination (Yes or No) Individual Well A Well B Rh factor (+/-) Blood type TASK 3 - Patterns of Inheritance III: Lethal Inheritance Lethal inheritance, the last pattern to be examined, occurs when an offspring dies after acquiring a particular trait. An example of such a scenario would be albinism in plants. 1. Why is albinism fatal in plants? 2. Using the tray of plants in the front of the lab, count the number of green and albino plants you observe. Using this information, determine the ratio of green to albino plants. Green : Albino 3. Based on the above ratio, predict the genotypes of the parental generation. 12

13 Dihybrid crosses and the law of independent assortment Mendel s second law or the law of independent assortment states that alleles from different genes assort independently from one another during meiosis if they are located on separate chromosomes (Fig. 7). For instance, alleles for the attached earlobe gene will assort independently from those that determine height as long as they are located on different chromosomes. This seems easy enough to grasp but is often the bane of biology students. Think of it like this - if you are flipping a coin and recording the results of each toss (heads or tails), and your friend is doing the same thing, do your tosses have any effect on the results of his? No, because your two actions are not linked. The chance of getting any two events to happen at the same time is simply the product of the chance of each event happening at all. For example, the chance of getting a heads in a coin flip is 50%. However, the chance that you and your friend get heads on the same toss is.5 x.5 =.25 or 25%. Figure 7. Schematic of Mendel s law of independent assortment TASK 4 - Drosophila Virtual Genetics Lab Procedure: 1. Click to open the Drosophila Genetics Lab Program on the desktop. 2. Each group will perform one of the Single Gene Inheritance experiments (1, 2 or 3) per group. 3. Follow the instructions listed in the pdf under "Procedure" and then complete the "Results" and "Questions" sections. 4. Once completed, perform one of the Double Gene Inheritance experiments (4 or 5) and repeat step Lastly, perform experiment 15 on Lethal Inheritance and repeat step 3. 13

14 TASK 5 - Testing Mendel s laws of inheritance in Brassica rapa Throughout the semester you have been growing the rapid-cycling Brassica rapa plants. As you noted in previous labs, your plants have different phenotypes, i.e., some have purple stems and green leaves while others have green stems and yellow-green leaves. In fast plants, the presence of the anthocyanin pigment produces a purple color (P) that is apparent on the stems and leaf tips of the developing plant. In the absence of this pigment, the stems and leaves are bright green (p) in color. The second trait, yellow-green leaf color (y), being observed by some of you is the result of a recessive gene, that when present in the homozygous condition, produces leaves, stems and seed pods that are yellow-green in color. In contrast, plants that are homozygous dominant (YY) or heterozygous (Yy) for this trait produce leaves and stems that are green in color. The seeds you planted during the last lab period are the F2 generation that resulted from a cross of your F1 plants (see Fig. 8 and 9). The objective of this task is to investigate the pattern of gene inheritance (i.e. dominant vs. recessive) as well as Mendel s laws of segregation and independent assortment. You will also learn how to use a statistical test to examine how well the inheritance patterns observed in class agree with expected statistical ratios. Note: Before beginning your analyses, you will need to determine whether you are investigating single-gene (Fig. 8) or double gene (Fig. 9) inheritance patterns. This semester two separate types of F1 plants were grown and since both inheritance patterns can produce plants that bear purple stems and green leaves, you will need to check for the presence of trichomes (hairs) on the stem. Since the number of hairs is controlled by more than one gene, we will not consider this trait in the current exercise. Therefore if your plant s stem is hairy, then your investigation will be of monohybrid inheritance patterns since only the anthocyanin gene will be considered (see Fig 8). Figure 8. Possible F2 Genotypes and phenotypes for the Anthocyanin gene 14

15 Figure 9. Possible F2 Genotypes and phenotypes for the Anthocyanin and YellowGreen Leaf genes 1. Based on your records, what were the parental phenotypes (F1) of your group s plants? i. What are the possible genotypes that produced these phenotypes? 2. Examine the seedlings in your group and record the following information in Table 7. i. phenotypes of the plants in your group ii. genotype for each phenotype observed (see Fig. 8 and 9) iii. quantity of each genotype 15

16 Table 7: Group # # seedlings Phenotypes present (can be > 1) Genotype Quantity of Genotype Combine your results with the data from the rest of the class in Table 8. Table 8: Phenotype Purple stem, green leaf Quantity Purple stem, yellow-green leaf Non-purple stem, green leaf Non-purple stem, yellow-green leaf Total number of plants 16

17 4. Depending on which inheritance pattern you are investigating, calculate the expected phenotypic ratios of the F2 population resulting from the cross of F1 individuals, either Pp x Pp or Ppyy x PpYy. Parent 1 Parent 1 Parent 2 Parent 2 5. Based on your expected ratios formulate null and alternate hypotheses (H o and H a ) regarding the phenotypic pattern you should observe in your F2 plants. 17

18 6. Chi-Square analyses: You will use this statistical test to examine how the predicted phenotypic ratios of Brassica rapa compare to your observed data. A test that is often applied to determine how well observed ratios fit expected statistical ratios is the chi-square (χ 2 ) or goodness of fit test. This test calculates the deviations of observed numbers from expected numbers into a single numerical value called χ 2. The difference between the number observed and the number expected for a particular phenotype is squared and then divided by the number expected. This is repeated for each phenotype class. The χ 2 value consists of the summation of these values for all classes. The formula for χ 2 (Suzuki, et al., 1986) is: χ 2 = (observed - expected) 2 expected Degrees of Freedom (df) Possibility of Chance Occurrence in Percentage (5% or Less Considered Significant) 90% 80% 70% 50% 30% 20% 10% 5% (sig.) 1% Table 9. χ 2 Values and Probabilities Associated with each χ 2 value is a probability that indicates the chance that, in repeated experiments, deviations from the expected would be as large as or even larger than the ones observed in this experiment. The calculated χ 2 value can be used to obtain probabilities, or p values, from a chi square table (Table 9). These probabilities indicate the likelihood that the observed deviations are due to random chance alone. The most widely accepted p value is 0.05, which means that in cases where the p < 0.05, the chance of obtaining the observed results by chance alone is 5% or less. In general, low χ 2 values indicate a high probability that the observed deviations could be due to random chance alone, while high χ 2 values indicate a low probability that the observed deviations can be explained by chance events and the deviations are likely the result of the experimental treatment. If the χ 2 value results in p < 0.05, there is less than a 5% chance that the observed results occurred by chance alone and the observed results are significantly different from the expected (i.e. you reject the null hypothesis). If p 0.05, then 5% of the time or more, any deviation from the expected results is due to chance only (i.e. you fail to reject the null hypothesis). The χ 2 test does not prove that a hypothesis is correct but evaluates whether or not the data and the hypothesis have a good fit. In Table 9, which lists probabilities and χ 2 values, note the Degrees of Freedom column. In any experiment, the degree of freedom (df) is a measure of the number of categories that are independent of each other. The df is one less than the number of different phenotypes 18

19 possible. In the current experiment we have four possible phenotypes so there are 4-1 = 3 df. Example: If, in an F 2 population of 100 plants, results are 60 wild type: 40 mutant (expected ratio would be 75 wild type : 25 mutant), then: χ 2 = (60-75) 2 + (40 25) = = 12.0 Because we have two possible phenotypes (mutant and wild), we have 2-1 df. Looking in the χ 2 table for χ 2 = 12 with 1 degree of freedom, probability is < 0.01; therefore, these results are not supportive of a 3:1 ratio since the probability is less than 5% (0.05). To read the χ 2 table, locate the df specific to your experiment in the first column. Now look across the row to find the probability column that best matches your calculated χ 2 value. The row matching 1 degree of freedom is marked by an orange square in Table 9. You will notice that our calculated χ 2 value is too high and the closest number to that value is in the last column (circled in green). This means that the probability of obtaining the expected 3:1 ratio simply by chance is less than 1% therefore the null hypothesis must be rejected. 7. Now calculate the χ 2 based on your class data. Show all of your calculations in the space provided below. 8. Note the following information: Degrees of freedom: χ 2 : Probability of chance occurrence (from Table 9): 19

20 9. Based on your results, what can you conclude about your H o? 10. How do your observed ratios compare to those expected? Explain. 11. What do your class results suggest about the inheritance patterns of Brassica rapa? TASK 6 - Analyzing Pedigrees A pedigree is a map of relatives that is used to determine the inheritance pattern of a particular disease or trait. This map usually includes the gender of each family member, how each is related (through lines connecting individuals) and also provides information about genetic traits. Certain symbols are used to indicate these variables (see Fig. 10). 20

21 Figure 10. Symbols used in pedigree analysis Questions: 1. What would you look for in a pedigree to determine if a trait was dominant? 2. What would you look for in a pedigree to determine if a trait was recessive? 21

22 3. The following is a pedigree for albinism. Note: the half-filled circles and squares in this pedigree represent carriers but in other pedigrees carriers may not be clearly denoted as in this case. Can you determine if this trait is dominant or recessive? Explain. 4. Below is a pedigree where multiple individuals are afflicted with Brachydactyly or shortening of the digits. Can you determine if this trait is dominant or recessive? Explain. LOOK AHEAD: Before coming to lab next week, make sure to read the Molecular Biology task sheet as well as Chapter 7 (pgs ) in your lab manual. REFERENCES: 22

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Mendelian Genetics. I. Background

Mendelian Genetics. I. Background Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation

More information

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS

INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1

Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 Genetics Copyright, 2009, by Dr. Scott Poethig, Dr. Ingrid Waldron, and Jennifer Doherty Department of Biology, University of Pennsylvania 1 We all know that children tend to resemble their parents in

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Mendelian Inheritance & Probability

Mendelian Inheritance & Probability Mendelian Inheritance & Probability (CHAPTER 2- Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring? Tt RR x Tt

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Punnett Square: Monohybird Crosses

Punnett Square: Monohybird Crosses Punnett Squares A Punnett square is a mathematical device used by geneticists to show combinations of gametes and to predict offspring ratios. There are a few fundamental concepts of Punnett squares that

More information

5. What blood type is considered the universal donor? What is the universal recipient? EXPLAIN! Blood Typing Lab. Introduction:

5. What blood type is considered the universal donor? What is the universal recipient? EXPLAIN! Blood Typing Lab. Introduction: Blood Typing Lab Introduction: There are four basic blood types: A, B, AB and O. The letters A and/or B indicate that a person s blood contains the A protein or the B protein (or both if the blood type

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance

MANDELIAN GENETICS. Crosses that deviate from Mandelian inherintance MANDELIAN GENETICS Crosses that deviate from Mandelian inherintance Explain codominant alleles. TO THE STUDENTS Calculate the genotypic and phenotypic ratio (1:2:1). Explain incomplete dominant alleles.

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Name Period Chapter 14: Mendel and the Gene Idea If you have completed a first-year high school biology course, some of this chapter will serve as a review for the basic concepts of Mendelian genetics.

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele.

c. Law of Independent Assortment: Alleles separate and do not have an effect on another allele. Level Genetics Review KEY Describe the 3 laws that Gregor Mendel established after working with pea plants. a. Law of Dominance: states that the effect of a recessive allele is not observed when a dominant

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t)

HEREDITY (B) In domestic cats, the gene for Tabby stripes (T) is dominant over the gene for no stripes (t) GENETIC CROSSES In minks, a single gene controls coat color. The allele for a brown (B) coat is dominant to the allele for silver-blue (b) coats. 1. A homozygous brown mink was crossed with a silverblue

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

Nevada Department of Education Standards

Nevada Department of Education Standards Blood-Typing Through an experiment with Kool-Aid, students follow the steps of the scientific method to learn about the experimental procedure of blood typing. Grade Level: 5th Objectives: Students will

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

LAB 9: Genetics Take-Home Lab

LAB 9: Genetics Take-Home Lab LAB 9: Genetics Take-Home Lab The science of genetics touches every aspect of our lives. Agriculture, industry, medicine, criminology, conservation, materials science and many other fields employ the concepts

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

GENETICS OF HUMAN BLOOD TYPE

GENETICS OF HUMAN BLOOD TYPE GENETICS OF HUMAN BLOOD TYPE Introduction The genetics of blood types is relatively simple when considering any one blood protein. However, the complexity increases when one considers all the different

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

The Blood Group Systems. Inheritance and Genetics

The Blood Group Systems. Inheritance and Genetics The Blood Group Systems Inheritance and Genetics History of Blood Groups and Blood Transfusions Experiments with blood transfusions have been carried out for hundreds of years. Many patients have died

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

Coats and Genes Genetic Traits in Cattle

Coats and Genes Genetic Traits in Cattle Coats and Genes Genetic Traits in Cattle Objective The student will read about heredity and explore genetic traits in cattle. Background Agriculturists are pioneers in the study of genetics and heredity.

More information

What about two traits? Dihybrid Crosses

What about two traits? Dihybrid Crosses What about two traits? Dihybrid Crosses! Consider two traits for pea: Color: Y (yellow) and y (green) Shape: R (round) and r (wrinkled)! Each dihybrid plant produces 4 gamete types of equal frequency.

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

You and Your Blood Packet #3

You and Your Blood Packet #3 You and Your Blood Packet #3 SC.7.L.16.2 AA Determining the probabilities for genotype and phenotype combinations using Punnett Squares and pedigrees. Purpose: to determine the blood type of a third generation

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Why Is He Different from Both Parents? The Genetics of ABO Blood Types

Why Is He Different from Both Parents? The Genetics of ABO Blood Types Why Is He Different from Both Parents? The Genetics of ABO Blood Types by Jun Liang, Science Department, Borough of Manhattan Community College / City University of New York William J. Rice, Simons Electron

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles.

C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. C1. A gene pool is all of the genes present in a particular population. Each type of gene within a gene pool may exist in one or more alleles. The prevalence of an allele within the gene pool is described

More information

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test

Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Determining Acceptance of the 9:3:3:1 Ratio in Fruit Fly Crosses Using the Chi Squared Test Abstract In this experiment we set out to determine whether or not two different fruit fly crosses fit the 9:3:3:1

More information

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso

Mendel s work. Biology CLIL lesson. Istituto tecnico industriale A. MALIGNANI Udine. Docente:Prof. Annamaria Boasso Istituto tecnico industriale A. MALIGNANI Udine Docente:Prof. Annamaria Boasso Modulo di genetica realizzato per l applicazione in classi seconde. Durata: 4 ore Biology CLIL lesson Mendel s work Objectives

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

HOW TO SOLVE GENETICS PROBLEMS

HOW TO SOLVE GENETICS PROBLEMS HOW TO SOLVE GENETICS PROBLEMS 1. Read the problem. 2. Determine what traits are dominant and which are recessive. Often you must marshal background knowledge to do this which may not be explicitly mentioned

More information

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS

GENETIC TRAITS IN HARRY POTTER DOMAIN 3-GENETICS Learning Outcomes: Students will be able to: Define the basic genetic terms and concepts DNA, chromosome, gene, allele, homozygous, heterozygous, recessive and dominant genes, genotype, phenotype, and

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat)

Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Blood Type Testing Lab Report Section 1101 Nattanit Trakullapphan (Nam) Chawalnrath Wongdeshanan (Kat) Introduction: figure 1.1 (Blood type n.d.) figure 1.2 (Blood type, Antigens-Antibodies n.d.) Multiple

More information

Using Blood Tests to Identify Babies and Criminals

Using Blood Tests to Identify Babies and Criminals Using Blood Tests to Identify Babies and Criminals Copyright, 2012, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells Using Blood Tests to Identify Babies and Criminals Copyright, 2006, by Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells Using Blood Tests to Identify Babies and Criminals Copyright, 2010, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

CHAPTER 10 BLOOD GROUPS: ABO AND Rh

CHAPTER 10 BLOOD GROUPS: ABO AND Rh CHAPTER 10 BLOOD GROUPS: ABO AND Rh The success of human blood transfusions requires compatibility for the two major blood group antigen systems, namely ABO and Rh. The ABO system is defined by two red

More information

CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459)

CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459) CHAPTER 6 GENETIC RECOMBINATION IN EUKARYOTES + CHAP[TER 14, PAGES 456-459) Questions to be addressed: 1. How can we predict the inheritance patterns of more than one gene? 2. How does the position of

More information

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Short answer (show your work or thinking to get partial credit): 1. In four-o'clock flowers, red flower color (R) is incompletely dominant

More information

Cardiovascular System. Blood Groups and Blood Typing

Cardiovascular System. Blood Groups and Blood Typing Cardiovascular System Blood Groups and Blood Typing 1 Blood Transfusions Why? Whole blood or components? Although the human body is pretty good at preventing blood loss (hemostasis), there are times when

More information

The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

Blood Stains at the Crime Scene Forensic Investigation

Blood Stains at the Crime Scene Forensic Investigation Blood Stains at the Crime Scene Forensic Investigation Introduction Blood stains at a crime scene can be crucial in solving the crime. Numerous analytical techniques can be used to study blood stains.

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

Understanding the River of Life (Blood Typing) Grade 8 Activity Plan Consent form needed!

Understanding the River of Life (Blood Typing) Grade 8 Activity Plan Consent form needed! Understanding the River of Life (Blood Typing) Grade 8 Activity Plan Consent form needed! 1 Understanding the River of Life Purpose: 1. To become familiar with the composition of blood 2. To identify the

More information

Figure S1 Clicker questions and their associated learning objectives and Bloom s level

Figure S1 Clicker questions and their associated learning objectives and Bloom s level Figure S1 Clicker questions and their associated learning objectives and Bloom s level Mitosis and Meiosis questions Q1: Which of the following events does not occur during mitosis? A.Breakdown of the

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs.

2. The Law of Independent Assortment Members of one pair of genes (alleles) segregate independently of members of other pairs. 1. The Law of Segregation: Genes exist in pairs and alleles segregate from each other during gamete formation, into equal numbers of gametes. Progeny obtain one determinant from each parent. 2. The Law

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

STUDENT ID NUMBER, LAST NAME,

STUDENT ID NUMBER, LAST NAME, EBIO 1210: General Biology 1 Name Exam 3 June 25, 2013 To receive credit for this exam, you MUST bubble in your STUDENT ID NUMBER, LAST NAME, and FIRST NAME No. 2 pencils only You may keep this exam to

More information

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826.

Exercise 9: Blood. Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Exercise 9: Blood Readings: Silverthorn 5 th ed, 547 558, 804 805; 6 th ed, 545 557, 825 826. Blood Typing The membranes of human red blood cells (RBCs) contain a variety of cell surface proteins called

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Heredity and Prenatal Development: Chapter 3

Heredity and Prenatal Development: Chapter 3 Genetics 1 DEP 4053 Christine L. Ruva, Ph.D. Heredity and Prenatal Development: Chapter 3 PRINCIPLES OF HEREDITARY TRANSMISSION Genotype Phenotype Chromosomes: in the nucleus of the cell store and transmit

More information

Biology and Society, Exam II

Biology and Society, Exam II iology and Society, Exam II Name There are 50 multiple choice questions. Answer A for true, for false. Write your NAME on the scantron and above, and ID NUMER in the identification number blank on the

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

POPULATION GENETICS BIOL 101- SPRING 2013

POPULATION GENETICS BIOL 101- SPRING 2013 POPULATION GENETICS BIOL 101- SPRING 2013 Text Reading: Chapter 11: The Forces of Evolutionary Change Pay particular attention to section 11.2, Natural Selection Molds Evolution, section 11.3, Evolution

More information

Eukaryotic Cells and the Cell Cycle

Eukaryotic Cells and the Cell Cycle Eukaryotic Cells and the Cell Cycle Mitosis, Meiosis, & Fertilization Learning Goals: After completing this laboratory exercise you will be able to: 1. Identify the stages of the cell cycle. 2. Follow

More information

I. Genes found on the same chromosome = linked genes

I. Genes found on the same chromosome = linked genes Genetic recombination in Eukaryotes: crossing over, part 1 I. Genes found on the same chromosome = linked genes II. III. Linkage and crossing over Crossing over & chromosome mapping I. Genes found on the

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Building a Pedigree. Observe the symbols and the example of the pedigree below: Identical twins. Male, Died in infancy. Female, Died in infancy

Building a Pedigree. Observe the symbols and the example of the pedigree below: Identical twins. Male, Died in infancy. Female, Died in infancy Building a Pedigree A pedigree is a diagram that shows how organisms are related and also traces the occurrence of a particular trait or characteristic for several generations. The genetic makeup of individuals

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DragonGeneticsProtocol Mendelian Genetics lab Student.doc DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of

More information

Artificial Blood Typing

Artificial Blood Typing Artificial Blood Typing Background: Human blood may be classified according to the presence or absence of certain antigens or factors, that are attached to the surface of the red blood cells, or erythrocytes.

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

EXERCISE 11 MENDELIAN GENETICS PROBLEMS

EXERCISE 11 MENDELIAN GENETICS PROBLEMS EXERCISE 11 MENDELIAN GENETICS PROBLEMS These problems are divided into subdivisions composed of problems that require application of a specific genetic principle. These problems are intended to complement

More information

Genetics Part 1: Inheritance of Traits

Genetics Part 1: Inheritance of Traits Genetics Part 1: Inheritance of Traits Genetics is the study of how traits are passed from parents to offspring. Offspring usually show some traits of each parent. For a long time, scientists did not understand

More information