Cell Communication. Chapter 11. Overview: Cellular Messaging. Evolution of Cell Signaling

Size: px
Start display at page:

Download "Cell Communication. Chapter 11. Overview: Cellular Messaging. Evolution of Cell Signaling"

Transcription

1 Chapter Cell Communication Overview: Cellular Messaging Cell-to-cell communication is essential for both multicellular and unicellular organisms Biologists have discovered some universal mechanisms of cellular regulation Cells most often communicate with each other via chemical signals For example, the fight-or-flight response is triggered by a signaling called epinephrine Concept.: External signals are converted to responses within the cell Microbes provide a glimpse of the role of cell signaling in the evolution of life Evolution of Cell The yeast, Saccharomyces cerevisiae, have two mating types, a and α Cells of different mating types locate each other via secreted factors specific to each type A signal transduction pathway is a series of steps by which a signal on a cell s surface is converted into a specific cellular response Signal transduction pathways convert signals on a cell s surface into cellular responses 4 Figure. Exchange of mating factors Mating a Yeast cell, mating type a a a factor α factor Yeast cell, mating type α α α athway similarities suggest that ancestral signaling s evolved in prokaryotes and were modified later in eukaryotes The concentration of signaling s allows bacteria to sense local population density New a/α cell a/α 5 6

2 Figure. Individual rod-shaped cells Spore-forming structure (fruiting body) 0.5 mm.5 mm Aggregation in progress Local and Long-Distance Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition Fruiting bodies 7 8 Figure.4 lasma s Gap junctions between animal cells (a) Cell junctions lasmodesmata between plant cells In many other cases, animal cells communicate using local regulators, messenger s that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones The ability of a cell to respond to a signal depends on whether or not it has a specific to that signal (b) Cell-cell recognition 9 0 Figure.5a Figure.5b Long-distance signaling Local signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter. Endocrine cell Blood vessel Secreting cell Secretory vesicle Neurotransmitter diffuses across synapse. Hormone travels in bloodstream. Local regulator diffuses through extracellular fluid. Target cell is stimulated. Target cell specifically binds hormone. (a) aracrine signaling (b) Synaptic signaling (c) Endocrine (hormonal) signaling

3 The Three Stages of Cell : A review Earl W. Sutherland discovered how the hormone epinephrine acts on cells Sutherland suggested that cells receiving signals went through three processes Reception Transduction Response Reception lasma CYTOLASM Figure.6- Reception: The signaling binds to the of the target cell s 4 lasma CYTOLASM lasma CYTOLASM Reception Transduction Reception Transduction Response Relay s in a signal transduction pathway Relay s in a signal transduction pathway Activation of cellular response Figure.6- Transduction: The signal is converted and relayed along a pathway 5 Figure.6- Response: The transduced signal triggers a specific cellular activities 6 Concept.: Reception: A signaling binds to a, causing it to change shape The binding between a signal (ligand) and is highly specific A shape change in a is often the initial transduction of the signal Most signal s are plasma s s in the lasma Membrane Most water-soluble signal s bind to specific sites on s that span the plasma There are three main types of s G -coupled s tyrosine kinases Ion channel s 7 8

4 Figure.7b G--coupled (GCRs) are the largest family of cellsurface s that work with the help of a G The G acts as an on/off switch Abnormal GCR system is related to diseases such as asthma, hypertension and heart disease Figure.7a 9 G -coupled CYTOLASM GD lasma G (inactive) GT Enzyme Activated enzyme Cellular response 4 Activated GD GT GD GD GT i enzyme 0 GCR Systems s Yeast mating factors Epinephrines other hormones and neurotransmitters Extremely widespread functions Embryonic develop Sensory 60% of medicines used today modify G- pathway tyrosine kinases (RTKs) are s that attach phosphates to tyrosines A tyrosine kinase can trigger multiple signal transduction pathways at once Abnormal functioning of RTKs is associated with many types of cancers such as breast cancer Figure.7c (ligand) α helix in the osines CYTOLASM Ligand-binding site tyrosine kinase s (inactive monomers) Activated relay s Dimer A ligand-gated ion channel acts as a gate when the changes shape When a signal binds as a ligand to the, the gate allows specific ions, such as Na + or, through a channel in the Ligand-gated ion channels play important roles in the nerve system. 6 AT 6 AD Activated tyrosine Fully activated kinase regions tyrosine (unphosphorylated kinase dimer) (phosphorylated dimer) 4 relay s Cellular response Cellular response 4

5 Figure.7d Intracellular s (ligand) Gate closed Ions lasma Ligand-gated ion channel Gate open Cellular response Gate closed 5 Intracellular s are found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the and activate s Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone- complex can act as a transcription factor, turning on specific genes 6 Figure.9- Hormone (testosterone) Figure.9- Hormone (testosterone) lasma lasma Hormone complex CYTOLASM 7 CYTOLASM 8 Figure.9- Hormone (testosterone) Figure.9-4 Hormone (testosterone) lasma Hormone complex lasma Hormone complex mrna CYTOLASM 9 CYTOLASM 0

6 Figure.9-5 Hormone (testosterone) mrna lasma Hormone complex New Concept.: Transduction: Cascades of molecular interactions relay signals from s to target s in the cell Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few s can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response CYTOLASM Signal Transduction athways The s that relay a signal from to response are mostly s Like falling dominoes, the activates another, which activates another, and so on, until the producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a rotein hosphorylation and Dephosphorylation In many pathways, the signal is transmitted by a cascade of phosphorylations rotein kinases transfer phosphates from AT to, a process called phosphorylation 4 Figure.0 rotein phosphatases remove the phosphates from s, a process called dephosphorylation This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off or up or down, as required kinase Activated relay kinase kinase i AT AD kinase hosphorylation cascade kinase AT AD i kinase 5 AT i AD Cellular response 6

7 Small Molecules and Ions as Second Messengers The extracellular signal (ligand) that binds to the is a pathway s first messenger Second messengers are small, non, watersoluble s or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by GCRs and RTKs Cyclic AM and calcium ions are common second messengers 7 Cyclic AM Cyclic AM (cam) is one of the most widely used second messengers Adenylyl cyclase, an enzyme in the plasma, converts AT to cam in response to an extracellular signal Figure. 8 Many signal s trigger formation of cam Other components of cam pathways are G s, G -coupled s, and kinases cam usually activates kinase A, which phosphorylates various other s Further regulation of cell metabolism is provided by G- systems that inhibit adenylyl cyclase Figure. G -coupled First messenger (signaling such as epinephrine) G GT AT cam Adenylyl cyclase Second messenger rotein kinase A 9 Cellular responses 40 Calcium Ions Calcium ions ( ) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration Functions Muscle contraction, secretion and cell division in animal cells Greening response to light in plants Figure. CYTOSOL AT AT pump Mitochondrion Nucleus pump lasma pump Endoplasmic reticulum (ER) 4 Key High [Ca + ] Low [Ca + ] 4

8 Figure.4- Inositol Triphosphate (I ) and Diacylglycerol (DAG) EXTRA- CELLULAR (first messenger) G DAG A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol athways leading to the release of calcium involve inositol triphosphate (I ) and diacylglycerol (DAG) as additional second messengers G -coupled GT I -gated calcium channel hospholipase C I I (second messenger) Endoplasmic reticulum (ER) 4 CYTOSOL 44 Figure.4- Figure.4- EXTRA- CELLULAR (first messenger) EXTRA- CELLULAR (first messenger) G G DAG DAG G -coupled GT hospholipase C I G -coupled GT hospholipase C I I (second messenger) I (second messenger) I -gated calcium channel I -gated calcium channel Endoplasmic reticulum (ER) CYTOSOL (second messenger) 45 Endoplasmic reticulum (ER) CYTOSOL (second messenger) Various s activated Cellular responses 46 Concept.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities The cell s response to an extracellular signal is sometimes called the output response Nuclear and Cytoplasmic Responses Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or in the nucleus Many signaling pathways regulate the synthesis of enzymes or other s, usually by turning genes on or off in the nucleus The final activated in the signaling pathway may function as a transcription factor 47 48

9 Figure.5 Growth factor hosphorylation cascade Reception Transduction Other pathways regulate the activity of enzymes rather than their synthesis CYTOLASM transcription factor transcription factor Response Figure.6 Gene mrna Figure.7 RESULTS pathways can also affect the overall behavior of a cell, for example, changes in cell shape CONCLUSION Mating factor activates. Wild type (with shmoos) Fus formin Mating factor G -coupled Shmoo projection forming Formin 5 GD Fus Actin GT subunit G binds GT and becomes activated. hosphorylation Formin Formin cascade 4 Fus phosphorylates Fus Fus formin, Microfilament activating it. hosphorylation cascade 5 Formin initiates growth of microfilaments that form activates Fus, which moves the shmoo projections. to plasma. 5 Fine-Tuning of the Response There are four aspects of fine-tuning to consider Amplifying the signal (and thus the response) Specificity of the response Overall efficiency of response, enhanced by scaffolding s Termination of the signal Signal Amplification Enzyme cascades amplify the cell s response At each step, the number of activated products is much greater than in the preceding step 5 54

10 The Specificity of Cell and Coordination of the Response Different kinds of cells have different collections of s These different s allow cells to detect and respond to different signals Even the same signal can have different effects in cells with different s and pathways athway branching and cross-talk further help the cell coordinate incoming signals 55 Figure.8a Response Cell A. athway leads to a single response. Relay s Response Response Cell B. athway branches, leading to two responses. 56 Figure.8b Efficiency: Scaffolding roteins and Complexes Activation or inhibition Response 4 Response 5 Scaffolding s are large relay s to which other relay s are attached Scaffolding s can increase the signal transduction efficiency by grouping together different s involved in the same pathway In some cases, scaffolding s may also help activate some of the relay s Cell C. Cross-talk occurs between two pathways. Cell D. Different leads to a different response Figure.9 Scaffolding lasma Three different kinases Termination of the Signal Inactivation mechanisms are an essential aspect of cell signaling If ligand concentration falls, fewer s will be bound Unbound s revert to an inactive state 59 60

11 Concept.5: Apoptosis integrates multiple cell-signaling pathways Apoptosis is programmed or controlled cell suicide Components of the cell are chopped up and packaged into vesicles that are digested by scavenger cells Apoptosis prevents enzymes from leaking out of a dying cell and damaging neighboring cells Apoptosis in the Soil Worm Caenorhabditis elegans Apoptosis is important in shaping an organism during embryonic development The role of apoptosis in embryonic development was studied in Caenorhabditis elegans In C. elegans, apoptosis results when s that accelerate apoptosis override those that put the brakes on apoptosis 6 6 Figure.a Ced-9 (active) inhibits Ced-4 activity Mitochondrion Figure.b Deathsignaling Ced-9 (inactive) Cell forms blebs Ced-4 Ced- Other proteases for deathsignaling Ced-4 Ced- s Activation cascade Nucleases (a) No death signal 6 (b) Death signal 64 Apoptotic athways and the Signals That Trigger Them Caspases are the main proteases (enzymes that cut up s) that carry out apoptosis Apoptosis can be triggered by An extracellular death-signaling ligand damage in the nucleus rotein misfolding in the endoplasmic reticulum Apoptosis evolved early in animal evolution and is essential for the development and maintenance of all animals Apoptosis may be involved in some diseases (for example, arkinson s and Alzheimer s); interference with apoptosis may contribute to some cancers 65 66

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones

More information

Mechanisms of Hormonal Action Bryant Miles

Mechanisms of Hormonal Action Bryant Miles Mechanisms of ormonal Action Bryant Miles Multicellular organisms need to coordinate metabolic activities. Complex signaling systems have evolved using chemicals called hormones to regulate cellular activities.

More information

Mechanism of hormone action

Mechanism of hormone action Mechanism of hormone action ผศ.ดร.พญ.ส ว ฒณ ค ปต ว ฒ ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Aims What is hormone receptor Type of hormone receptors - cell surface receptor - intracellular receptor

More information

Chapter-21b: Hormones and Receptors

Chapter-21b: Hormones and Receptors 1 hapter-21b: Hormones and Receptors Hormone classes Hormones are classified according to the distance over which they act. 1. Autocrine hormones --- act on the same cell that released them. Interleukin-2

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

3) There are different types of extracellular signaling molecules. 4) most signaling molecules are secreted by exocytosis

3) There are different types of extracellular signaling molecules. 4) most signaling molecules are secreted by exocytosis XIV) Signaling. A) The need for Signaling in multicellular organisms B) yeast need to signal to respond to various factors C) Extracellular signaling molecules bind to receptors 1) most bind to receptors

More information

73 Cell Communication

73 Cell Communication 73 Cell Communication and Multicellularity CHATEROUTLIE 7. What Are Signals, and How Do Cells Respond to Them? 7.2 How Do Signal Receptors Initiate a Cellular Response? 7.3 How Is the Response to a Signal

More information

Diabetes and Insulin Signaling

Diabetes and Insulin Signaling Diabetes and Insulin Signaling NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE by Kristy J. Wilson School of Mathematics and Sciences Marian University, Indianapolis, IN Part I Research Orientation

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

Hormones: Classification. Hormones: Classification. Peptide Hormone Synthesis, Packaging, and Release

Hormones: Classification. Hormones: Classification. Peptide Hormone Synthesis, Packaging, and Release Hormones: Classification Hormones: Classification Be able to give types and example. Compare synthesis, half-life and location of receptor 1. Peptide or protein hormones Insulin from amino acids 2. Steroid

More information

Biology Slide 1 of 38

Biology Slide 1 of 38 Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside

Bacterial (Prokaryotic) Cell. Common features of all cells. Tour of the Cell. Eukaryotic Cell. Plasma Membrane defines inside from outside www.denniskunkel.com Tour of the Cell www.denniskunkel.com Today s Topics Properties of all cells Prokaryotes and Eukaryotes Functions of Major Cellular Organelles Information, Synthesis&Transport,, Vesicles

More information

Fight or Flight Response: Play-by-Play

Fight or Flight Response: Play-by-Play One of the most remarkable examples of cell communication is the fight or flight response. When a threat occurs, cells communicate rapidly to elicit physiological responses that help the body handle extraordinary

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

The Cell: Organelle Diagrams

The Cell: Organelle Diagrams The Cell: Organelle Diagrams Fig 7-4. A prokaryotic cell. Lacking a true nucleus and the other membrane-enclosed organelles of the eukaryotic cell, the prokaryotic cell is much simpler in structure. Only

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells Chapter 4: A Tour of the Cell 1. Cell Basics 2. Prokaryotic Cells 3. Eukaryotic Cells 1. Cell Basics Limits to Cell Size There are 2 main reasons why cells are so small: If cells get too large: 1) there

More information

Lecture 4 Cell Membranes & Organelles

Lecture 4 Cell Membranes & Organelles Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 93

Copyright 2000-2003 Mark Brandt, Ph.D. 93 Signal transduction In order to interact properly with their environment, cells need to allow information as well as molecules to cross their cell membranes. Information in many single-celled and all multicellular

More information

Hormones & Chemical Signaling

Hormones & Chemical Signaling Hormones & Chemical Signaling Part 2 modulation of signal pathways and hormone classification & function How are these pathways controlled? Receptors are proteins! Subject to Specificity of binding Competition

More information

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments

More information

Cellular Calcium Dynamics. Jussi Koivumäki, Glenn Lines & Joakim Sundnes

Cellular Calcium Dynamics. Jussi Koivumäki, Glenn Lines & Joakim Sundnes Cellular Calcium Dynamics Jussi Koivumäki, Glenn Lines & Joakim Sundnes Cellular calcium dynamics A real cardiomyocyte is obviously not an empty cylinder, where Ca 2+ just diffuses freely......instead

More information

The Cell Interior and Function

The Cell Interior and Function The Cell Interior and Function 5 5.0 CHAPTER PREVIEW Investigate and understand the organization and function of the cell interior. Define the differences between eukaryotic and prokaryotic cell structure.

More information

5 CELL SIGNALING. Introduction A. Types of Signaling B. Types of Receptors C. Other Conserved Functions

5 CELL SIGNALING. Introduction A. Types of Signaling B. Types of Receptors C. Other Conserved Functions Signaling 1 5 CELL SIGNALING I II Introduction A. Types of Signaling B. Types of Receptors C. Other Conserved Functions G Protein-coupled Receptors A. Heterotrimeric G proteins B. G-protein coupled receptors

More information

Chapter 45: Hormones and the Endocrine System

Chapter 45: Hormones and the Endocrine System Name Period Overview 1. What is a hormone? 2. Why does a hormone elicit a response only with target cells? 3. The body has two long-distance regulating systems. Which involves chemical signals by hormones?

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

Chapter 18. An Introduction to the Endocrine System. Hormone Chemistry

Chapter 18. An Introduction to the Endocrine System. Hormone Chemistry Chapter 18 An Introduction to the Endocrine System Hormone Chemistry Endocrine System Components endocrine system - glands, tissues, and cells that secrete hormones Copyright The McGraw-Hill Companies,

More information

Cells. Structure, Function and Homeostasis

Cells. Structure, Function and Homeostasis Cells Structure, Function and Homeostasis Characteristics of Cells Basic unit of life anything alive is made of cells Plasma membrane (skin) that separates them from the environment. Skeletonsfor protection

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Review of the Cell and Its Organelles

Review of the Cell and Its Organelles Biology Learning Centre Review of the Cell and Its Organelles Tips for most effective learning of this material: Memorize the names and structures over several days. This will help you retain what you

More information

Biology Chapter 7 Practice Test

Biology Chapter 7 Practice Test Biology Chapter 7 Practice Test Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. The work of Schleiden and Schwann can be summarized by

More information

CELLS: PLANT CELLS 20 FEBRUARY 2013

CELLS: PLANT CELLS 20 FEBRUARY 2013 CELLS: PLANT CELLS 20 FEBRUARY 2013 Lesson Description In this lesson we will discuss the following: The Cell Theory Terminology Parts of Plant Cells: Organelles Difference between plant and animal cells

More information

CELLS IN THE NERVOUS SYSTEM

CELLS IN THE NERVOUS SYSTEM NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response

More information

Describe how these hormones exert control quickly by changes in phosphorylation state of enzyme, and more slowly by changes of gene expression

Describe how these hormones exert control quickly by changes in phosphorylation state of enzyme, and more slowly by changes of gene expression Section VIII. Section VIII. Tissue metabolism Many tissues carry out specialized functions: Ch. 43 look at different hormones affect metabolism of fuels, especially counter-insulin Ch. 44 Proteins and

More information

Plasma Membrane hydrophilic polar heads

Plasma Membrane hydrophilic polar heads The Parts of the Cell 3 main parts in ALL cells: plasma membrane, cytoplasm, genetic material this is about the parts of a generic eukaryotic cell Plasma Membrane -is a fluid mosaic model membrane is fluid

More information

INTRODUCTION TO HORMONES

INTRODUCTION TO HORMONES INTRODUCTION TO HORMONES UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ Temple What are hormones? Cells in multi-cellular

More information

Neurophysiology. 2.1 Equilibrium Potential

Neurophysiology. 2.1 Equilibrium Potential 2 Neurophysiology 2.1 Equilibrium Potential An understanding of the concepts of electrical and chemical forces that act on ions, electrochemical equilibrium, and equilibrium potential is a powerful tool

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

Introduction to the Cell: Plant and Animal Cells

Introduction to the Cell: Plant and Animal Cells Introduction to the Cell: Plant and Animal Cells Tissues, Organs, and Systems of Living Things Cells, Cell Division, and Animal Systems and Plant Systems Cell Specialization Human Systems All organisms

More information

Endocrine System: Practice Questions #1

Endocrine System: Practice Questions #1 Endocrine System: Practice Questions #1 1. Removing part of gland D would most likely result in A. a decrease in the secretions of other glands B. a decrease in the blood calcium level C. an increase in

More information

Homeostasis and Transport Module A Anchor 4

Homeostasis and Transport Module A Anchor 4 Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

7 Answers to end-of-chapter questions

7 Answers to end-of-chapter questions 7 Answers to end-of-chapter questions Multiple choice questions 1 B 2 B 3 A 4 B 5 A 6 D 7 C 8 C 9 B 10 B Structured questions 11 a i Maintenance of a constant internal environment within set limits i Concentration

More information

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole

Cell and Membrane Practice. A. chromosome B. gene C. mitochondrion D. vacuole Name: ate: 1. Which structure is outside the nucleus of a cell and contains N?. chromosome. gene. mitochondrion. vacuole 2. potato core was placed in a beaker of water as shown in the figure below. Which

More information

Structure and Function of Neurons

Structure and Function of Neurons CHPTER 1 Structure and Function of Neurons Varieties of neurons General structure Structure of unique neurons Internal operations and the functioning of a neuron Subcellular organelles Protein synthesis

More information

Cyclooxygenase and NSAIDs

Cyclooxygenase and NSAIDs Cyclooxygenase and NSAIDs Cyclooxygenase An enzyme responsible for the production of prostaglandins Two forms, COX1 and COX2 Contains two separate active sites for prostaglandin synthase One side contains

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

ANIMATED NEUROSCIENCE

ANIMATED NEUROSCIENCE ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of

More information

Cell Biology Questions and Learning Objectives

Cell Biology Questions and Learning Objectives Cell Biology Questions and Learning Objectives (with hypothetical learning materials that might populate the objective) The topics and central questions listed here are typical for an introductory undergraduate

More information

Chapter 2: Cell Structure and Function pg. 70-107

Chapter 2: Cell Structure and Function pg. 70-107 UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic

More information

Ions cannot cross membranes. Ions move through pores

Ions cannot cross membranes. Ions move through pores Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water

More information

THE CELL. A Molecular Approach. Sixth Edition. Boston University

THE CELL. A Molecular Approach. Sixth Edition. Boston University THE CELL A Molecular Approach Sixth Edition Geoffrey M. Cooper Robert E. Hausman Boston University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Contents PART I Introduction

More information

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue

RAD 223. Radiography physiology. Lecture Notes. First lecture: Cell and Tissue RAD 223 Radiography physiology Lecture Notes First lecture: Cell and Tissue Physiology: the word physiology derived from a Greek word for study of nature. It is the study of how the body and its part work

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 2 forty minute class periods Teacher Provides: For each student

More information

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells.

Cytology. Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. CYTOLOGY Cytology Living organisms are made up of cells. Either PROKARYOTIC or EUKARYOTIC cells. A. two major cell types B. distinguished by structural organization See table on handout for differences.

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

CHAPTER 5 SIGNALLING IN NEURONS

CHAPTER 5 SIGNALLING IN NEURONS 5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.

More information

Bi 360: Midterm Review

Bi 360: Midterm Review Bi 360: Midterm Review Basic Neurobiology 1) Many axons are surrounded by a fatty insulating sheath called myelin, which is interrupted at regular intervals at the Nodes of Ranvier, where the action potential

More information

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams. Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.

More information

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression

Eukaryotes. www.njctl.org PSI Biology Eukaryotes & Gene Expression Eukaryotes The Eukaryotic Cell Classwork 1. Identify two characteristics that are shared by all cells. 2. Suppose you are investigating a cell that contains a nucleus. Would you categorize this cell as

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION

Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION Page 1 of 7 Dr. RAJENDRAN S INSTITUTE OF MEDICAL EDUCATION AIIMS NOVEMBER 2012 - QUESTIONS AND ANSWERS PHYSIOLOGY This contains only 3 out of 7 questions. For complete questions with explanatory answers,

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

3.1 AS Unit: Cells, Exchange and Transport

3.1 AS Unit: Cells, Exchange and Transport 3.1 AS Unit: Cells, Exchange and Transport Module 1: Cells 1.1.1 Cell Structure Candidates should be able to: (a) state the resolution and magnification that can be achieved by a light microscope, a transmission

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function -plasma membrane acts as a barrier between cells and the surrounding. -plasma membrane is selective permeable -consist of lipids, proteins and carbohydrates -major lipids

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration. Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared

More information

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells.

Chapter 5 Organelles. Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Chapter 5 Organelles Lesson Objectives List the organelles of the cell and their functions. Distinguish between plant and animal cells. Check Your Understanding What is a cell? How do we visualize cells?

More information

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope Biology 101 Chapter 4 Cells as the Basic Unit of Life The Cell Theory Major Contributors: Galileo = first observations made with a microscope Robert Hooke = first to observe small compartments in dead

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells a. Explain that cells take in nutrients in order to grow, divide and to make needed materials. S7L2a b. Relate cell structures (cell membrane, nucleus, cytoplasm, chloroplasts, and

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

Nerves and Nerve Impulse

Nerves and Nerve Impulse Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released

More information

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS Mammalian Physiology Cellular Membranes Membrane Transport UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton Objectives Describe the structure of the cell membrane

More information

TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS.

TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS. TEMA 10. REACCIONES INMUNITARIAS MEDIADAS POR CÉLULAS. The nomenclature of cytokines partly reflects their first-described function and also the order of their discovery. There is no single unified nomenclature,

More information

Biology/ANNB 261 Exam 1 Spring, 2006

Biology/ANNB 261 Exam 1 Spring, 2006 Biology/ANNB 261 Exam 1 Spring, 2006 Name * = correct answer Multiple Choice: 1. Axons and dendrites are two types of a) Neurites * b) Organelles c) Synapses d) Receptors e) Golgi cell components 2. The

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells.

* The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. Define Cell * The cell is the basic structural and functional unit of life. * Organismal activity depends on individual and collective activity of cells. * Biochemical activities of cells are dictated

More information

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of BME 42-620 Engineering Molecular Cell Biology Lecture 02: Structural and Functional Organization of Eukaryotic Cells BME42-620 Lecture 02, September 01, 2011 1 Outline A brief review of the previous lecture

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial. http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,

More information