Biology/ANNB 261 Exam 1 Spring, 2006

Size: px
Start display at page:

Download "Biology/ANNB 261 Exam 1 Spring, 2006"

Transcription

1 Biology/ANNB 261 Exam 1 Spring, 2006 Name * = correct answer Multiple Choice: 1. Axons and dendrites are two types of a) Neurites * b) Organelles c) Synapses d) Receptors e) Golgi cell components 2. The three components of the cytoskeleton of a neuron are a) Actin, myosin, troponin b) Microtubules, neurofilaments, neurofibrillaries c) Neurofilaments, actin, microtubules * (microfilaments are made of actin molecules) d) Golgi apparatus, neurofilaments, neurotubules e) neurofilaments, neurotubules, microfilaments 3. This organelle is a major site of synthesis of proteins destined for the plasma membrane. a) Rough ER * b) Smooth ER c) Golgi apparatus d) Mitochondrion e) Nucleolus 4. Which of the following cells would be likely to myelinate an axon in your leg? a) Microglia b) Astrocytes c) Schwann cell * d) Oligodendroglia e) Golgi Type II glial cell 5. Some sensory neurons consist only of a soma and two neurites or processes. We might classify such neurons as a) Unipolar b) Bipolar * c) Multipolar d) Interneuron e) Efferent 6. Which of the following is a violation of the neuron doctrine as it was originally stated? a) Dendritic spines b) Gap junctions *

2 c) Synapses d) Second messenger systems e) B and C 7. Horseradish peroxidase is injected into your calf muscle, and it is transported from the terminals of the motor neurons to the cell bodies of the motor neurons in your spinal cord. This is an example of transport, which involves the movement of dynein along in the axons of the motor neurons. a) Anterograde; microfilaments b) Anterograde; microtubules c) Retrograde; microfilaments d) Retrograde; microtubules * e) Anterograde: neurofilaments 8. Postmortem examination of the brain of an Alzheimer s disease patient reveals the presence of neurofibrillary tangles in certain areas. These are believed to be caused by a) Entanglements of rough ER b) Neurofilament degradation c) Degeneration of microfilaments d) Disregulation of beta-amyloid e) Disregulation of a microtubule-associated protein (MAP) * 9. Which of the following is NOT thought to be a function of astrocytes? a) Phagocytosis b) Metabolic transport of nutrients necessary for normal neuronal function c) A component of the blood brain barrier d) Regulation of Ca 2+ concentrations around the synapse e) Transportation of neurotransmitter through the blood brain barrier * 10. Which of the following is true about microglia a) They regulate the chemical content of the extracellular space surrounding neurons b) They are responsible for myelinating axons c) They are able to perform phagocytosis within the CNS * d) They are important for providing structural support for neurons e) Actually, research has not been able to reveal their functions yet. 11. Suppose a neuron was selectively permeable only to Na + ions. What would happen to the membrane potential of this cell if K + channels then opened? a) V m would depolarize b) V m would hyperpolarize * c) The cell would fire an action potential d) Nothing would happen to the membrane potential e) None of the above 12. All of the following are true about the equilibrium potential of an ion EXCEPT ## Because of the wording of this question, I accepted c-e as the correct answer. a) It depends on the concentration of the ion inside and outside the neuron

3 b) It is the voltage at which diffusional and electrical forces on the ion are equal yet opposite c) It depends upon the permeability of the channel for potassium or sodium. d) It depends on the membrane conductance to that ion * e) There are no exceptions; all of the above are true 13. If you instantly destroyed all of the sodium/potassium pumps in your neurons, a) They could fire action potentials for a while but would eventually depolarize and die * b) They would depolarize and die within seconds c) They could no longer fire action potentials d) They would be unaffected e) They would become locked into the resting membrane potential 14. In a neuron at rest, a) Membrane is more permeable to potassium than it is to sodium b) Membrane potential is closer to the equilibrium potential for potassium than it is to the equilibrium potential for sodium c) Membrane is not permeable to sodium d) Membrane is not permeable to potassium e) A and b of the above are correct * 15. All of the following will increase the speed with which an axon conducts action potentials EXCEPT a) Having greater distance between the nodes of Ranvier b) Increasing the diameter of the axon c) Myelinating the axon d) Increasing the number of voltage-gated Na + channels e) There are no exceptions; all of the above are correct * 16. Enough positive current is injected into a neuron to depolarize the membrane to threshold. Which of the following would occur? a) Voltage-gated K + channels would open, K + ions would flow into the cell down their electrochemical gradient, and an action potential would be generated b) The injected current will flow back out of the cell until Vm has returned to the resting state c) The membrane potential is not affected by any kind of injected current d) Voltage-gated Na + channels would open, Na + ions would flow into the cell down their electrochemical gradient, and an action potential would be generated * e) Vm becomes clamped at a specific value 17. A person ingests a drug that alters voltage-gated sodium channels such that they no longer inactivate. What would be the consequences of being exposed to such a drug? a) The threshold for firing action potentials would decrease b) The threshold for firing action potentials would increase c) Action potentials would occur at a higher frequency d) The membrane would not repolarize rapidly after an action potential * e) The threshold of voltage-activated potassium channel is reached faster 18. If an axon at resting membrane potential was exposed to tetrodotoxin (TTX), the result would be

4 a) An action potential b) A very slow depolarization c) A rapid hyperpolarization d) TTX will have little or no effect on the resting membrane potential * e) No undershoot after the action potential 19. Cation M + is at electrochemical equilibrium when the membrane potential is at 45 mv. Which of the following is true? a) M + is more concentrated inside the cell * b) There is an equal concentration of M + on both sides of the cell membrane c) The membrane is impermeable to M + d) M + is more concentrated outside the cell e) A cation such as M + cannot have an electrochemical equilibrium as low as -45 mv. 20. The undershoot of an action potential is a direct result of a) Deinactivation of the voltage-gated sodium channels b) The action of the Na + /K + pump c) The opening of delayed rectifier K + channels * d) Na + leaving the cell e) An increase in sensitivity of the membrane to the effects of sodium influx 21. If delayed rectifier K + channels did not exist, the membrane would a) Never repolarize after an action potential b) Repolarize at a faster rate after an action potential c) Repolarize at a slower rate after an action potential * d) Require a voltage-activated Ca 2+ gate to repolarize the membrane e) Depolarize until the membrane reached 0 mv. 22. If V m = E K, then a) I k is zero * b) g k is zero c) E Na is negative d) V m = resting membrane potential e) Nernst equation is inapplicable 23. You discover an ion channel that, when open, is permeable to all ions. This channel lacks a) Gating b) Selectivity * c) Quaternary structure d) An alpha subunit e) A voltage sensing domain 24. What does an axon that conducts action potentials via saltatory conduction have that is unique from axons that do not conduct via saltatory conduction? a) Voltage-gated sodium channels b) Myelin *

5 c) Delayed rectifier channels d) Chemical synapses e) An axon hillock 25. You observe an action potential from a typical neuron; then you apply a toxin that blocks delayed rectifier voltage-gated potassium channels and observe the effects. What characteristics of the action potential would be changed? a) Duration of the action potential b) Undershoot (afterhyperpolarization) c) Resting membrane potential d) Both a and b * e) a, b, and c are all correct 26. Why is I K greater at the height of an action potential than at the resting membrane potential? # Corrected error in key a) Because delayed rectifier channels are open b) Because V m E K is greater at the height of an action potential * c) Because E K is greater d) Because I L has been activated e) a and b are correct but not c or d 27. The I A current differs from the I K current in that a. I A is a calcium current rather than a potassium current b. I A is activated after the I K current c) I A has a longer duration than I K when the membrane remains depolarized d) Compared to I K, I A adds only modestly to repolarization during the relative refractory period e) I A hyperpolarizes the membrane before the action potential rather than after * 28. An important characteristic of the I M current is that a) It can be regulated by synaptic transmitter activity * b) It hyperpolarizes the membrane before the action potential, slowing the onset of the action potential c) It is a short-duration current because of an inactivation gate d) It decreases the duration of the action potential e) It is based on a Ca 2+ activated channel 29. The I AHP current is a) a sodium current rather than a potassium current b) able to delay the onset of the action potential c) a slowly-developing Ca 2+ -activated potassium current * d) able to increase the number of action potentials evoked by a stimulus e) unaffected by synaptic neurotransmitter activity

6 30. How could you increase the length constant of a dendrite? a) Open up potassium channels in the membrane of the dendrite b) Close potassium channels in the membrane of the dendrite * c) Decrease the diameter of the dendrite d) Shorten the length of the dendrite e) Add an autoreceptor to the membrane 31. When a ligand binds to a receptor, the ligand a) Forms a complex with the receptor that can activate a kinase directly b) Phosphorylates the receptor c) Causes a conformational change in the receptor * d) Passes through the receptor to the inside of the cell e) Is responsible for the selectivity of the channel 32. The molecule that catalyzes the conversion of ATP to camp is a) Phospholipase C b) Adenylyl cyclase * c) Endonuclease d) Protein kinase e) The βγ complex of the G-protein 33. A presynaptic neuron fires at 10 action potentials (APs) per second, and the postsynaptic cell does not fire an AP. When the same presynaptic neuron fires at 20 APs per second, however, the postsynaptic cell fires. This is an example of a) Temporal summation * b) Spatial summation c) Shunting inhibition d) Axonal summation e) Quantal release 34. If a neuron lacked synapsin, what function would be disrupted? a) Generation of EPSPs b) Release of synaptic vesicles * c) Action potential propagation d) Calcium entry into the presynaptic terminal e) Endocytosis 35. Synaptic transmission involving G-protein-coupled receptors, compared with transmission involving ligand-gated ion channels, is a) Slower and involves more local postsynaptic changes b) Slower and involves more widespread postsynaptic changes * c) Slower and involves more efficient summation of the synaptic potentials d) Faster and involves more local postsynaptic changes e) Faster and involves more widespread postsynaptic changes

7 36. Inhibitory postsynaptic potentials (IPSPs) a) Keep a neuron away from threshold * b) Occur only at the soma c) Do not spatially summate d) Are always due to the opening of potassium channels e) Also occur on the presynaptic membrane 37. Which of the following acts as a second messenger in the cascade initiated by norepinephrine β receptors? # Corrected error in key a) Adenylyl cyclase b) Α subunit of the G-protein c) Protein kinase A d) GTP e) camp * 38. Shunting inhibition is characterized by a) Outward flow of chloride ions b) Influx of sodium current c) An increase in the threshold of the voltage-activated sodium gates d) A decrease in the membrane resistance * e) A decrease in the size of the action potential 39. Neurotransmitter desensitization occurs when a) Diffusion of the neurotransmitter occurs b) The neurotransmitter is removed by a glial cell c) An enzyme cleaves the neurotransmitter into parts d) Stays in the synapse for an extended time * e) a, b, and c are correct 40. In postsynaptic receptors that bind ACh, ion current flows when Vm is below the reversal potential of ACh, whereas current flows when Vm is above the reversal potential. a) into the cell, out of the cell * b) out of the cell, into the cell c) into the cell, outward because Cl - now contributes to the current d) out of the cell, into the cell because Cl - now contributes to the current e) in neither direction because the influx of Na + ions is equal to the efflux of K +

8 Exam 1 Short answer Name Briefly define or describe 3 of the following 5 (4 points each): 1. PSE (give me the name and function) (lecture) Presynaptic excitation - synaptic depolarization which leads to increased Ca2+ influx and more exocytosis of neurotransmitter. Can be result of depolarization at axoaxonic synapse. 2. Neuromodulator (p 129) Does not produce a synaptic potential by itself but modifies synaptic potentials produced by neurotransmitters 3. Kiss-and-run endocytosis (lecture) During exocytosis, the vesicle does not completely integrate itself into the plasma membrane, rather releases NT and then reforms into vesicle. Occurs with low to normal rates of AP. 4. SNARE (text and lecture) SNAREs (SNAP receptors which are Soluble NSF-attachment proteins. Synaptobrevin: in membrane of vesicle ( v-snare ) Syntaxin and SNAP-25 are in plasma membrane ( t-snare for target membrane) These SNARE proteins form a macromolecular complex that binds the vesicle to the plasma membrane 5. Nernst equation (text and lecture) Formula or math relationship which allows one to compute the ionic equilibrium potential. Based on log ratio of concentrations of the ion on both sides of the membrane and several variables such as the valence and charge of the ion and the gas constant. Best if you gave the formula. Essay (15 points): You have discovered a new neuron and you need to determine which ions are responsible for its resting membrane state. You decide to use the voltage clamp method for your experiments. (text and lecture) 1) What is the voltage clamp method and what does it tell you? Method in which the experimenter can clamp or hold the Vm constant and measure changes in membrane conductance/ currents at different voltages. This based on the relationship described by Ohm s Law (Vm = Iion*Resistance or its variations) 2) How would you use this method to determine if Na + or K + is contributing to the resting membrane potential? This answer could be approached several ways. Most likely you would step Vm in (e.g.,) 20 mv increments from some very hyperpolarized point (-100 mv) to some very depolarized point (e.g., +160 mv) while manipulating either concentrations of each ion or the conductance of Na+ or K+ channels. E.g. In the simplest acceptable method, you could either increase or decrease the concentration of each ion while holding the concentration of the other ion constant. Answer to part 3 then had to be consistent with this approach. (For this to work, you would want to also add TTX to stop the voltage-activated Na+ gates and an Action Potential but I did not require that as part of the answer.)

9 You could also use either substitute ions (substituting 1 at a time) that will not go through the channels but will maintain the electrical gradient or you could use a poison or a drug that blocks conductance of one of the two types of channels, while measuring the remaining current flow. 3) What results would you expect to see if either of these two ions are contributing to the RMP? For the first method in #2, you have to make it real clear that you are making assumptions that Na+ and K+ are present in normal concentrations inside and outside your new neuron (likely to be true) and that you expect to see an inward current at low Vm due to greater influx of Na+ than K+ efflux. This current reverses to an outward current around 0 mv, which is due to Na+ influx weakening and K+ efflux becoming the stronger current. If your new neuron is similar to a typical neuron, you will find that the K+ current is more important for RMP and that the K+ current will be stronger impact on RMP than the Na+ current when you change the concentrations of each ion because the K+ channels are much more permeable than the Na+ current. For another set of potential methods for #2: Blocking K+ leaves only the Na+ current. You would expect that there would be an inward current which gets weaker as Vm gets closer to Na+ Eq some point above 0 mv. Blocking Na+ channels leaves K+ current. You would expect an outward current which gets stronger as Vm becomes more depolarized (further away from E K ). While it would not be expected for a RMP of a typical neuron, you will get extra credit if you also checked for an inactivation gate but you needed to explain what you expect as a result. You would get additional credit if you also considered what would happen if concentrations of each ion were DIFFERENT from the normal neuron but you needed to be real clear about this situation and what you expected to find.

Biology/ANNB 261 Exam 1 Name Fall, 2006

Biology/ANNB 261 Exam 1 Name Fall, 2006 Biology/ANNB 261 Exam 1 Name Fall, 2006 * = correct answer. 1. The Greek philosopher Aristotle hypothesized that the brain was a) A radiator for cooling the blood.* b) The seat of the soul. c) The organ

More information

Resting membrane potential ~ -70mV - Membrane is polarized

Resting membrane potential ~ -70mV - Membrane is polarized Resting membrane potential ~ -70mV - Membrane is polarized (ie) Electrical charge on the outside of the membrane is positive while the electrical charge on the inside of the membrane is negative Changes

More information

Bi 360: Midterm Review

Bi 360: Midterm Review Bi 360: Midterm Review Basic Neurobiology 1) Many axons are surrounded by a fatty insulating sheath called myelin, which is interrupted at regular intervals at the Nodes of Ranvier, where the action potential

More information

12. Nervous System: Nervous Tissue

12. Nervous System: Nervous Tissue 12. Nervous System: Nervous Tissue I. Introduction to the Nervous System General functions of the nervous system The nervous system has three basic functions: 1. Gather sensory input from the environment

More information

Neurophysiology. 2.1 Equilibrium Potential

Neurophysiology. 2.1 Equilibrium Potential 2 Neurophysiology 2.1 Equilibrium Potential An understanding of the concepts of electrical and chemical forces that act on ions, electrochemical equilibrium, and equilibrium potential is a powerful tool

More information

Nerves and Nerve Impulse

Nerves and Nerve Impulse Nerves and Nerve Impulse Terms Absolute refractory period: Period following stimulation during which no additional action potential can be evoked. Acetylcholine: Chemical transmitter substance released

More information

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential

REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date. The Resting Membrane Potential REVIEW SHEET EXERCISE 3 Neurophysiology of Nerve Impulses Name Lab Time/Date ACTIVITY 1 The Resting Membrane Potential 1. Explain why increasing extracellular K + reduces the net diffusion of K + out of

More information

CELLS IN THE NERVOUS SYSTEM

CELLS IN THE NERVOUS SYSTEM NEURONS AND GLIA CELLS IN THE NERVOUS SYSTEM Glia Insulates, supports, and nourishes neurons Neurons Process information Sense environmental changes Communicate changes to other neurons Command body response

More information

CHAPTER 5 SIGNALLING IN NEURONS

CHAPTER 5 SIGNALLING IN NEURONS 5.1. SYNAPTIC TRANSMISSION CHAPTER 5 SIGNALLING IN NEURONS One of the main functions of neurons is to communicate with other neurons. An individual neuron may receive information from many different sources.

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue Multiple Choice 1. The nervous system A) monitors internal and external stimuli. B) transmits information in the form of action potentials. C) interprets

More information

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli.

FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. FUNCTIONS OF THE NERVOUS SYSTEM 1. Sensory input. Sensory receptors detects external and internal stimuli. 2. Integration. The brain and spinal cord process sensory input and produce responses. 3. Homeostasis.

More information

Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods. 250 20 Yes. 125 20 Yes. 60 20 No. 60 25 No.

Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods. 250 20 Yes. 125 20 Yes. 60 20 No. 60 25 No. 3: Neurophysiology of Nerve Impulses (Part 2) Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods Interval between stimuli Stimulus voltage (mv) Second action potential?

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

Chapter 7: The Nervous System

Chapter 7: The Nervous System Chapter 7: The Nervous System Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways involved in a withdraw reflex Define

More information

EXCITABILITY & ACTION POTENTIALS page 1

EXCITABILITY & ACTION POTENTIALS page 1 page 1 INTRODUCTION A. Excitable Tissue: able to generate Action Potentials (APs) (e.g. neurons, muscle cells) B. Neurons (nerve cells) a. components 1) soma (cell body): metabolic center (vital, always

More information

Biology Slide 1 of 38

Biology Slide 1 of 38 Biology 1 of 38 2 of 38 35-2 The Nervous System What are the functions of the nervous system? 3 of 38 35-2 The Nervous System 1. Nervous system: a. controls and coordinates functions throughout the body

More information

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function

The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function C H A P T E R 3 The Action Potential, Synaptic Transmission, and Maintenance of Nerve Function Cynthia J. Forehand, Ph.D. CHAPTER OUTLINE PASSIVE MEMBRANE PROPERTIES, THE ACTION POTENTIAL, AND ELECTRICAL

More information

The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.

The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl. The Action Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) ** If this is not printed in color, it is suggested you

More information

AP Biology I. Nervous System Notes

AP Biology I. Nervous System Notes AP Biology I. Nervous System Notes 1. General information: passage of information occurs in two ways: Nerves - process and send information fast (eg. stepping on a tack) Hormones - process and send information

More information

Parts of the Nerve Cell and Their Functions

Parts of the Nerve Cell and Their Functions Parts of the Nerve Cell and Their Functions Silvia Helena Cardoso, PhD [ 1. Cell body] [2. Neuronal membrane] [3. Dendrites] [4. Axon] [5. Nerve ending] 1. Cell body The cell body (soma) is the factory

More information

Action Potentials I Generation. Reading: BCP Chapter 4

Action Potentials I Generation. Reading: BCP Chapter 4 Action Potentials I Generation Reading: BCP Chapter 4 Action Potentials Action potentials (AP s) aka Spikes (because of how they look in an electrical recording of Vm over time). Discharges (descriptive

More information

Nerves and Conduction of Nerve Impulses

Nerves and Conduction of Nerve Impulses A. Introduction 1. Innovation in Cnidaria - Nerve net a. We need to talk more about nerves b. Cnidaria have simple nerve net - 2 way conduction c. Basis for more complex system in Vertebrates B. Vertebrate

More information

Name: Teacher: Olsen Hour:

Name: Teacher: Olsen Hour: Name: Teacher: Olsen Hour: The Nervous System: Part 1 Textbook p216-225 41 In all exercises, quizzes and tests in this class, always answer in your own words. That is the only way that you can show that

More information

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow

Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow 13.01.2015 Nervous Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow Introduction Property of irritability and conductivity Respond to various types of stimuli Distributed

More information

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron:

The Neuron and the Synapse. The Neuron. Parts of the Neuron. Functions of the neuron: The Neuron and the Synapse The Neuron Functions of the neuron: Transmit information from one point in the body to another. Process the information in various ways (that is, compute). The neuron has a specialized

More information

BIOPHYSICS OF NERVE CELLS & NETWORKS

BIOPHYSICS OF NERVE CELLS & NETWORKS UNIVERSITY OF LONDON MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com)

Ion Channels. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) ** There are a number of ion channels introducted in this topic which you

More information

Student Academic Learning Services Page 1 of 8 Nervous System Quiz

Student Academic Learning Services Page 1 of 8 Nervous System Quiz Student Academic Learning Services Page 1 of 8 Nervous System Quiz 1. The term central nervous system refers to the: A) autonomic and peripheral nervous systems B) brain, spinal cord, and cranial nerves

More information

Problem Sets: Questions and Answers

Problem Sets: Questions and Answers BI 360: Neurobiology Fall 2014 Problem Sets: Questions and Answers These problems are provided to aid in your understanding of basic neurobiological concepts and to guide your focus for in-depth study.

More information

Lab 1: Simulation of Resting Membrane Potential and Action Potential

Lab 1: Simulation of Resting Membrane Potential and Action Potential Lab 1: Simulation of Resting Membrane Potential and Action Potential Overview The aim of the present laboratory exercise is to simulate how changes in the ion concentration or ionic conductance can change

More information

The Action Potential

The Action Potential OpenStax-CNX module: m46526 1 The Action Potential OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you

More information

Lab #6: Neurophysiology Simulation

Lab #6: Neurophysiology Simulation Lab #6: Neurophysiology Simulation Background Neurons (Fig 6.1) are cells in the nervous system that are used conduct signals at high speed from one part of the body to another. This enables rapid, precise

More information

Nervous Tissue Chapter 12

Nervous Tissue Chapter 12 Nervous Tissue Chapter 12 Overview of the Nervous System Cells of the Nervous System Electrophysiology of Neurons Synapses Subdivisions of the Nervous System Two major anatomical subdivisions: Central

More information

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B.

U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. U N IT 10 NE RVOUS SYS TE M REVIEW 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. increased blood flow to muscle tissue

More information

7. A selectively permeable membrane only allows certain molecules to pass through.

7. A selectively permeable membrane only allows certain molecules to pass through. CHAPTER 2 GETTING IN & OUT OF CELLS PASSIVE TRANSPORT Cell membranes help organisms maintain homeostasis by controlling what substances may enter or leave cells. Some substances can cross the cell membrane

More information

Origin of Electrical Membrane Potential

Origin of Electrical Membrane Potential Origin of Electrical Membrane Potential parti This book is about the physiological characteristics of nerve and muscle cells. As we shall see, the ability of these cells to generate and conduct electricity

More information

Before continuing try to answer the following questions. The answers can be found at the end of the article.

Before continuing try to answer the following questions. The answers can be found at the end of the article. EXCITABLE TISSUE ELECTROPHYSIOLOGY ANAESTHESIA TUTORIAL OF THE WEEK 173 8 TH MARCH 2010 Dr John Whittle Specialist Registrar Anaesthetics Dr Gareth Ackland Consultant and Clinical Scientist Anaesthetics,

More information

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Nervous System Introduction Part 1

Anatomy & Physiology Bio 2401 Lecture. Instructor: Daryl Beatty Nervous System Introduction Part 1 Anatomy & Physiology Bio 2401 Lecture Instructor: Daryl Beatty Nervous System Introduction Part 1 Nervous System Introduction Chapter 11 Section A Sequence 4.1 DB Nervous system 1 Intro Presentations 4.2,

More information

The Nervous System, Part I.Unlecture

The Nervous System, Part I.Unlecture The Nervous System, Part I.Unlecture Review basic nervous system anatomy before you begin this lecture. The lecture touches on a few of the major characteristics, but you are expected to have already been

More information

Andrew Rosen - Chapter 3: The Brain and Nervous System Intro:

Andrew Rosen - Chapter 3: The Brain and Nervous System Intro: Intro: Brain is made up of numerous, complex parts Frontal lobes by forehead are the brain s executive center Parietal lobes wave sensory information together (maps feeling on body) Temporal lobes interpret

More information

2006 7.012 Problem Set 6 KEY

2006 7.012 Problem Set 6 KEY 2006 7.012 Problem Set 6 KEY ** Due before 5 PM on WEDNESDAY, November 22, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You create an artificial

More information

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Types of Muscle Tissue Classified by location, appearance, and by the type of nervous system control or innervation. Skeletal

More information

Nervous System: Nervous Tissue! (Chapter 12)! Lecture Materials! for! Amy Warenda Czura, Ph.D.! Suffolk County Community College! Eastern Campus!

Nervous System: Nervous Tissue! (Chapter 12)! Lecture Materials! for! Amy Warenda Czura, Ph.D.! Suffolk County Community College! Eastern Campus! Nervous System: Nervous Tissue! (Chapter 12)! Lecture Materials! for! Amy Warenda Czura, Ph.D.! Suffolk County Community College! Eastern Campus! Neural Tissue! -3% of body mass! -cellular, ~20% extracellular

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

Ions cannot cross membranes. Ions move through pores

Ions cannot cross membranes. Ions move through pores Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water

More information

NEURONS NEUROGLIAL CELLS.

NEURONS NEUROGLIAL CELLS. 1 THE NERVOUS TISSUE Definition: The nervous tissue is an assemblage of cells and supportive elements (materials) in which there is a predominance of cells which are highly specialized in the property

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

ANIMATED NEUROSCIENCE

ANIMATED NEUROSCIENCE ANIMATED NEUROSCIENCE and the Action of Nicotine, Cocaine, and Marijuana in the Brain Te a c h e r s G u i d e Films for the Humanities & Sciences Background Information This program, made entirely of

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

Chapter 9 Nervous System

Chapter 9 Nervous System Chapter 9 Nervous System Nervous System function: The nervous system is composed of neurons and neuroglia. at the ends of peripheral nerves gather information and convert it into nerve impulses. When sensory

More information

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu

NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON. created by Dr. Joanne Hsu NEURON AND NEURAL TRAMSMISSION: ANATOMY OF A NEURON NEURON AND NEURAL TRAMSMISSION: MICROSCOPIC VIEW OF NEURONS A photograph taken through a light microscope (500x) of neurons in the spinal cord. NEURON

More information

NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C.

NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. NERVOUS SYSTEM B 1. Which of the following is controlled by the somatic nervous system? A. rate of heartbeat B. contraction of skeletal muscles C. increased blood flow to muscle tissue D. movement of food

More information

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks

Introduction to Psychology, 7th Edition, Rod Plotnik Module 3: Brain s Building Blocks. Module 3. Brain s Building Blocks Module 3 Brain s Building Blocks Structure of the Brain Genes chains of chemicals that are arranged like rungs on a twisting ladder there are about 100,000 genes that contain chemical instructions that

More information

PSIO 603/BME 511 1 Dr. Janis Burt February 19, 2007 MRB 422; 626-6833 jburt@u.arizona.edu. MUSCLE EXCITABILITY - Ventricle

PSIO 603/BME 511 1 Dr. Janis Burt February 19, 2007 MRB 422; 626-6833 jburt@u.arizona.edu. MUSCLE EXCITABILITY - Ventricle SIO 63/BME 511 1 Dr. Janis Burt February 19, 27 MRB 422; 626-6833 MUSCLE EXCITABILITY - Ventricle READING: Boron & Boulpaep pages: 483-57 OBJECTIVES: 1. Draw a picture of the heart in vertical (frontal

More information

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial. http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,

More information

The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK

The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK The action potential and nervous conduction CH Fry and RI Jabr Postgraduate Medical School, Division of Clinical Medicine, University of Surrey, UK CH Fry, PhD, DSc Professor of Physiology, Division of

More information

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law 250560559. Medical Biophysics 3970 Simulation of an Action Potential using the Hodgkin-Huxley Model in Python Nathan Law 250560559 Medical Biophysics 3970 Instructor: Dr. Ian MacDonald TA: Nathaniel Hayward Project Supervisor: Dr. Andrea

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 2 forty minute class periods Teacher Provides: For each student

More information

Anatomy Review Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc).

Anatomy Review Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc). Page 1. Introduction The structure of neurons reflects their function. One part of the cell receives incoming signals. Another part generates outgoing signals. Anatomy Review Graphics are used with permission

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 2 The Neural Impulse Name Period Date MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The cell body is enclosed by the. A) cell membrane

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Anatomy Review Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction The structure of neurons reflects their function.

More information

Structure and Function of Neurons

Structure and Function of Neurons CHPTER 1 Structure and Function of Neurons Varieties of neurons General structure Structure of unique neurons Internal operations and the functioning of a neuron Subcellular organelles Protein synthesis

More information

PHYSIOLOGY AND MAINTENANCE Vol. V - Neurons, Action Potentials, and Synapses - Simo S. Oja and Pirjo Saransaari

PHYSIOLOGY AND MAINTENANCE Vol. V - Neurons, Action Potentials, and Synapses - Simo S. Oja and Pirjo Saransaari NEURONS, ACTION POTENTIALS, AND SYNAPSES Simo S. Oja and Pirjo Saransaari University of Tampere Medical School, Finland, and Tampere University Hospital, Finland Keywords: neurones, glial cells, membrane

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Mechanisms of Hormonal Action Bryant Miles

Mechanisms of Hormonal Action Bryant Miles Mechanisms of ormonal Action Bryant Miles Multicellular organisms need to coordinate metabolic activities. Complex signaling systems have evolved using chemicals called hormones to regulate cellular activities.

More information

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram.

1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions of the structure labeled B on the diagram. 2013 ANATOMY & PHYSIOLOGY Sample Tournament Station A: Use the diagram in answering Questions 1-5. 1. Give the name and functions of the structure labeled A on the diagram. 2. Give the name and functions

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS.

CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. CHAPTER 6 PRINCIPLES OF NEURAL CIRCUITS. 6.1. CONNECTIONS AMONG NEURONS Neurons are interconnected with one another to form circuits, much as electronic components are wired together to form a functional

More information

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration.

Date: Student Name: Teacher Name: Jared George. Score: 1) A cell with 1% solute concentration is placed in a beaker with a 5% solute concentration. Biology Keystone (PA Core) Quiz Homeostasis and Transport - (BIO.A.4.1.1 ) Plasma Membrane, (BIO.A.4.1.2 ) Transport Mechanisms, (BIO.A.4.1.3 ) Transport Facilitation Student Name: Teacher Name: Jared

More information

Homeostasis and Transport Module A Anchor 4

Homeostasis and Transport Module A Anchor 4 Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the

More information

Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart

Lecture Outline. Cardiovascular Physiology. Cardiovascular System Function. Functional Anatomy of the Heart Lecture Outline Cardiovascular Physiology Cardiac Output Controls & Blood Pressure Cardiovascular System Function Functional components of the cardiovascular system: Heart Blood Vessels Blood General functions

More information

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores Biological Membranes Impermeable lipid bilayer membrane Protein Channels and Pores 1 Biological Membranes Are Barriers for Ions and Large Polar Molecules The Cell. A Molecular Approach. G.M. Cooper, R.E.

More information

Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION

Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias INTRODUCTION Introduction to Cardiac Electrophysiology, the Electrocardiogram, and Cardiac Arrhythmias Alfred E. Buxton, M.D., Kristin E. Ellison, M.D., Malcolm M. Kirk, M.D., Gregory F. Michaud, M.D. INTRODUCTION

More information

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS

Chapter 15. The Autonomic Nervous. The Autonomic Nervous System. Autonomic Motor Pathways. ANS vs. SNS The Autonomic Nervous System Chapter 15 The subconscious involuntary nervous system Regulates activity of smooth muscle, cardiac muscle & certain glands The Autonomic Nervous System 1 2 ANS vs. SNS Somatic

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

CHAPTER I From Biological to Artificial Neuron Model

CHAPTER I From Biological to Artificial Neuron Model Ugur HALICI ARTIFICIAL NEURAL NETWORKS CHAPTER CHAPTER I From Biological to Artificial Neuron Model Martin Gardner in his book titled 'The Annotated Snark" has the following note for the last illustration

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

Drugs, The Brain, and Behavior

Drugs, The Brain, and Behavior Drugs, The Brain, and Behavior John Nyby Department of Biological Sciences Lehigh University What is a drug? Difficult to define Know it when you see it Neuroactive vs Non-Neuroactive drugs Two major categories

More information

Standards Alignment Minnesota Science Standards Alignment Matrix www.brainu.org/resources/mnstds

Standards Alignment Minnesota Science Standards Alignment Matrix www.brainu.org/resources/mnstds Lesson Summary: Neurons transfer information by releasing neurotransmitters across the synapse or space between neurons. Students model the chemical communication between pre-synaptic and post-synaptic

More information

You can t turn on the television or radio, much less go online, without seeing something

You can t turn on the television or radio, much less go online, without seeing something 11 Introduction to the Nervous System and Nervous Tissue You can t turn on the television or radio, much less go online, without seeing something to remind you of the nervous system. From advertisements

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

PHYSIOLOGICAL PSYCHOLOGY

PHYSIOLOGICAL PSYCHOLOGY UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc COUNSELLING PSYCHOLOGY (2011 Admission Onwards) I Semester Complementary Course PHYSIOLOGICAL PSYCHOLOGY QUESTION BANK 1. are the basic units of

More information

of computational neuroscience. The chapter is organized as follows. Section 1 describes the

of computational neuroscience. The chapter is organized as follows. Section 1 describes the Chapter 1 This chapter presents elements of neurobiology that form the necessary preparation for a student of computational neuroscience. The chapter is organized as follows. Section 1 describes the biology

More information

Computational Neuroscience. Models of Synaptic Transmission and Plasticity. Prof. Dr. Michele GIUGLIANO 2036FBDBMW

Computational Neuroscience. Models of Synaptic Transmission and Plasticity. Prof. Dr. Michele GIUGLIANO 2036FBDBMW Computational Neuroscience 2036FBDBMW Master of Science in Computer Science (Scientific Computing) Master of Science in Biomedical Sciences (Neurosciences) Master of Science in Physics Prof. Dr. Michele

More information

Cell Structure and Function

Cell Structure and Function Bio 100 - Cells 1 Cell Structure and Function Tenets of Cell Theory 1. All living things are made up of one or more cells 2. Cells are the basic living units within organisms, and the chemical reactions

More information

Muscles How muscles contract - The Sliding Filament Theory

Muscles How muscles contract - The Sliding Filament Theory Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones

More information

QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION

QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION Hons Neuroscience Professor R.R. Ribchester QUANTAL ANALYSIS AT THE NEUROMUSCULAR JUNCTION Our present understanding of the fundamental physiological mechanism of transmitter release at synapses is mainly

More information

Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html

Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html NAME Explore the Neuroscience for Kids Web Site (ANSWERS) Start at: http://faculty.washington.edu/chudler/neurok.html On the left side, click on Explore, then click on The Neuron, then click on Millions

More information

For thousands of years, humans have aspired to create intelligent. The Nervous System CHAPTER. Chapter Concepts

For thousands of years, humans have aspired to create intelligent. The Nervous System CHAPTER. Chapter Concepts CHAPTER 11 The Nervous System Chapter Concepts 11.1 Structures and Processes of the Nervous System Homeostasis is maintained in the human body by the various parts of the nervous system. Neural transmission

More information

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic

More information

Membrane Transport. Extracellular Concentration of X

Membrane Transport. Extracellular Concentration of X Use the following graph to answer questions 1 and 2. Rate of diffusion of X into the cell 1. Which of the following processes is represented by the above graph? c. Active transport 2. Molecule X is most

More information