Photosynthetic Pigments and Fall Foliage Color Changes

Size: px
Start display at page:

Download "Photosynthetic Pigments and Fall Foliage Color Changes"

Transcription

1 Photosynthetic Pigments and Fall Foliage Color Changes Objectives: 1. To determine the pigments responsible for leaf color. 2. To investigate differences in leaf color within and between trees. I. BACKGROUND MATERIAL During autumn in Vermont, tree leaves "paint the landscape" with awe-inspiring colors. While some plants exhibit a single shade of color in the fall, such as birch and aspen that have yellow leaves and sumacs that have deep red leaves, other species can have multiple color signatures, such as maples that dazzle with red, orange, and gold, and ashes that show maroon and yellow. The colors of maples and ash, among others, can vary considerably from one locality to another, or even from one leaf to another, depending on the combination of pigments present in the fall leaves. In this experiment, you will separate out the pigments in leaves by paper chromatography, and then measure the quantity present by spectrophotometry. Through chromatography, individual pigments are isolated from the many other substances found in living tissues. Once separated, the amount of pigments present can be determined with spectrophotometry, which measures the light absorbed by a given substance. Figure 1: The green pigments of leafy material are underlain by yellows and reds.

2 A. PHOTOSYNTHESIS Photosynthesis n: A process by which green plants and other organisms produce simple carbohydrates from carbon dioxide and hydrogen, using energy that chlorophyll or other organic cellular pigments absorb from radiant sources. Photosynthesis is the most important series of chemical reactions on earth. Without photosynthesis, life as we know it would not exist. It is a complex chemical process that converts radiant energy (light) to chemical energy (sugar): Light + 6 CO H 2 O C 6 H 12 O 6 (sugar) + 6 H 2 O + 6 O 2 B. PIGMENTS Pigment n: A natural substance in plant or animal tissue that absorbs light and gives the tissue its color) The chloroplasts (those photosynthesizing organelles) of mature leaves contain several groups of pigments: Chlorophylls chlorophyll a grass green chlorophyll b yellow-green Carotenoids carotenes orange/yellow xanthophylls pale yellow Each of these pigments plays a role in photosynthesis. Research suggests that the large amounts of chlorophylls and their intense green color usually hide the presence of the carotenes and xanthophylls. Most plants regularly destroy and re-synthesize their chlorophyll during their growing season, but as the fall progresses, the rate of chlorophyll synthesis lags behind that of its breakdown. The decreasing amounts of chlorophyll no longer mask the other pigments, and the fall color change begins. (Additional color may also occur due to an increase in production of two other common pigments, anthocyanin or betacyanin. These water-soluble pigments are non-photosynthetic and are not present in the chloroplasts, Figure 2: A fiddlehead, photosynthesizing early in the spring, shows through dead oak leaves that have lost their pigment.

3 but instead are localized in vacuoles, especially in epidermal cells.) Eventually the leaf cells break down and die, and the leaves eventually turn a shade of brown or tan. This browning is due to a reaction between leaf proteins and tannins stored in the cell vacuoles. (This is akin to the tanning of animal hides that produces leather, in which tannins react with proteins.) C. PAPER CHROMATOGRAPHY Chromatography n: A method for determining which chemical components a gaseous or liquid mixture contains. It involves passing it through or over a medium that absorbs the different components at different rates. Separation of a compound from others present in a given tissue can be done with a simple piece of paper! Pigments have an affinity for paper, and are also easily dissolved in solvents. This technique takes advantage of these two facts. Paper is made up of cellulose, which has many -OH groups present. These groups hydrogen bond to other hydrophilic groups, and as a result many substances (like chlorophyll) hydrogen bond to cellulose. Yet, pigments can be dislodged from their cozy hydrogen bonds if a solvent is present. If we apply a tissue extract of pigments to paper and then wet the paper gradually with a solvent, a pigment molecule can be displaced slightly from its original position. The pigment will migrate over the paper as the solvent flows over it. The other pigments present in the tissue extract also bind to the cellulose, but with different affinities since different types of pigment molecules have different chemical structures, sizes, polarities and solubilities. Therefore, the substances in the mixture separate: some are slightly soluble in solvent and don't migrate very far on the paper, while others are more soluble and migrate farther, separating from each other. II. Context for the Exercise Recall the components of the Scientific Process: The Observations behind this exercise include: Plant leaves are various shades of green while they are photosynthetic but often change to other colors as the autumn season progresses. This leads to two basic questions: Why are tree leaves green? What changes occur when leaves change color? You should now try to rephrase these questions as testable Hypotheses, which include an aspect of the mechanism of color production, using the background material discussed above. You will use the experimental techniques of paper chromatography and spectrophotometry to test these hypotheses as they relate to specific trees on campus. See methods, section III. Record your results in self-explanatory, legible tables and graphs. What inferences can you make from your own results or from compiled results?

4 What you will do in this experiment: Week #1: Selection of research tree, sampling and ESIQ. You and your partner will select a tree as your test specimen. Using the basic observation, question and hypothesis outlined above, plan a set of experiments to test your hypothesis and predictions concerning why your tree is green. In the first week you will sample leaves and learn the basics of ESIQ: Extraction, Separation, Identification and Quantification of the pigments responsible for most leaf color. Week #2: Measuring differences in leaf color. Plan a set of experiments that address the observation, question and hypothesis concerning why leaf color differs within your tree between seasons. III. METHODS 1. PIGMENTS Routine laboratory procedures including paper chromatography and spectrophotometry can be used to (E) extract, (S) separate, (I) identify, and (Q) quantify leaf pigments - ESIQ. Procedure for ESIQ: A. Chromatography 1. Each group of students will collect leaves to analyze for pigments. 2. Weigh approximately 5 grams of fresh leaves. Record the actual weight! Chop the leaves into small pieces, and place some in a chilled mortar. Add 10 ml of cold acetone, (a *small* pinch of sand may help the grinding process) and then grind the leaves with a pestle. After you have partially ground the first batch, add the remaining chopped leaf. As you grind you will need to add acetone in small amounts (5-10 ml each time) as the mixture in the mortar dries out. Ideally, you would extract all the pigments in the leaf, and leave the pulp colorless (Why?). This would be very difficult with your equipment, but do the best you can. The pulp will begin to look faded, and that s good enough. You can pour off extract as you work (see number 3. below), and add fresh acetone. You should create about 20 ml of extract. 3. Pour off the liquid extract from the mortar into a 50 ml graduated cylinder being careful to get as little pulp in the cylinder as possible. Rinse the pulp in the mortar with a small amount of acetone, and add this to the graduated cylinder. Place the extract in an ice bath allowing any solids to settle for 5 minutes. Be sure to record the total volume of liquid extract. 4. Draw a light pencil line across the chromatography paper 2 cm from the bottom. Remove 1.0 ml of extract from the graduated cylinder using a pipettor, and put it in one of the

5 vials provided. Using the glass pipette, apply the extract carefully and as evenly as possible along the pencil line. Make sure you don t tear the paper by dragging the pipette tip aggressively. Allow the paper to air-dry before applying each successive sample. The tighter and neater the line of pigment you can make on the paper, the better the chromatography will work! That s why you should practice using the glass pipette first. You should apply all of the 1.0 ml to the origin using as many partial applications as required. Record the volume applied. The line of green tissue extract is called the origin. 5. Roll the paper into a tube, with the origin on the bottom, hold edges 1/8" apart, and staple. Do not let the paper overlap! Open the chromatography tank as briefly as possible, and only in the hood. Place the tube in the chromatography tank. The tank contains 50 ml of 10% acetone/90% petroleum ether solvent, which is 1 cm deep. (Solvent must not cover the origin.) Cover tightly. 6. The solvent will travel upward, wetting the paper. This process is called irrigation. Allow the solvent to irrigate until the solvent front is 1-2 cm from the top of the paper (this should take about 15 minutes). Remove the chromatogram from the tank, mark the solvent front and let the paper dry in the hood. Cylinder of chromatography paper Front as solvent moves Pigments loaded on Pencil line Solvent Figure 3: Roll of chromatography paper in place, absorbing solvent. 7. Locate the chlorophyll a and b bands and the xanthophyll and carotene bands. (Note: In this procedure, you have extracted only non-polar photosynthetic pigments. For example, the water-soluble anthocyanin pigments were not extracted and cannot be measured. Fortunately, these usually represent a small percentage of most leaf pigments.)

6 Front Golden yellow carotene Pale yellow xanthophylls Grass green chlorophyll a Yellow-green chlorophyll b Figure 4: Chromatography paper, unrolled, showing the movement fronts of pigment. 8. Cut out each band of separated pigment as carefully as you can, and place each band in a vial with the correct labeled top to which 10 ml of acetone has been added. You need to include all the paper with any particular color on it in the vial since the color is the extracted pigment you are after. The acetone will dissolve the pigment in about 5 minutes. Note: Some species may contain more than four pigment bands. B. Spectrophotometer 1. Refresh yourself on the procedure for using the spectrophotometer they are delicate instruments! IN PARTICULAR DO NOT SPILL ACETONE ON THEM! Acetone attacks many types of plastics! 2. Carefully swirl each of the four vials of acetone with dissolved pigment. 3. Set the wavelength of the spectrophotometer to 400 nm and blank (set the absorbance to zero) with a cuvette of pure acetone. 4. Transfer aliquots of the four well-mixed acetone and pigment solutions to cuvettes and measure the absorbance of each sample at 25 nm intervals from 400 nm to 775 nm. Blank with acetone each time the wavelength is changed. You can measure all four pigment samples at each wavelength. 5. Record your data in a table and plot it to produce an absorption spectrum for each pigment. What is the peak absorbance for each pigment? You can hone in on the true peak by going back and testing the extracts in 10 nm intervals right near the previously found peak. Once you know the peak absorbance for each pigment, you need only measure the absorbance at this wavelength for successive trials in week For each pigment, calculate the number of grams that were in 1 gram of leaf material: a. g of pigment / g fresh weight of leaf material. See section C. below.

7 C. Calculations For the calculations you will need the following information: Pigment Molecular weight Molar extinction coefficient (E) chlorophyll a = 894 g/mol 89 / mm cm (milimole/l)(cm) chlorophyll b = 907 g/mol 56 / mm cm carotene = 536 g/mol 2500 / mm cm xanthophyll = 568 g/mol 2500 / mm cm NOTE: don t miss the division symbol in these values of molar extinction! Absorbance, A, = peak absorbance measured. Path length, l, = 1 cm. In order to calculate the amount of each pigment in the original sample of leaf you ground up, there are several steps detailed below. You will need to do this calculation for each different pigment you isolated. Pay attention to the units for all the variables that you use! 1. Start by solving the Beer-Lambert equation (A=ElC) for concentration, C, which is expressed as molarity (M), or moles/l. 2. Using the absorbance value you measured at the peak absorbance wavelength, calculate a value of C (concentration) for each pigment. Can you see how the units cancel in the equation? 3. Multiply this value (C) by the molecular weight for that pigment to convert the units of concentration from molarity, to grams/liter. Be sure to pay attention to units! This value is the concentration (g/l) of pigment in your cuvette, and thus, the vial you extracted the strip of chromatography paper in. 4. Now you need to calculate the amount (g) of pigment in that vial. Multiply the concentration of the solution in the vial by the total volume in the vial (g/l x L = g - Watch your units!) This represents the amount of pigment in your vial, which is only a fraction of the total amount of pigment extracted from the leaf. Where did this pigment in the vial come from? It was on the chromatography paper. 5. Now you know the amount (g) of pigment on the chromatography paper. Where did the pigment that was on the paper come from? You added a certain volume of your raw extract to the paper. If you divided the amount of pigment you found in step 4 by this volume, you calculate the concentration of the pigment in the original raw extract (g/ml = concentration)! 6. No you know the concentration of the pigment in your extract. How do you calculate the amount (g) of pigment in that extract? Finally, you can calculate the % pigment in the original mass of leaves you extracted.

8 7. Eventually you should get the number of grams of pigment in the sample of leaves used. This value needs to be adjusted to express your final value as grams of pigment/ gram fresh weight of leaf material. IV. THOUGHT QUESTIONS These questions can be used to gain perspective on this experiment. 1. Do your individual results support or fail to support your hypotheses? Do the compiled results from the class support or fail to support the hypotheses? 2. Do the amounts of pigment you calculated for each pigment make sense? For instance, did you calculate that the leaf is 50% pigment by weight? Does that sound reasonable to you? 3. Can you identify the biggest sources of error in your experimental protocol? 4. Can you suggest alternative methods that might reduce these sources of error? 5. Can you use the absorption spectra that you created for each pigment to describe why the plant you extracted appears green?

9

Cellular Membranes I. BACKGROUND MATERIAL

Cellular Membranes I. BACKGROUND MATERIAL Cellular Membranes Objectives: 1. To explore the nature of cellular membranes by investigating environmental conditions which stress them. 2. To learn methods for measuring the extent of stress on the

More information

Measuring Protein Concentration through Absorption Spectrophotometry

Measuring Protein Concentration through Absorption Spectrophotometry Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to

More information

ANALYSIS OF PLANT PIGMENTS USING PAPER CHROMATOGRAPHY AND VISIBLE AND/OR UV SPECTROSCOPY (1-31-96)

ANALYSIS OF PLANT PIGMENTS USING PAPER CHROMATOGRAPHY AND VISIBLE AND/OR UV SPECTROSCOPY (1-31-96) ANALYSIS OF PLANT PIGMENTS USING PAPER CHROMATOGRAPHY AND VISIBLE AND/OR UV SPECTROSCOPY (1-31-96) INTRODUCTION We have seen that all cells must constantly consume fuel molecules to maintain themselves,

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

Using Spectrophotometers to Examine Photosynthetic Rates Under Various Qualities of Light

Using Spectrophotometers to Examine Photosynthetic Rates Under Various Qualities of Light Purdue GK-12 Lesson Plan 2006-07 Using Spectrophotometers to Examine Photosynthetic Rates Under Various Qualities of Light Purdue University GK-12 2006-2007 Lead developer and contact: Amanda Deering Purdue

More information

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts

More information

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College PURPOSE In this experiment, the photosynthetic pigments common to all flowering plants will be extracted by liquidliquid extraction.

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP Molecules in food store chemical energy in their bonds. Starch molecule Glucose molecule The chemical

More information

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

LAB #6 Photosynthesis and Cellular Respiration

LAB #6 Photosynthesis and Cellular Respiration LAB #6 Photosynthesis and Cellular Respiration Introduction In order to survive, organisms require a source of energy and molecular building blocks to construct all of their biological molecules. The ultimate

More information

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

Metabolism: Cellular Respiration, Fermentation and Photosynthesis Metabolism: Cellular Respiration, Fermentation and Photosynthesis Introduction: All organisms require a supply of energy and matter to build themselves and to continue to function. To get that supply of

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

Plant adaptations, Chlorophyll & Photosynthesis. Surviving in hot environments and making the most of light

Plant adaptations, Chlorophyll & Photosynthesis. Surviving in hot environments and making the most of light Plant adaptations, Chlorophyll & Photosynthesis Surviving in hot environments and making the most of light Photosynthesis is the basis of life of earth. It provides the energy that drives virtually all

More information

THE ACTIVITY OF LACTASE

THE ACTIVITY OF LACTASE THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

A Beer s Law Experiment

A Beer s Law Experiment A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining

More information

Photosynthesis and Cellular Respiration. Stored Energy

Photosynthesis and Cellular Respiration. Stored Energy Photosynthesis and Cellular Respiration Stored Energy What is Photosynthesis? plants convert the energy of sunlight into the energy in the chemical bonds of carbohydrates sugars and starches. SUMMARY EQUATION:

More information

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Algae, like your Halimeda, and plants live in very different environments, but they

More information

EFFECT OF ALCOHOL ON CELL MEMBRANES

EFFECT OF ALCOHOL ON CELL MEMBRANES EFFECT OF ALCOHOL ON CELL MEMBRANES LAB CELL 1 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that

More information

5 E Lesson Plan. Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology

5 E Lesson Plan. Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology 5 E Lesson Plan Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology Materials: a. aluminum tray b. waxed paper c. 6 green marshmallows d. 12 pink marshmallows

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

More information

Chemical Bonding: Polarity of Slime and Silly Putty

Chemical Bonding: Polarity of Slime and Silly Putty Lab 12 Chemical Bonding: Polarity of Slime and Silly Putty TN Standard 3.1: Investigate chemical bonding. Students will distinguish between polar and non-polar molecules. Have you ever read the newspaper

More information

Studying Photosynthetic Electron Transport through the Hill Reaction

Studying Photosynthetic Electron Transport through the Hill Reaction Studying Photosynthetic Electron Transport through the Hill Reaction In this lab exercise you will learn techniques for studying electron transport. While our research system will be chloroplasts and photosynthetic

More information

TEACHER ACTIVITY GUIDE

TEACHER ACTIVITY GUIDE Page 1/5 TEACHER ACTIVITY GUIDE EFFECT OF HEAT & ph ON COLOR & TEXTURE OF GREEN VEGETABLES Taken from IFT Experiments in Food Science Series Color plays a key role in establishing consumer acceptability

More information

Activity Sheets Enzymes and Their Functions

Activity Sheets Enzymes and Their Functions Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H FV 1/25/2011(2-run) THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

Questions for Discussion. Introduction. What is ph? Neutralization

Questions for Discussion. Introduction. What is ph? Neutralization Questions for Discussion Why do leaves change color in autumn? What are acids and bases? How does red cabbage fit in? How are all these things related? Introduction The questions above may not seem related,

More information

Equation for Photosynthesis

Equation for Photosynthesis Photosynthesis Definition The process by which cells harvest light energy to make sugars (glucose). -Sugar is used to power the process of cellular respiration, which produces the ATP that cells utilize

More information

Experiment 5: Column Chromatography

Experiment 5: Column Chromatography Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!

More information

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date Chapter 8 Photosynthesis Section 8 1 Energy and Life (pages 201 203) This section explains where plants get the energy they need to produce food. It also describes the role of the chemical compound ATP

More information

Performing Calculatons

Performing Calculatons Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

EFFECT OF SALT ON CELL MEMBRANES

EFFECT OF SALT ON CELL MEMBRANES EFFECT OF SALT ON CELL MEMBRANES LAB CELL 2 INTRODUCTION A eukaryotic cell, a cell with a nucleus, not only has a plasma membrane as its external boundary, but it also has a variety of membranes that divide

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 2:CHLOROPLASTS AND PHOTOREDUCTION

Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 2:CHLOROPLASTS AND PHOTOREDUCTION Biology 29 Cell Structure and Function Spring, 2009 Springer LABORATORY 2:CHLOROPLASTS AND PHOTOREDUCTION In this laboratory we will purify chloroplasts from spinach by differential centrifugation, then

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

PHOTOSYNTHESIS page 51

PHOTOSYNTHESIS page 51 PHOTOSYNTHESIS page 51 Pre-lab assignment: Before lab you must read the lab introduction, perform the calculations described below and answer the questions. You will hand in a copy of this work when you

More information

LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way:

LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way: LAB TOPIC 4: ENZYMES Objectives Define enzyme and describe the activity of enzymes in cells. Discuss the effects of varying enzyme concentrations on the rate of enzyme activity. Discuss the effects of

More information

Practice Questions 1: Scientific Method

Practice Questions 1: Scientific Method Practice Questions 1: Scientific Method 1. A student divided some insect larvae into four equal groups, each having the same amount of food. Each group was kept at a different temperature, and the average

More information

Table of Content. Enzymes and Their Functions Teacher Version 1

Table of Content. Enzymes and Their Functions Teacher Version 1 Enzymes and Their Functions Jeisa Pelet, Cornell University Carolyn Wilczynski, Binghamton High School Cornell Learning Initiative in Medicine and Bioengineering (CLIMB) Table of Content Title Page Abstract..

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Upon completion of this lab, the student will be able to:

Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC

More information

Review Questions Photosynthesis

Review Questions Photosynthesis Review Questions Photosynthesis 1. Describe a metabolic pathway. In a factory, labor is divided into small individual jobs. A carmaker, for example, will have one worker install the front windshield, another

More information

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers) Name: Class: Date: Objectives * Measure the effects of changes in temperature, ph, and enzyme concentration on reaction rates of an enzyme catalyzed reaction in a controlled experiment. * Explain how environmental

More information

Photosynthesis Reactions. Photosynthesis Reactions

Photosynthesis Reactions. Photosynthesis Reactions Photosynthesis Reactions Photosynthesis occurs in two stages linked by ATP and NADPH NADPH is similar to NADH seen in mitochondria; it is an electron/hydrogen carrier The complete process of photosynthesis

More information

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several

More information

Biology 3A Laboratory: Enzyme Function

Biology 3A Laboratory: Enzyme Function Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect

More information

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes)

Chemistry of Biodiesel Production. Teacher Notes. DAY 1: Biodiesel synthesis (50 minutes) Chemistry of Biodiesel Production Teacher Notes DAY 1: Biodiesel synthesis (50 minutes) NOTE: The lab preparation instructions / lab protocol assumes classes of 32 students, with 8 groups of 4 students

More information

Osmosis Demonstration Lab

Osmosis Demonstration Lab Osmosis Demonstration Lab Objectives The student will: 1) Observe the effects of different concentrations of salt solutions on potato cores. 2) Infer the relationship between weight loss and rate of osmosis.

More information

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the

More information

VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE

VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE 7. Why do leaves turn color in the fall? 8. How are photosystems I and II different? How are they related? 9. What is the source of energy for dark reactions? 10. Describe the C3 cycle. 11. What is the

More information

Process of Science: Using Diffusion and Osmosis

Process of Science: Using Diffusion and Osmosis Process of Science: Using Diffusion and Osmosis OBJECTIVES: 1. To understand one way to approach the process of science through an investigation of diffusion and osmosis. 2. To explore how different molecules

More information

HiPer Ion Exchange Chromatography Teaching Kit

HiPer Ion Exchange Chromatography Teaching Kit HiPer Ion Exchange Chromatography Teaching Kit Product Code: HTC001 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 5-6 hours Storage Instructions: The kit is stable for

More information

Name Class Date. Figure 8-1

Name Class Date. Figure 8-1 Chapter 8 Photosynthesis Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is an autotroph? a. mushroom

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

PAPER CHROMATOGRAPHY

PAPER CHROMATOGRAPHY PAPER CHROMATOGRAPHY INTRODUCTION Chromatography is a technique that is used to separate and to identify components of a mixture. This analytical technique has a wide range of applications in the real

More information

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

Name  Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible Lab #3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Plants and Photosynthesis

Plants and Photosynthesis Plants and Photosynthesis Original Authors: Jennifer Michnowicz and Lois Kiraly Revision June 2006: Jennifer Michnowicz and Rebecca Shomo Farmington Public Schools 11 th Grade Biology Rebecca Shomo/Jennifer

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

A B C D. Name Class Date

A B C D. Name Class Date Chapter 8 Photosynthesis Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is an autotroph? a. mushroom

More information

ATP & Photosynthesis Honors Biology

ATP & Photosynthesis Honors Biology ATP & Photosynthesis Honors Biology ATP All cells need for life. Some things we use energy for are: Moving Thinking Sleeping Breathing Growing Reproducing ENERGY Labeled Sketch: The principal chemical

More information

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Separation of Dyes by Paper Chromatography

Separation of Dyes by Paper Chromatography Cautions: The FD&C food dyes used are concentrated and may stain clothing and skin. Do not ingest any of the food dyes or food samples used in this lab. Purpose: The purpose of this experiment is to determine

More information

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1 WARM-UP JAN 23/24 Mr. Stephens, IB Biology III 1 Photosynthesis & Cellular Respiration What is the connection between Photosynthesis and Cellular Respiration? Energy Production Inorganic Molecules Specialized

More information

Biology for Science Majors

Biology for Science Majors Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy

More information

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Teacher Demo: Photosynthesis and Respiration: Complementary Processes SNC1D/1P Sustainable Ecosystems/ Sustainable Ecosystems and Human Activity Teacher Demo: Photosynthesis and Respiration: Complementary Processes Topics photosynthesis and respiration gas tests for oxygen

More information

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE 1 Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE MULTIPLE CHOICE: CIRCLE ALL THE ANSWERS THAT ARE TRUE. THERE MAY BE MORE THAN ONE CORRECT ANSWER! 1. Which molecule stores more than 90 times

More information

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy Photosynthesis: Converting light energy into chemical energy Photosynthesis 6 + 12H 2 O + light energy Summary Formula: C 6 H 12 O 6 + 6O 2 + 6H 2 O 6 + 6H 2 O C 6 H 12 O 6 + 6O 2 Photosythesis provides

More information

Name Section Lab 5 Photosynthesis, Respiration and Fermentation

Name Section Lab 5 Photosynthesis, Respiration and Fermentation Name Section Lab 5 Photosynthesis, Respiration and Fermentation Plants are photosynthetic, which means that they produce their own food from atmospheric CO 2 using light energy from the sun. This process

More information

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.

Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes. Name Lab 3: ENZYMES In this lab, you ll investigate some of the properties of enzymes. So what are enzymes? Enzymes are large protein molecules (macromolecules) They catalyze or speed up chemical reactions

More information

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law

Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law Name: LEARNING GOALS: Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law 1. Become familiar with the concept of concentration and molarity. 2. Become familiar with making dilutions

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions

Induction of Enzyme Activity in Bacteria:The Lac Operon. Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions Induction of Enzyme Activity in Bacteria:The Lac Operon Preparation for Laboratory: Web Tutorial - Lac Operon - submit questions I. Background: For the last week you explored the functioning of the enzyme

More information

2 CELLULAR RESPIRATION

2 CELLULAR RESPIRATION 2 CELLULAR RESPIRATION What factors affect the rate of cellular respiration in multicellular organisms? BACKGROUND Living systems require free energy and matter to maintain order, to grow, and to reproduce.

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Enzymes: Amylase Activity in Starch-degrading Soil Isolates

Enzymes: Amylase Activity in Starch-degrading Soil Isolates Enzymes: Amylase Activity in Starch-degrading Soil Isolates Introduction This week you will continue our theme of industrial microbiologist by characterizing the enzyme activity we selected for (starch

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

Phenolphthalein-NaOH Kinetics

Phenolphthalein-NaOH Kinetics Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.

More information