VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE

Save this PDF as:
Size: px
Start display at page:

Download "VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE"

Transcription

1 7. Why do leaves turn color in the fall? 8. How are photosystems I and II different? How are they related? 9. What is the source of energy for dark reactions? 10. Describe the C3 cycle. 11. What is the process called carbon fixation and why does it have that name? 12. Why is it important for RUBP to be regenerated? VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE Huge sequoias rise out of the Earth, often climbing hundreds of feet into the sky and weighing hundreds of tons. Huge redwoods rise out of the Earth, often climbing hundreds of feet into the sky and weighing hundreds of tons. What is the process that creates these huge biological monoliths? Where does the matter that creates their mass come from? The earth from which they rise? The air that surrounds them? The rain that falls on the forest? And what provides the energy to build them, year by year, molecule by molecule? Scientific Experiments Slowly Reveal How Trees and Other Plants Grow Experiments by the 17th century Dutch physician Jan Van Helmont, indicated that the soil in which a tree is grown contributes little to its total mass. Van Helmont planted a seedling in a container, carefully weighing the soil in the container before planting the seedling. He then proceeded to care for the seedling for five years. After the five years he weighed both the seedling, which by now had become a small tree and the soil in the container. During the five years the mass of the tree had increased 75 kilograms, while the weight of the soil was nearly unchanged. The only substance that Van Helmont had added to the container had been water, so he hypothesized that it is water that provides for the increase in mass that occurs in trees and other plants as they grow. As we will see shortly Van Helmont was only partially correct. Nearly a hundred years later, scientist John Priestly performed an experiment that indicated the plants give off a gas essential for combustion, oxygen. Later, the Dutch scientist, Jan Ingenhousz noted that plants only give off oxygen only if exposed to light. Even later, scientists discovered that trees and all other forms of plant life, in fact all forms of life, were made up largely of molecules that contained carbon atoms. Where did all these carbon atoms come from, most soil has little or no carbon, and water certainly has none. The only likely source was the carbon in the gas carbon dioxide which is one the gases that makes up the Earth's atmosphere. Plants Grow as a Result of Photosynthesis As a result of the experiments by Van Helmont, Priestly, Ingenhousz and modern scientists a picture of the process by which trees and other plants obtain the matter and energy with which to sustain growth started to develop. Water and carbon dioxide from the atmosphere interact in a process powered by light energy that releases oxygen. In addition, the process produces other molecules made out of the carbon, hydrogen, and oxygen atoms provided by the water and carbon dioxide molecules. It is the molecules produced by the process that provide the energy and matter needed to fuel plant growth. The molecules produced by the process, scientists discovered, have the general chemical formula (CH 2 0) n, where n is the number of carbon atoms. As their chemical formula indicates these molecules are made out of carbon and water molecules, scientists named them carbohydrates, which literally means carbon plus water. One of these carbohydrate molecules, glucose, which has the chemical formula C 6 H 12 O 6, is one of the molecules most commonly formed by this process or

2 series of chemical reactions, scientists now call photosynthesis. The equation for photosynthesis is usually written as 6 CO 2 molecules plus 6 H 2 O molecules plus light energy yields one glucose molecule (C 6 H 12 O 6 ) plus 6 O 2 molecules. Photosynthesis Supports Most Life on Earth Nearly all life on Earth is supported, directly or indirectly by photosynthesis. Glucose molecules formed during photosynthesis are broken apart in the cells of plants and animals in a series of chemical reactions called cellular respiration, which you will learn about in more detail later in your study of biology. However, we will mention here, that cellular respiration reverses photosynthesis. The chemical equation for cellular respiration; 1 glucose (C 6 H 12 O 6 ) molecule plus 6 O 2 molecules yield 6 CO 2 molecules plus 6 H 2 O molecules plus a release of energy, reflects this. The chemical energy stored in glucose molecules can be released via cellular respiration either by the producing plant itself or by animals consuming the plant or it's fruits and nectars. Glucose, not consumed for energy by the plant producing it or by animals, is often joined in long molecular chains to form the material cellulose, which is the major structural component in the cell walls of plants, and thus an integral part of such major plant structures as tree trunks and branches. Let's now take a closer look at the process of photosynthesis. Photosynthesis: The Structure of Leaves and Chloroplasts As alluded to earlier photosynthesis is a process or series of reactions which use the energy of sunlight to convert the low energy reactants, water and carbon dioxide, into high energy glucose molecules and oxygen. In plants, photosynthesis takes place in cellular organelles called chloroplasts. As photosynthesis is dependent on light, the majority of photosynthesis takes place in parts of a plant with ample exposure to sunlight. As a result, in most land plants, the majority of chloroplasts are located in the cells of the plants leaves. The leaves of most plants are only a few layers of cells thick. The thin structure of leaves, that results, is important to the process of photosynthesis, insuring that light energy reaches even the leaves innermost cells. The upper and lower surfaces of leaves are covered with a layer of transparent cells called the epidermis. The epidermis cells are transparent, again, in order to allow light energy to reach the cells in the middle layers of the leaf where photosynthesis takes place. A transparent, waterproof, waxy layer called the cuticle covers the epidermis. This prevents one of the reactants critical to photosynthesis, water, from evaporating from the leaf, when weather conditions are hot and dry. Adjustable pores called stomata control the flow of the second major reactant, carbon dioxide, into the leaf and the flow of water and one of the products of photosynthesis, oxygen, out of the leaf. Between the epidermis and the cuticle that cover either side of the leaf there is an area called the mesophyll that simply means "middle of the leaf". The mesophyll is made up of a few layers of cells that contain the vast majority of a leaf's chloroplasts. Vascular bundles, or veins, supply water and minerals to the cells that make up the mesophyll and carry sugars that are produced in their chloroplasts to other parts of the plant. The leaf cells of plants usually contain a substantial number of chloroplasts in their cytoplasm. Chloroplasts are isolated from the cytoplasm of the cell by two membranes. Inside the membranes is a semifluid medium called the stroma. Contained within the stroma are disc-shaped, interconnected membranous sacs called thylakoids. The thylakoids in most chloroplasts are usually stacked one on top of the other, in stacks called grana.

3 The simple chemical equation for photosynthesis, that we saw earlier, hides the fact that dozens of chemical reactions, controlled by large molecules called enzymes, are necessary to complete the process of photosynthesis. The process of photosynthesis, however, can thought of as being made up of two different groups of reactions; light reactions that depend on light energy to power them and dark reactions which are powered by molecules formed during the light reactions. Photosynthesis: Light Reactions-An Overview The process of photosynthesis begins with the light reactions, which occur in the membranes of the thylakoid sacs, which are also often referred to as photosynthetic membranes. Chlorophyll and other pigment molecules in the photosynthetic membranes capture light energy and convert part of it into chemical energy, which is stored in energy carrier molecules, for later use in providing the energy for the dark reactions that occur in the stroma. Before going further let's take a closer look at the usual source of energy for light reactions, sunlight. Photosynthesis: Light Reactions-Chlorophyll and Other Pigments Capture Light Energy As you probably know, the sun emits a wide spectrum of electromagnetic radiation. On one end of the electromagnetic spectrum are very high-energy gamma rays, X-rays and ultraviolet waves. On the other end are longer wavelength, lower energy, infrared, micro, and radio waves. Visible light lies between these two ends of the electromagnetic spectrum and contains the wavelengths of electromagnetic radiation most useful to living organisms. What looks like white light reaching us from the sun is actually made up of many different colors corresponding to many different wavelengths. Visible light waves extend from the ultraviolet and blue range on one end, into green, yellow and red up to the edge of the infrared range on the other. Light striking a leaf can be reflected, transmitted (that is pass through the leaf) or absorbed. The light reflected or transmitted by a leaf produces it's color, while light that is absorbed heats up the leaf or drives biological processes, like photosynthesis. In biochemical terms pigments are any natural substance that occur in and color the tissues of an organism. Since chlorophyll, the key light-capturing molecule in photosynthetic membranes, is largely responsible for the green color of most plants it is often referred to as a pigment. Other molecules such as carotenoids and phycocyanins are also often present in photosynthetic membranes, capturing light energy and transferring it to chlorophyll molecules. Carotenoids and phycocyanins are referred to as accessory pigments. Each pigment or accessory pigment absorbs and reflects different wavelengths of light. Chlorophyll absorbs violet, blue and red light but reflects green light thereby giving leaves their green color. Carotenoids absorb blue and green light and reflect yellow and red, while phycocyanins absorb green and yellow and reflect blue or purple. During fall, it is the color of the carotenoids and phycocyanins made visible by the disappearance of chlorophyll that gives leave their dramatic yellow, orange, red, and purple colors. As all wavelengths of light are absorbed to some degree by either chlorophyll, carotenoids, or phycocyanins, all wavelengths of light can drive photosynthesis to some extent, but the peak wavelengths lie in the blue and red regions of the visible light spectrum. Let s now look at the cellular structures - photosystems I and II - that begin the process of converting light captured by pigments into chemical energy.

4 Photosynthesis: Light Reactions-Light Energy Captured by Pigments Powers Photosystems I and II Within photosynthetic membranes, chlorophyll, accessory pigments and electron carrier molecules form highly organized units called photosystems. The photosynthetic membrane of each thylakoid contains thousands of copies each of two different kinds of photosystems. Photosystem I and photosystem II. Both photosystems consist of two major parts, a light harvesting complex and an electron transport system. The lightharvesting complex of either photosystem contains roughly three hundred chlorophyll and accessory pigment molecules. These molecules absorb light and pass the energy to a specific chlorophyll molecule called the reaction center. The reaction center is located next to the electron transport system, which is a series of electron carriers embedded in the photosynthetic membrane. When the reaction centers chlorophyll molecule receives enough energy from other molecules in the light harvesting complex, one of it's electrons absorbs the energy and is ejected from the reaction centers chlorophyll molecule and over to the electron transport system. This energetic electron is passed from one carrier to another along the transport system. At some of the stops, the electron releases energy that is used to drive the synthesis of energy carrying ATP or NADPH molecules. The major difference between photosystem I and photosystem II is that photosystem II generates ATP molecules while photosystem I generates NADPH molecules. A photosystem II is always linked in series to a photosystem I. Let's take a look at how the two photosystems are linked and how energy carrying ATP and NADPH molecules are formed. Photosynthesis: Light Reactions-Photosystem II Produces ATP Molecules As we saw earlier, light energy is captured in photosystem II's light harvesting complex and the energy carried to the reaction center. After the reaction center receives a enough energy from the light-harvesting complex, an energized electron is ejected from the reaction center to the electron transport system of photosystem II. As the electron passes from molecule to molecule it releases energy that is used to pump positively charged hydrogen ions across the photosynthetic membrane. As a result the thylakoid compartment becomes positively charged while the surrounding stroma, outside the membrane, becomes negatively charged because of the loss of the positively charged hydrogen ions. This creates a source of energy that will be used later, as positively charged hydrogen ions flow back out of the thylakoid compartment through channel proteins due to their electrical attraction to the negatively charged stroma outside the membrane. Enzymes attached to the channel proteins use the energy created by the flow of hydrogen ions to create high-energy ATP molecules by adding a phosphate based molecules to ADP molecules. Photosynthesis: Light Reactions-Photosystem I Produces NADPH Molecules Meanwhile, light rays are also striking the light harvesting complex of photosystem I and the energy captured is causing an energized electron to jump from the photosystem I reaction center to the photosystem I electron transport system. The photosystem I reaction center immediately obtains a replacement for its lost electron in the form of the last electron down the photosystem II electron carrier. Photosystem I's high-energy electrons move through their own electron transport system, again pumping hydrogen ions inside the photosynthetic membrane. Eventually, the photosystem I electrons are taken up by "empty" electron carrying NADP+ molecules waiting at the end of the photosystem I electron transport. Each positively charged NADP molecules picks up two energetic electrons from the photosystem I electron transport and a hydrogen ion from the stroma to form an NADPH molecule.

5 Both the NADPH and ATP molecules formed by the two photosystems are water-soluble molecules, which dissolve in the chloroplasts stroma and remain there to be used later to supply the energy for the light independent dark reactions. Photosynthesis: Light Reactions- Photosystems I and II Electrons Come From H 2 O Molecules We have just seen the flow of electrons from the reaction center of photosystem II through photosystem II's electron transport system to the photosystem I reaction center where they replace the electrons the photosystem I reaction center has given up to the photosystem I electron transport system in order to pump hydrogen ions across the photosynthetic membrane and form NADPH molecules. In order for this flow of electrons to be sustained, photosystem II's reactions center must be continuously supplied with new electrons to replace the ones that it gives up. These replacement electrons come from water molecules. Photosystem II's reaction center captures electrons from H 2 O molecules from within the thylakoid compartment. As a result the H 2 O molecules break apart. The broken water molecules liberate hydrogen ions and oxygen atoms. The hydrogen ions increase the number of positively charged ions in the thylakoid compartment available to drive the synthesis of ATP molecules. The oxygen atoms combine to form molecules of oxygen gas, O 2. The oxygen may be retained by the plant for its own cellular respiration or given off to the atmosphere where it can be used by animals. Photosynthesis: Dark Reactions- The C3 Cycle The reactions we just looked at are called light reactions, because they require light energy to power them. The reactions that we are going to look at next, in which glucose or other molecules are actually synthesized, are referred to as dark reactions because they do not need light energy to power them as their energy is obtained from the energy stored in ATP and NADPH molecules formed during light reactions. At the beginning of the dark reactions, ATP and NADPH molecules synthesized during light reactions are dissolved in the stroma where the dark reactions take place. The synthesis of glucose and the capture of the carbon dioxide molecules critical to their formation occur in a set of dark reactions known both as the Calvin cycle, named after one of the discoverers of the cycle, and the C3 cycle because some of the important molecules in the cycle have 3 carbon atoms in them. We'll refer to it as the C3 cycle, as that name is both shorter and more descriptive. The C3 cycle requires four basic components; CO 2 from the atmosphere, a CO 2 capturing sugar (ribulose bisphosphate molecule or RUBP for short), enzymes to carry out and catalyze reactions, and energy in the form of ATP and NADPH molecules to power the reactions. The C3 cycle can be thought of as being divided into three parts; carbon fixation, phosphoglyceraldehyde and glucose synthesis, and RUBP replacement. Photosynthesis: Dark Reactions- The C3 Cycle- Carbon Fixation In order to form a six-carbon glucose molecule, six carbon atoms must be captured from carbon dioxide molecules. So as each C3 cycle begins six five-carbon RUBP molecules combine with six CO 2 molecules to form six extremely unstable six-carbon molecules. These molecules spontaneously react with six H 2 O

6 molecules and break apart to form twelve, three carbon molecules of phosphoglyceric acid or PGA for short. This stage is referred to as the carbon fixation stage, as during this stage gaseous inorganic C0 2 molecules are fixed into relatively stable, organic, PGA molecules. Photosynthesis: Dark Reactions-The C3 Cycle-Phosphoglyceraldehyde and Glucose Synthesis In the step after carbon fixation, phosphoglyceraldehyde and glucose synthesis, energy provided by twelve ATP and twelve NADPH molecules, is used in a series of enzyme-catalyzed reactions to synthesize twelve PGAL molecules from the twelve PGA molecules. PGAL is a versatile molecule that can be converted into a number of different molecules depending on the needs of the plant. Not only can two PGAL molecules, with three carbons each, combine to form a six carbon glucose molecule, the PGAL molecules may also be used to synthesize lipids, amino acids, or parts of nucleic acids. Thus the PGAL molecules synthesized in the C3 cycle provide the raw materials to produce almost everything needed by a cell. Photosynthesis: Dark Reactions-The C3 Cycle-RUBP Replacement In order for C3 cycles to continue on, in a continuous loop, however, the six RUBP molecules the C3 cycle started with must be regenerated. Thus, 10 out of the 12 PGAL molecules initially synthesized are used for the regeneration of RUBP molecules, meaning that only two of the twelve PGAL molecules are available to synthesize glucose or another molecules. Through a complex series of reactions requiring energy from 6 ATP molecules, the ten PGAL molecules unused in glucose synthesis, are converted back into six RUPB molecules, so that a new C3 cycle can begin. Review Let's now quickly review the process of photosynthesis from the capture of light energy to the formation of glucose and other molecules. During light reactions, which occur in the photosynthetic membranes of thylakoid sacs stacked inside chloroplasts, light energy is captured by two groups, of chlorophyll and other pigment molecules, that along with their accompanying electron transport systems, are referred to as photosystem I and photosystem II. The light energy captured by the pigment molecules of the photosystems is funneled into the reaction center of each photosystem. After enough energy is absorbed by the reaction centers, high-energy electrons jump from them to the adjacent electron transport system. Part of the energy of electrons traveling down the photosystem II electron transport system is used to pump positively charged hydrogen ions across the photosynthetic membrane into the thylakoid compartment. The flow of these hydrogen ions back out of the thylakoid compartment into the stroma is used by special enzymes to convert low energy ADP molecules into highly charged ATP molecules. At the end of the photosystem II electron transport system electrons jump to the photosystem I reaction center to replace the electrons released by that reaction center to its electron transport system. The electrons that were initially released by the photosystem II reaction center are replaced by electrons it captures from H 2 O molecules it breaks apart. The remaining hydrogen ions from the broken water molecule are used like the rest of the hydrogen ions stored in the thylakoid compartment to eventually power the building of ATP molecules. The oxygen from the broken water molecule is either used by the plant for cellular respiration or released to the atmosphere. The electrons that jump from the photosystem I reaction center to the photosystem I electron transport, like the electrons that travel down the photosystem II electron transport, pump hydrogen ions across

7 the photosynthetic membrane as they travel cross the electron transport system. Eventually, these electrons arrive at NADP+ molecules waiting at the end of the transport system. Two electrons from the electron transport and a hydrogen ion from the stroma join with the NADP+ molecule to form a NADPH molecule. The ATP and NADPH molecules formed by the photosystems in the light reactions are used to power the formation of glucose during the reactions of the C3 cycle, which are often referred to as the dark reactions. During the C3 cycle, six RUBP molecules react with six molecules of CO 2 to form six unstable, six carbon molecules. These six molecules react with six molecules of H 2 O to form 12 molecules of stable, three carbon PGA. The energy of 12 ATP molecules and two electrons and one hydrogen ion from each of 12 NADPH molecules are used to convert the 12 PGA molecules into 12 PGAL molecules. Two of the PGAL molecules are further processed into a six carbon glucose or other organic molecules such as glycerol, fatty acids, amino acids or the carbon skeletons of amino acids, depending on the needs of the plant. Finally, energy from six ATPs is used to rearrange the remaining 10 PGAL molecules back into 6 five-carbon RUPB molecules so that the cycle can start again. The depleted NADPH and ATP now NADP+ molecules and ADP molecules respectively return to the photosynthetic membranes to be recharged by the light reactions so the process, we call photosynthesis, can be repeated.

Photosynthesis and Cellular Respiration. Stored Energy

Photosynthesis and Cellular Respiration. Stored Energy Photosynthesis and Cellular Respiration Stored Energy What is Photosynthesis? plants convert the energy of sunlight into the energy in the chemical bonds of carbohydrates sugars and starches. SUMMARY EQUATION:

More information

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Review Questions Photosynthesis

Review Questions Photosynthesis Review Questions Photosynthesis 1. Describe a metabolic pathway. In a factory, labor is divided into small individual jobs. A carmaker, for example, will have one worker install the front windshield, another

More information

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall Biology 1of 51 8-3 The Reactions of Photosynthesis 2of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 3of 51 Inside

More information

Equation for Photosynthesis

Equation for Photosynthesis Photosynthesis Definition The process by which cells harvest light energy to make sugars (glucose). -Sugar is used to power the process of cellular respiration, which produces the ATP that cells utilize

More information

8-3 The Reactions of Photosynthesis Slide 1 of 51

8-3 The Reactions of Photosynthesis Slide 1 of 51 8-3 The of Photosynthesis 1 of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 2 of 51 Inside a Chloroplast Chloroplasts

More information

CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY

CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY 2 PROCESSES OF PHOTOSYNTHESIS Photosynthesis is actually 2 processes: light reactions - convert solar energy (sunlight) to chemical energy (ATP &

More information

Jan Baptisa van Helmont (1648)

Jan Baptisa van Helmont (1648) Instructions To help you navigate these slides, you should set your viewer to display thumbnails of these slides. On many viewers, this can be done by pressing the F4 key. The slides should be viewed in

More information

Photosynthesis Practice. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best.

Photosynthesis Practice. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. Photosynthesis Practice Fill in the blanks. Name Date Period 1. Molecules that collect light energy are called _P. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. 3. _C is the main

More information

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D? Photosynthesis Chapter 8 H O W D O E S T H E P L A N T U S E T H E S U N S E N E R G Y T O M A K E F O O D? http://www.youtube.com/watch?v=pe82qtkssh4 Autotroph vs. Heterotroph Autotrophs/Producers-organisms

More information

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2 PHOTOSYNTHESIS Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). photons SUN

More information

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE 1 Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE MULTIPLE CHOICE: CIRCLE ALL THE ANSWERS THAT ARE TRUE. THERE MAY BE MORE THAN ONE CORRECT ANSWER! 1. Which molecule stores more than 90 times

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O 6 + 6 O 2

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O 6 + 6 O 2 2. PHOTOSYNTHESIS Photosynthesis is the process by which light energy is converted to chemical energy whereby carbon dioxide and water are converted into organic molecules. The process occurs in most algae,

More information

4.2 Overview of Photosynthesis

4.2 Overview of Photosynthesis KEY CONCEPT The overall process of photosynthesis produces sugars that store chemical energy. Radiant Energy Chemical Energy A. Organisms are classified according to how they obtain energy. 1. Autotroph/Producers

More information

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages 202 203) Chapter 8. Name Class Date Chapter 8 Photosynthesis Section 8 1 Energy and Life (pages 201 203) This section explains where plants get the energy they need to produce food. It also describes the role of the chemical compound ATP

More information

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis An Overview of Photosynthesis Photosynthesis-Review 1. Photosynthesis uses the energy of sunlight to convert water and carbon dioxide into high-energy sugars and oxygen. 6 CO 2 + 6 H 2 O C 6 H 12 O 6 +

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP Molecules in food store chemical energy in their bonds. Starch molecule Glucose molecule The chemical

More information

ATP & Photosynthesis Honors Biology

ATP & Photosynthesis Honors Biology ATP & Photosynthesis Honors Biology ATP All cells need for life. Some things we use energy for are: Moving Thinking Sleeping Breathing Growing Reproducing ENERGY Labeled Sketch: The principal chemical

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Photosynthesis (Life from Light)

Photosynthesis (Life from Light) Photosynthesis Photosynthesis (Life from Light) Energy needs of life All life needs a constant input of energy o Heterotrophs (consumers) Animals, fungi, most bacteria Get their energy from other organisms

More information

2. 1. What are the three parts of an ATP molecule? (100 points)

2. 1. What are the three parts of an ATP molecule? (100 points) Photosynthesis Date Created: 12/8/14, 11:22:50 AM Questions: 34 Date Modified: 12/17/14, 8:27:08 AM 1. ATP & Photosynthesis Review Game 30 Multiple Choice Questions Final Question Correct Answers = +$100

More information

MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!!

MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!! MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!! THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic

More information

> C 6 H 12 O 6 + 6O 2

> C 6 H 12 O 6 + 6O 2 Photosynthesis- is the process that converts light energy into chemical energy. This chemical energy is usually a carbohydrate. Only photoautrotrops can do photosynthesis. Heterotrophs must obtain their

More information

Biology Slide 1 of 51

Biology Slide 1 of 51 Biology 1 of 51 8-3 The Reactions of Photosynthesis 2 of 51 Inside a Chloroplast 1. In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 3 of 51 Inside a Chloroplast

More information

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine

More information

Green pigment that absorbs solar energy and is important in photosynthesis

Green pigment that absorbs solar energy and is important in photosynthesis PHOTOSYNTHESIS REVIEW SHEET FOR TEST Part A: Match the terms below with the correct description Chlorophyll Chloroplast Electromagnetic spectrum Electron transport chain Grana Light-dependant reactions

More information

Chloroplasts and Mitochondria

Chloroplasts and Mitochondria Name: KEY Period: Chloroplasts and Mitochondria Plant cells and some Algae contain an organelle called the chloroplast. The chloroplast allows plants to harvest energy from sunlight to carry on a process

More information

A B C D. Name Class Date

A B C D. Name Class Date Chapter 8 Photosynthesis Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is an autotroph? a. mushroom

More information

Name Class Date. Figure 8-1

Name Class Date. Figure 8-1 Chapter 8 Photosynthesis Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is an autotroph? a. mushroom

More information

Question. Which of the following are necessary in order for photosynthesis to occur? A. water B. light energy C. carbon dioxide D.

Question. Which of the following are necessary in order for photosynthesis to occur? A. water B. light energy C. carbon dioxide D. Photosynthesis is the process through which plants convert light energy to chemical energy in order to produce food The energy involved in photosynthesis is eventually stored in the chemical bonds of molecules

More information

8.3 The Process of Photosynthesis

8.3 The Process of Photosynthesis 8.3 The Process of Photosynthesis Lesson Objectives Describe what happens during the light-dependent reactions. Describe what happens during the light-independent reactions. Identify factors that affect

More information

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8 How ells Harvest Energy hapter 7 & 8 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism - all in prokaryotic cells!: 1. ability to store chemical energy in ATP 2. evolution

More information

Biology I. Chapter 8/9

Biology I. Chapter 8/9 Biology I Chapter 8/9 NOTEBOOK #1 Interest Grabber Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend all of the money, but then you decide to open a bank

More information

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy Photosynthesis: Converting light energy into chemical energy Photosynthesis 6 + 12H 2 O + light energy Summary Formula: C 6 H 12 O 6 + 6O 2 + 6H 2 O 6 + 6H 2 O C 6 H 12 O 6 + 6O 2 Photosythesis provides

More information

Bioenergetics Module A Anchor 3

Bioenergetics Module A Anchor 3 Bioenergetics Module A Anchor 3 Key Concepts: - ATP can easily release and store energy by breaking and re-forming the bonds between its phosphate groups. This characteristic of ATP makes it exceptionally

More information

Photosynthesis: Harvesting Light Energy

Photosynthesis: Harvesting Light Energy Photosynthesis: Harvesting Light Energy Importance of Photosynthesis A. Ultimate source of energy for all life on Earth 1. All producers are photosynthesizers 2. All consumers and decomposers are dependent

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Photosynthesis Reactions. Photosynthesis Reactions

Photosynthesis Reactions. Photosynthesis Reactions Photosynthesis Reactions Photosynthesis occurs in two stages linked by ATP and NADPH NADPH is similar to NADH seen in mitochondria; it is an electron/hydrogen carrier The complete process of photosynthesis

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Lecture 7 Outline (Ch. 10)

Lecture 7 Outline (Ch. 10) Lecture 7 Outline (Ch. 10) I. Photosynthesis overview A. Purpose B. Location II. The light vs. the dark reaction III. Chloroplasts pigments A. Light absorption B. Types IV. Light reactions A. Photosystems

More information

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1 WARM-UP JAN 23/24 Mr. Stephens, IB Biology III 1 Photosynthesis & Cellular Respiration What is the connection between Photosynthesis and Cellular Respiration? Energy Production Inorganic Molecules Specialized

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

3. In what part of the chloroplast do the light-dependent reactions of photosynthesis take place? Chloroplast. Name Class Date

3. In what part of the chloroplast do the light-dependent reactions of photosynthesis take place? Chloroplast. Name Class Date The Chloroplast In plants, photosynthesis takes place in chloroplasts. Inside chloroplasts are saclike membranes called thylakoids. These thylakoids are arranged in stacks. A stack of thylakoids is called

More information

Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis?

Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis? Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis? Photosynthesis: synthesis from light The broad outline: Plants take in CO 2 and release water and O 2 Light is required

More information

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient Vocabulary Terms Photoautotroph Chemoautotroph Electromagnetic spectrum Wavelength Chloroplast Thylakoid Stroma Chlorophyll Absorption spectrum Photosynthesis Light reactions Calvin cycle Oxidation Reduction

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Ch. 4 ATP & Photosynthesis

Ch. 4 ATP & Photosynthesis Name: Biology G Vocabulary Section 4.1 Ch. 4 ATP & Photosynthesis Period: ADP Adenosine Diphosphate ATP Adenosine Triphosphate Chemosynthesis Vocabulary Section 4.2 Photosynthesis Chlorophyll Thylakoid

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis and (Aerobic) Respiration. Photosynthesis Photosynthesis and (Aerobic) Respiration These two processes have many things in common. 1. occur in organelles that seem to be descended from bacteria (endosymbiont theory): chloroplasts and mitochondria

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Photosynthesis Part I: Overview & The Light-Dependent Reactions

Photosynthesis Part I: Overview & The Light-Dependent Reactions Photosynthesis Part I: Overview & The Light-Dependent Reactions Photosynthesis: The BIG Picture Photosynthesis is the process by which PHOTOAUTOTROPHS convert the energy in SUNLIGHT into the energy stored

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Lecture Outline Overview: The Process That Feeds the Biosphere Life on Earth is solar powered. The chloroplasts of plants use a process called photosynthesis to capture light

More information

While reading these chapters, constantly ask yourself, How is this information helping me to understand how cells get energy from food?

While reading these chapters, constantly ask yourself, How is this information helping me to understand how cells get energy from food? Biology 160 Reading Guide 07: Photosynthesis NAME: This is DUE: Come prepared to share your findings with your group. ** Fill this reading guide out as you are reading the chapters. This will help you

More information

Overview of Photosynthesis

Overview of Photosynthesis OpenStax-CNX module: m44447 1 Overview of Photosynthesis OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

b. What is/are the overall function(s) of photosystem II?

b. What is/are the overall function(s) of photosystem II? Use your model and the information in Chapter 10 of Biology, 7th edition, to answer the questions. 1. The various reactions in photosynthesis are spatially segregated from each other within the chloroplast.

More information

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org Chapter 4 Photosynthesis and Cellular Respiration Worksheets (Opening image copyright by Derek Ramsey, http://en.wikipedia.org/wiki/file:monarch_butterfly_ Danaus_plexippus_Feeding_Down_3008px.jpg, and

More information

Cell. (1) This is the most basic unit of life inside of our bodies.

Cell. (1) This is the most basic unit of life inside of our bodies. Cytology Overview Cell (1) This is the most basic unit of life inside of our bodies. ATP (2) Each of our cell s requires energy in order to carry out its day to day func>ons. This is the energy all cells

More information

A level workbook. A2 level student guide. Brian Banks

A level workbook. A2 level student guide. Brian Banks A level workbook Photosynthesis A2 level student guide Brian Banks A level guide. Photosynthesis 2 Using the workbook This workbook is designed to provide the student with notes, illustrations, questions

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

The chemical energy used for most cell processes is carried by ATP.

The chemical energy used for most cell processes is carried by ATP. 4.1 CHEMICAL ENERGY AND ATP Study Guide KEY CONCEPT All cells need chemical energy. VOCABULARY ATP ADP chemosynthesis MAIN IDEA: The chemical energy used for most cell processes is carried by ATP. 1. What

More information

Chapter 10. Photosynthesis. Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

Chapter 10. Photosynthesis. Concept 10.1 Photosynthesis converts light energy to the chemical energy of food Chapter 10 Photosynthesis Lecture Outline Overview: The Process That Feeds the Biosphere Life on Earth is solar powered. The chloroplasts of plants use a process called photosynthesis to capture light

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly. Photosynthesis Light Energy transduction Chemical Energy (e.g. glucose) - Only photosynthetic organisms can do this (e.g. plants) - They are the ultimate source of chemical energy for all living organisms:

More information

Which regions of the electromagnetic spectrum do plants use to drive photosynthesis?

Which regions of the electromagnetic spectrum do plants use to drive photosynthesis? Which regions of the electromagnetic spectrum do plants use to drive photosynthesis? Green Light: The Forgotten Region of the Spectrum. In the past, plant physiologists used green light as a safe light

More information

ecture 16 Oct 7, 2005

ecture 16 Oct 7, 2005 Lecture utline ecture 16 ct 7, 005 hotosynthesis 1 I. Reactions 1. Importance of Photosynthesis to all life on earth - primary producer, generates oxygen, ancient. What needs to be accomplished in photosynthesis

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips Big picture: why are we doing this? A) photosynthesis will explain shortly, b) more generally, interaction of light

More information

Metabolism Poster Questions

Metabolism Poster Questions Metabolism Poster Questions Answer the following questions concerning respiration. 1. Consider the mitochondrial electron transport chain. a. How many hydrogen ions can be pumped for every NADH? b. How

More information

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 PLANT PHYSIOLOGY Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 The light reactions of the photosynthesis Photosynthesis inhibiting herbicides Overview 1. Photosynthesis, general

More information

A. Incorrect! No, while this statement is correct, it is not the best answer to the question.

A. Incorrect! No, while this statement is correct, it is not the best answer to the question. Biochemistry - Problem Drill 18: Photosynthesis No. 1 of 10 1. What is photosynthesis? Select the best answer. (A) Photosynthesis happens in the chloroplasts. (B) Light absorption by chlorophyll induces

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

Life on earth would be impossible without photosynthesis.

Life on earth would be impossible without photosynthesis. 10 Photosynthesis Concept Outline 10.1 What is photosynthesis? The Chloroplast as a Photosynthetic Machine. The highly organized system of membranes in chloroplasts is essential to the functioning of photosynthesis.

More information

Today is Thursday, October 29 th, 2015

Today is Thursday, October 29 th, 2015 In This Lesson: Photosynthesis (Lesson 2 of 3) Today is Thursday, October 29 th, 2015 Pre-Class: Why are plants green? (Or why are the green parts of them green, at least?) Other stuff: Grab a [small]

More information

Name: Hour: Elements & Macromolecules in Organisms

Name: Hour: Elements & Macromolecules in Organisms Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS Period Date REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. The carbon that

More information

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Algae, like your Halimeda, and plants live in very different environments, but they

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

Photosynthesis. Monday March 30. Announcements. Agenda

Photosynthesis. Monday March 30. Announcements. Agenda Announcements Monday March 30 By the end of class today, I should be able to 1) Summarize Unit 6 learning targets 2) Identify the key structures involved in photosynthesis 3) Describe the process of photosynthesis

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

AUTOTROPHES AND HETEROTROPHES

AUTOTROPHES AND HETEROTROPHES WHAT IS CLIL??? Da alcuni anni nel Liceo Linguistico Da Vinci di Alba viene sperimentata la metodologia CLIL (Content and Language Integrated Learning), anticipando quanto previsto dalla recente riforma

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information