Recovery of Elemental Copper from Copper (II) Nitrate

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Recovery of Elemental Copper from Copper (II) Nitrate"

Transcription

1 Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform a series of chemical reactions in order to recycle the element copper - determine the percent recovery of elemental copper How good and accurate a chemist are you? Given a solution of Cu(NO 3 ) 2, what percentage of elemental copper can you recover from the original solution? Materials: 1 M copper (II) nitrate 3 M hydrochloric acid 2 M sodium hydroxide 600 ml beaker 250 or 400 ml beaker Ice water Distilled water Stirring rod Bunsen burner Ring stand Al wire, 18 gauge or heavier Graduated cylinder ph paper Watch glass, 90 mm Goggles Acetone Procedures: Conversion 1: THIS IS ALREADY COMPLETED FOR YOU!!! Copper reacts with nitric acid to produce a brownish-orange gas called nitrogen dioxide. The blue color of the solution is characteristic of many copper compounds dissolved in water. You will be provided with 25 ml of 1 M solution of copper (II) nitrate. This solution contains 1.6 grams of copper. Since the brown nitrogen dioxide produced by the reaction is toxic, I have prepared this solution in advance for you. Conversion 2: CONVERTING COPPER (II) NITRATE TO COPPER (II) HYDROXIDE 1. Obtain 25 ml of copper (II) nitrate 2. Test the copper (II) nitrate solution with ph paper. DO NOT DIP THE PAPER INTO THE SOLUTION!!! Instead, take your clean stirring rod and dip into the solution. Carefully touch the ph paper with the tip of the stirring rod. Record the ph results in your data.

2 3. Obtain 25 ml of 2 M sodium hydroxide and also test it with ph paper using the same method as stated above. Remember that a ph less than 7 indicates an acid ph greater than 7 indicates a base ph equal to 7 indicates a neutral solution. Record your results. 4. Fill your 600 ml beaker one third full of ice water. Carefully place your beaker containing the copper (II) nitrate solution inside the 600 ml beaker so that the beaker floats in the water. 5. Slowly and cautiously add small portions of the sodium hydroxide solution to your copper (II) nitrate solution in the smaller beaker. Continuously mix the solution with a gentle swirling motion. Proceed until all 25 ml of the sodium hydroxide solution have been added. This neutralization process produces considerable heat, so stir well and add the sodium hydroxide solution SLOWLY! 6. Test the resulting solution with ph paper. If the test paper does not match the original color of the basic sodium hydroxide, add more sodium hydroxide to the 400 ml beaker while mixing until the color matches. The pale blue solid, termed a precipitate, is copper (II) hydroxide. The liquid which remains is sodium nitrate. Record your results. Conversion 3: CONVERTING COPPER (II) HYDROXIDE TO COPPER (II) OXIDE 1. Add 50 ml of distilled water to the beaker containing the copper (II) hydroxide precipitate. Heat to a gentle boil and stir until all the material is converted to a brown-black substance. This substance is copper (II) oxide. 2. Remove the stirring rod from the beaker. Let the beaker and the solution cool for 5 minutes. 3. Pour off the extra liquid (don t lose any solid!!) Wash the precipitate remaining in the beaker by adding 100 ml of distilled water and stirring gently. Let the precipitate settle for another 5 minutes and pour off the wash water, again leaving all solid particles in the beaker. This process is called decanting. Conversion 4: CONVERTING COPPER (II) OXIDE TO COPPER (II) CHLORIDE 1. Add 25 ml of 3 M hydrochloric acid to the black copper (II) oxide in the beaker. Stir gently or cover with a watch glass and swirl gently. The oxide will dissolve in a minute or two leaving a clear, aqua blue solution (the result of the formation of copper (II) chloride).

3 Conversion 5: CONVERTING COPPER (II) CHLORIDE BACK TO COPPER METAL 1. Add at least 1.5 grams of aluminum wire (~ 75 cm) to the copper (II) chloride solution. (Cut the wire and bend it in half; bend it again until it is a bit longer than a stirring rod. The bend it to form an L shape that will fit in the beaker so that a handle remains above the solution level.) 2. Immediately cover the beaker with a watch glass and allow it to stand. Watch what happens and record your observations. 3. As the aluminum wire grow copper hair, shake the wire gently to dislodge the copper. Cover and let the beaker stand overnight. Recovering Elemental Copper 1. Heat 200 ml of distilled water to a boil. 2. Remove any remaining aluminum wire from the beaker; with forceps remove any small bits of wire mixed in with the solid copper. 3. Decant and discard the clear liquid. 4. Wash the copper in the beaker twice with 50 ml portions of the hot distilled water stir and let settle decanting the wash water each time. Try not to lose any of the solid copper. 5. Weigh a clean watch glass to the nearest 0.01 g. Record the mass. Swirl the copper and remaining water in the beaker and quickly pour it onto the watch glass. 6. With a distilled water wash bottle, gently wash any remaining copper from the beaker into the watch glass. Allow the copper to settle and carefully pour off the excess water from the watch glass. CAUTION: Acetone is extremely flammable. For the next step of the experiment, be sure all burner flames are extinguished in the lab before proceeding! 7. Wash the copper on the watch glass with a small quantity of acetone (the amount will depend upon the size of the watch glass). 8. Pour off the acetone into a small beaker, being very careful not to lose acetone as before.

4 9. Wash the copper with a second portion of acetone and pour off the acetone as before. 10. After the second wash, allow the copper and watch glass to stand overnight in the fume hood until dry.

5 Recovery of Elemental Copper Report Sheet 1. Initial mass of copper (given) 2. Mass of copper and watch glass 3. Mass of watch glass 4. Mass of recovered copper 5. Percent yield (show calcs!) Mass of recoverd copper x 100 Initial mass of copper 6. Write and balance the formula equation for Conversion #1: copper + nitric acid copper (II) nitrate + nitrogen dioxide + water 7. Write and balance the formula equation for Conversion #2: copper (II) nitrate + sodium hydroxide copper (II) hydroxide + sodium nitrate 8. Describe the color of the ph paper when in contact with: a. copper (II) nitrate solution b. sodium hydroxide solution 9. Write and balance the formula equation for Conversion #3: Δ copper (II) hydroxide copper (II) oxide + water

6 10. Write and balance the formula equation for Conversion #4: copper (II) oxide + hydrochloric acid copper (II) chloride + water 11. Write and balance the formula equation for Conversion #5: copper (II) chloride + aluminum aluminum chloride + copper 12. Describe the color of your recovered copper. 13. In a perfect experiment, your percent yield would equal 100%. Hypothetically, what type(s) of error would result in a. a percent yield of less than 100% b. a percent yield of greater than 100%

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle

Austin Peay State University Department of Chemistry CHEM 1111. Copper Cycle Cautions Nitric acid and sulfuric acid are toxic and oxidizers and may burn your skin. Nitrogen dioxide gas produced is hazardous if inhaled. Sodium hydroxide is toxic and corrosive and will cause burns

More information

Chemistry 1215 Experiment #9 Copper and its Compounds

Chemistry 1215 Experiment #9 Copper and its Compounds Chemistry 1215 Experiment #9 Copper and its Compounds Objective The objective of this experiment is to take a piece of copper as efficiently as possible through a series of chemical reactions. The final

More information

This acid is strong. Be careful.

This acid is strong. Be careful. Copper Conversions Lab Name Introduction In this multi-day lab you will start with a sample of copper metal and run several successive reactions which produce different copper compounds. The last reaction

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

THREE CHEMICAL REACTIONS

THREE CHEMICAL REACTIONS THREE CHEMICAL REACTIONS 1 NOTE: You are required to view the podcast entitled Decanting and Suction Filtration before coming to lab this week. Go to http://podcast.montgomerycollege.edu/podcast.php?rcdid=172

More information

STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate

STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate STOICHIOMETRY: The Reaction of Iron with Copper (II) Sulfate Introduction In this experiment we will use stoichiometric principles to deduce the appropriate equation for the reaction between metallic iron

More information

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction

General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not

More information

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE

DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE Chemistry 111 Lab: Percent Composition Page D-3 DETERMINATION OF THE PERCENT COMPOSITION OF A MIXTURE In this experiment you are to determine the composition of a mixture containing unknown proportions

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

EXPERIMENT 12: Empirical Formula of a Compound

EXPERIMENT 12: Empirical Formula of a Compound EXPERIMENT 12: Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

PHYSICAL AND CHEMICAL CHANGE EXPERIMENT 1

PHYSICAL AND CHEMICAL CHANGE EXPERIMENT 1 PURPOSE To investigate the criteria used to distinguish between physical and chemical changes in matter. 1 DEFINITIONS Chemical property, physical property, chemical change, physical change, conservation

More information

Physical and Chemical Properties

Physical and Chemical Properties Physical and Chemical Properties Introduction Matter can be classified in different ways using physical and chemical properties. Physical properties include color, odor, density, hardness, structure, solubility,

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

DETERMINATION of the EMPIRICAL FORMULA

DETERMINATION of the EMPIRICAL FORMULA DETERMINATION of the EMPIRICAL FORMULA One of the fundamental statements of the atomic theory is that elements combine in simple whole number ratios. This observation gives support to the theory of atoms,

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

What is the Percent Copper in a Compound?

What is the Percent Copper in a Compound? Lab 9 Name What is the Percent Copper in a Compound? Pre-Lab Assignment Complete this pre-lab on this sheet. This written pre-lab is worth 15% (3 points) of your lab report grade and must be initialed

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

Option 2 will react tin with nitric acid to form a tin nitrate then the compound will be decomposed, by heating, to an oxide of tin.

Option 2 will react tin with nitric acid to form a tin nitrate then the compound will be decomposed, by heating, to an oxide of tin. EMPIRICAL FORMULA OF A COMPOUND 2009, 1986 by David A. Katz. All Rights reserved. Reproduction permitted for education use provided original copyright is included. OBJECTIVE In this experiment, a compound

More information

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components.

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components. Water Lab I. Distillation Hypothesis: Water can be purified by distillation. Objective: To distill samples of water that contains volatile and nonvolatile components. Materials and Equipment: Sodium chloride,

More information

What is a Chemical Reaction?

What is a Chemical Reaction? Lab 8 Name What is a Chemical Reaction? Macroscopic Indications and Symbolic Representations Pre-Lab Assignment This written pre-lab is worth 25% (5 POINTS) of your lab report grade and must be turned

More information

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996, 1979 by David A. Katz. All rights reserved

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996, 1979 by David A. Katz. All rights reserved AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996, 1979 by David A. Katz. All rights reserved INTRODUCTION One of the goals of the ancient alchemists was to convert base metals into gold.

More information

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved

AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved AN EXPERIMENT IN ALCHEMY: COPPER TO SILVER TO GOLD 2005, 2000, 1996 by David A. Katz. All rights reserved INTRODUCTION One of the goals of the ancient alchemists was to convert base metals into gold. Although

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Lab 1: Gravimetric Analysis of a Metal Carbonate

Lab 1: Gravimetric Analysis of a Metal Carbonate AP Chemistry Lab Date: Chemist: Lab Write Up Due Date: Lab 1: Gravimetric Analysis of a Metal Carbonate BACKGROUND How do chemists determine the identity of a compound? A large variety of analytical techniques

More information

Lab #1: Determining the Empirical Formula of a Compound

Lab #1: Determining the Empirical Formula of a Compound Ms. Sonderleiter AP Chemistry Name: Date: Lab #1: Determining the Empirical Formula of a Compound Background: How did early chemists ever manage to determine the chemical formulas of compounds? What kind

More information

LAB SEVEN. Carbonate to Halide Conversion

LAB SEVEN. Carbonate to Halide Conversion Name Lab Partner(s) Section Date: Carbonate to Halide Conversion Objective The theoretical yield of the reaction product and the ratio of products to reactants will be predicted using the Law of Conservation

More information

Synthesis of Alum from Aluminum

Synthesis of Alum from Aluminum SYNTHESIS OF ALUM FROM ALUMINUM 53 OBJECTIVES Synthesis of Alum from Aluminum Become more familiar with single-replacement redox reactions Practice mass and volume measurement techniques Calculate the

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds

Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Chemical Tests for Alkanes, Alkenes, and Aromatic Compounds Introduction There are four types of hydrocarbons: alkanes, alkenes, alkynes, and aromatic compounds, each type with different chemical properties.

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 1. What is a hydrocarbon? PREPARATION FOR CHEMISTRY LAB: COMBUSTION 2. Give an example of a combustion reaction? 3. What products form in the complete combustion of a hydrocarbon? Are these products

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

CSUS Department of Chemistry Experiment 4 Chem.1A

CSUS Department of Chemistry Experiment 4 Chem.1A Name: Section: Experiment 4: Synthesis of Alum Pre-laboratory Assignment (Read through the experiment before starting!) 1. a) What are the strong acid and strong base used in this synthesis? b) What should

More information

1 Forming New Substances

1 Forming New Substances CHAPTER 2 1 Forming New Substances SECTION Chemical Reactions BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a chemical reaction? What can you tell that

More information

Stoichiometry: Mass-mass and percent yield in a precipitate reaction

Stoichiometry: Mass-mass and percent yield in a precipitate reaction Stoichiometry: Mass-mass and percent yield in a precipitate reaction Prelab Assignment: You will complete the Title, Purpose, Background information, Storyboard, and BLANK data table portion of your lab

More information

CHM 130 Analysis of Copper Ore for Cu Content

CHM 130 Analysis of Copper Ore for Cu Content CHM 130 Analysis of Copper Ore for Cu Content Introduction: Copper, in various forms, has been mined from the Earth ever since mankind started using metal tools. Early Egyptian civilizations used bronze,

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Lab #13: Qualitative Analysis of Cations and Anions

Lab #13: Qualitative Analysis of Cations and Anions Lab #13: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis

More information

The Chemistry of Dyes Part I: The Synthesis of Indigo Dye

The Chemistry of Dyes Part I: The Synthesis of Indigo Dye The Chemistry of Dyes Part I: The Synthesis of Indigo Dye Name: Period: PURPOSE: To synthesize indigo dye in preparation for understanding how and why it dyes fabrics THEORY: Organic Chemistry is the study

More information

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate: Engineeringfragrance make a deodorant practical activity 2 student instructions page 1 of 5 chemical compounds The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all

More information

ALUM FROM WASTE ALUMINUM CANS 2000 by David A. Katz. All rights reserved.

ALUM FROM WASTE ALUMINUM CANS 2000 by David A. Katz. All rights reserved. ALUM FROM WASTE ALUMINUM CANS 2000 by David A. Katz. All rights reserved. INTRODUCTION Modern beverage containers are usually composed of either aluminum, in the form of aluminum cans, or polyethylene

More information

Acid Base Titrations

Acid Base Titrations Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

More information

1. Qualitative Analysis of Chromium, Iron, and Copper

1. Qualitative Analysis of Chromium, Iron, and Copper 1. Qualitative Analysis of Chromium, Iron, and Copper Introduction We have used copper and iron as basic materials since the Bronze and Iron Ages, but our extensive use of chromium began only after the

More information

Refrigerant Gases. Supplemental Experiment 1

Refrigerant Gases. Supplemental Experiment 1 Supplemental Experiment 1 Refrigerant Gases Warning: do not do this experiment if you have a sensitivity to sulfites or have an asthmatic condition! Sulfites have been shown to cause severe asthma attacks

More information

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter. Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

More information

Category 5 points 4 points 3 points 2 points 1 point 0 points Participation Participated fully. Mostly on-task. Safety reminders needed.

Category 5 points 4 points 3 points 2 points 1 point 0 points Participation Participated fully. Mostly on-task. Safety reminders needed. Lab Report Rubric Category 5 points 4 points 3 points 2 points 1 point 0 points Participation Participated fully Mostly on-task Minimal and Safety participation Prelab /10 Observations Data Units & Significant

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Synthesis of a Coordination Compound Containing Iron and Analysis of this Compound Using Redox Methods Prelab

Synthesis of a Coordination Compound Containing Iron and Analysis of this Compound Using Redox Methods Prelab Synthesis of a Coordination Compound Containing Iron and Analysis of this Compound Using Redox Methods Prelab Name Total /10 NOTE: AT THIS POINT YOU WILL ANSWER ALL PRELAB QUESTIONS IN YOUR CARBON COPY

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE

Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE Purpose Experiment 7 GRAVIMETRIC ANALYSIS OF A TWO COMPONENT MIXTURE The purpose of the experiment is to determine the percent composition by mass of a two component mixture made up of NaHCO 3 and Na 2

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic

More information

Carbonate to Halide Conversion

Carbonate to Halide Conversion Conversion Objective The theoretical yield of the reaction product and the ratio of products to reactants will be predicted using the Law of Conservation of Matter and the Law of Definite Composition.

More information

Chemistry 151 Last updated Dec Lab 6: Percent Composition and Empirical formulas

Chemistry 151 Last updated Dec Lab 6: Percent Composition and Empirical formulas Chemistry 151 Last updated Dec. 2012 Lab 6: Percent Composition and Empirical formulas Introduction In this lab, you will experimentally determine the percent composition of a copper chloride, which you

More information

Properties of Matter and Density

Properties of Matter and Density Cautions Flames will be used and some of the chemicals will have odors and may stain your hands or clothes if you come into direct contact with them. Purpose In this experiment you will characterize common

More information

Determination of Molecular Mass by Freezing Point Depression

Determination of Molecular Mass by Freezing Point Depression Determination of Molecular Mass by Freezing Point Depression Objectives: To determine the molecular mass of an unknown solid using the colligative property of freezing point depression. Background: When

More information

Experiment 7: Titration of an Antacid

Experiment 7: Titration of an Antacid 1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

More information

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several

More information

Properties of Acids and Bases

Properties of Acids and Bases Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What

More information

4-Part Mystery Lab Synthesis, Purification, Analysis, Identification and Yield. Starry starry night

4-Part Mystery Lab Synthesis, Purification, Analysis, Identification and Yield. Starry starry night 4-Part Mystery Lab Synthesis, Purification, Analysis, Identification and Yield Starry starry night The moon lights the star-filled sky Suddenly a brilliant green fireball appears, streaking through the

More information

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS Experiment 10B DETERMINING THE MOLAR MASS OF A GAS FV 3-31-16 MATERIALS: Dry 250 ml Erlenmeyer flask, piece of foil (~3 x 3 ), 800 ml beaker, 500 ml graduated cylinder, iron ring, ring stand, wire gauze,

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

ANALYSIS OF WATER FOR CHLORIDE AND SULFATE IONS

ANALYSIS OF WATER FOR CHLORIDE AND SULFATE IONS Test Procedure for ANALYSIS OF WATER FOR CHLORIDE AND SULFATE IONS TxDOT Designation: Tex-619-J Effective Date: August 2005 1. SCOPE 1.1 Use this method to analyze water for chloride and sulfate ions to

More information

Determination of an Empirical Formula and % Composition

Determination of an Empirical Formula and % Composition Chem 110 Lab Clark College Determination of an Empirical Formula and % Composition Percent composition will be discussed in your text, lecture and in lab. This concept is often used to determine how many

More information

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal.

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal. Name Lab Partner(s) Section Date Specific Heat of a Metal Objective In this experiment you will use calorimetry to determine the specific heat of a metal. Introduction When a substance is heated, the motion

More information

Qualitative Analysis Identification of Some Important Anions and Cations

Qualitative Analysis Identification of Some Important Anions and Cations Qualitative Analysis Identification of Some Important Anions and Cations Qualitative analysis is the testing of a sample of matter to determine its composition. Qualitative analysis, applied by scientists

More information

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14

STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 STANDARDIZATION OF A SODIUM HYDROXIDE SOLUTION EXPERIMENT 14 OBJECTIVE The objective of this experiment will be the standardization of sodium hydroxide using potassium hydrogen phthalate by the titration

More information

Purification by Recrystallization

Purification by Recrystallization Experiment 2 Purification by Recrystallization Objectives 1) To be able to select an appropriate recrystallizing solvent. 2) To separate and purify acetanilide by recrystallization. 3) To compare the melting

More information

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.

Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide. The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By

More information

Types of Reactions: The Copper cycle

Types of Reactions: The Copper cycle Green Chemistry Module Level: High School Regents Types of Reactions: The Copper cycle Laboratory Experiment Created By: Dr. Martin Walker, State University of New York at Potsdam Module Contributors:

More information

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES: Part TWO: Sulfur Dioxide and Nitrogen Dioxide

PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES: Part TWO: Sulfur Dioxide and Nitrogen Dioxide PREPARATION AND PROPERTIES OF ATMOSPHERIC GASES: Part TWO: Sulfur Dioxide and Nitrogen Dioxide INTRODUCTION Acid Rain Sulfur dioxide (SO 2 ) plays a large role in acid rain. The following reaction takes

More information

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction

12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction 12BL Experiment 10: Friedel Crafts Acylation An EAS Reaction Safety: Proper lab goggles/glasses must be worn (even over prescription glasses). WEAR GLOVES! Acetic anhydride is corrosive and a lachrymator

More information

Experiment 4: Synthesis of Alum from Scrap Aluminum

Experiment 4: Synthesis of Alum from Scrap Aluminum 1 Experiment 4: Synthesis of Alum from Scrap Aluminum Objective: In this experiment, you will be converting the aluminum metal from a beverage can into the chemical compound potassium aluminum sulfate,

More information

OXIDATION-REDUCTION TITRATIONS-Permanganometry

OXIDATION-REDUCTION TITRATIONS-Permanganometry Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO 4, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant

More information

5. Determine the limiting reagent and calculate the theoretical yield of a reaction. 6. Calculate percent yield.

5. Determine the limiting reagent and calculate the theoretical yield of a reaction. 6. Calculate percent yield. Stoichiometry The term "stoichiometry" refers to the quantitative relationships between reactants and products in chemical reactions. In a balanced chemical equation, the coefficients (or mole ratios)

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical

More information

Western Carolina University. Prelaboratory Exercise Write out the answers on a separate sheet of paper and turn in the paper at the start of lab.

Western Carolina University. Prelaboratory Exercise Write out the answers on a separate sheet of paper and turn in the paper at the start of lab. Name Chemistry 132 Lab 09 Lab Section Chemical Reactions Part II Prelaboratory Exercise Write out the answers on a separate sheet of paper and turn in the paper at the start of lab. 1. Define the terms

More information

The Reaction of Calcium Chloride with Carbonate Salts

The Reaction of Calcium Chloride with Carbonate Salts The Reaction of Calcium Chloride with Carbonate Salts PRE-LAB ASSIGNMENT: Reading: Chapter 3 & Chapter 4, sections 1-3 in Brown, LeMay, Bursten, & Murphy. 1. What product(s) might be expected to form when

More information

Expt. 4: ANALYSIS FOR SODIUM CARBONATE

Expt. 4: ANALYSIS FOR SODIUM CARBONATE Expt. 4: ANALYSIS FOR SODIUM CARBONATE Introduction In this experiment, a solution of hydrochloric acid is prepared, standardized against pure sodium carbonate, and used to determine the percentage of

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12

SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12 Physical Science 14 SEPARATION OF A MIXTURE OF SAND AND SALT Experiment 12 INTRODUCTION: Most of the materials we encounter in everyday life are not pure substances. Materials such as cement, wood, soil,

More information

Recrystallization Introduction Solubility

Recrystallization Introduction Solubility 1 Recrystallization Introduction Solubility Most compounds are more soluble in a given solvent at higher temperatures. As you can see from the data in the table below, the solubilities in water of salt

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

Good Hope School Integrated Science New S.1 Summer Work

Good Hope School Integrated Science New S.1 Summer Work Good Hope School Integrated Science New S.1 Summer Work Section 1: Basic vocabulary in Secondary Science The following lists some English terms used in Secondary Science. analyze demonstrate laboratory

More information

21 st Century Chemistry Structured Question in Topic 1 Planet Earth Unit 1-4

21 st Century Chemistry Structured Question in Topic 1 Planet Earth Unit 1-4 21 st Century Chemistry Structured Question in Topic 1 Planet Earth Unit 1-4 1. Air consists of oxygen and other substances. (a) Is oxygen an element or a compound? Explain briefly. It is an element. [1]

More information

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved David A. Katz Chemist, Educator, Science Communicator, and Consultant 133 N. Desert Stream Dr., Tucson, AZ 85745 Voice/Fax: 520-624-2207

More information

IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests

IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests IDENTIFICATION OF AN UNKNOWN ORGANIC COMPOUND Classification Tests In this experiment you will attempt to identify an organic unknown from a selected group of compounds from the class of alcohols, aldehydes,

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

Experiment 37. Stoichiometry. Introduction. Materials (for each lab team of 2 students)

Experiment 37. Stoichiometry. Introduction. Materials (for each lab team of 2 students) Eperiment 37 Stoichiometry Introduction Intent Students will determine the stoichiometry of a reaction between iron filings and copper(ii) sulfate. The students will determine the equation for the reaction

More information

How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined?

How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined? Lab 2 Name How Can the Percent Composition of a Salt, Sand and Iron Mixture be Determined? Pre-Lab Assignment This written pre-lab is worth 15% (3 points) of your lab report grade and must be turned in

More information

Titration of Hydrochloric Acid with Sodium Hydroxide

Titration of Hydrochloric Acid with Sodium Hydroxide Cautions: Hydrochloric acid solution is a strong acid. Sodium hydroxide solution is a strong base. Both are harmful to skin and eyes. Affected areas should be washed thoroughly with copious amounts of

More information

Chapter 6, Lesson 3: Forming a Precipitate

Chapter 6, Lesson 3: Forming a Precipitate Chapter 6, Lesson 3: Forming a Precipitate Key Concepts The ions or molecules in two solutions can react to form a solid. A solid formed from two solutions is called a precipitate. Summary Students will

More information

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound

Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and

More information