Special Purpose Diodes
|
|
|
- Shanon Garrett
- 9 years ago
- Views:
Transcription
1 Special Purpose Diodes 1
2 Contents Zener Diode Schottky Diode Light Emitting Diode(LED) Photodiode Types Standard Signal Diode Photo diode Zener Diode Tunnel Diode Varicap Schottky Diode LED-Light Emitting Diode TVS-Transient Voltage Suppression Example application Reverse polarity protection. Rectifier Light Sensing Voltage Regulation Oscillators (microwaves) Voltage-controlled oscillators Power Applications Light signalization, lighting Over voltage protection 2
3 Zener Diode A Zener diode is a type of diode that permits current not only in the forward direction like a normal diode, but also in the reverse direction if the voltage is larger than the breakdown voltage known as "Zener knee voltage" or "Zener voltage." 3
4 Basic Function The basic function of zener diode is to maintain a specific voltage across its terminals within given limits of line or load change. Typically it is used for providing a stable reference voltage for use in power supplies and other equipment. This particular zener circuit will work to maintain 10 V across the load. 4
5 Normal Diode vs Zener Diode 5
6 The zener diode s breakdown characteristics are determined by the doping process. Low voltage zeners less than 5V operate in the zener breakdown range. Those designed to operate more than 5 V operate mostly in avalanche breakdown range. Zeners are available with voltage breakdowns of 1.8 V to 200 V. This curve illustrates the minimum and maximum ranges of current operation that the zener can effectively maintain its voltage. 6
7 6 Reverse bias in Volts V I Reverse current in ma V The voltage across a conducting zener is relatively constant. 7
8 Equivalent Circuit 8
9 Zener Diode applications A zener diode is used on reverse polarization, as a 1. voltage limiter 2. basic (shunt) regulator 3. For protection against voltage peaks. 9
10 Zener regulated power supply preliminary schematic. 10
11 11
12 Example (Basic Regulator) Let's suppose that we have an input voltage of 12 Volt, and we want to limit the output voltage to 7.5 Volt. Then we choose a 1N V zener diode. On the datasheet given, we can see that I ZT = 34mA, which is the minimum current needed for reaching V z, and I ZM =121 ma is the maximum admisible current. 12
13 A good working point is I Z =80 ma, near the middle of the range. Note. A zener diode is used as a reference or regulator only on low current simple applications. 13
14 Zener Limiting Zener diodes can used for limiting just as normal diodes. Recall in previous chapter studies about limiters. The difference to consider for a zener limiter is its zener breakdown characteristics. 14
15 Example(Zener Limiting) 15
16 Schottky Diodes Special Features Low forward voltage drop Fast switching action 16
17 Applications Switching Power Supply Voltage clamping Discharge protection 17
18 Comparing Diodes Reference: 18
19 Varicap a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode which has a variable capacitance that is a function of the voltage impressed on its terminals. 19
20 Light Emitting Diode The light-emitting diode (LED) emits photons as visible light. Its purpose is for indication and other intelligible displays. Various impurities are added during the doping process to vary the color output. 20
21 21
22 LED driving circuit Power supply V S R S V D LED I S = V S - V D R S The typical voltage drop for most LEDs is from 1.5 to 3.2 V. 22
23 LED driving circuit Example: Source Voltage = 9 volts Voltage Drop = 3.1 volts typical for a blue or white LED Desired Current = 13 milliamps So the resistor we need is: (9 3.1) / ( 13 / 1000 ) = 452 ohms so we will use a 470 Ω resistor. The forward voltage in the table is value for a typical forward current of 20mA. 23
24 Example Design the circuit to drive standard RED color LED from 5 Vdc supply. This LED requires 20 ma to generate proper brightness. 24
25 7 Segment LED 25
26 Photodiodes 26
27 The photodiode is used to vary current by the amount of light that strikes it. It is placed in the circuit in reverse bias. As with most diodes when in reverse bias, no current flows, but when light strikes the exposed junction through a tiny window, reverse current increases proportional to light intensity. 27
28 I-V characteristic In the 1st quadrant, the device acts as a photovoltaic detector. It produces a voltage proportional to the incident light intensity. In the 3rd quadrant, when a reverse voltage is applied, it acts as a photoconductive detector. In the dark, the reverse current(dark current, I DARK ) is very small. When light strikes the diode, there is little increase in the forward current, but the reverse current can increase significantly. The current is proportional to the intensity of the incident light. 28
29 Using a photodiode in photoconductive mode i A Reverse Current 29
30 Operation 30
31 IR LED and receiver IR, or infrared, communication is a common, inexpensive, and easy to use wireless communication technology. IR light is very similar to visible light, except that it has a slightlty longer wavelength. This means IR is undetectable to the human eye - perfect for wireless communication. An IR transmitter contains an LED that emits infrared light. Thus the name. The receiver contains either a photodiode or a phototransistor (usually the latter). The carrier frequency for the vast majority of IR remote controls is 38 KHz or something near. 31
32 Basic schematics of the IR emitter and IR detector circuits. 32
33 Counting System 33
34 Symbols 34
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
Special-Purpose Diodes
7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation
Diodes and Transistors
Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)
A Trigger Circuit for the 555 Timer IC Scope
Scope This document describes a trigger circuit that allows the 555 timer IC to produce a voltage pulse when triggered with a voltage that is brought low and held low for an arbitrary amount of time (even
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
Experiment 2 Diode Applications: Rectifiers
ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness
AC Transport constant current vs. low impedance modes
Application Note 184-42 AC Transport constant current vs. low impedance modes The AC Transport option offers the user the ability to put the current source in a low output impedance mode. This mode is
Properties of electrical signals
DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier
RGB Wall Washer Using ILD4035
ILD4035 Application Note AN216 Revision: 1.0 Date: RF and Protection Devices Edition Published by Infineon Technologies AG 81726 Munich, Germany 2010 Infineon Technologies AG All Rights Reserved. Legal
Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf
EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section
ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)
3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current
Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications...
Diodes Contents 1 Introduction 1 1.1 Diode equation................................... 2 1.1.1 Reverse Bias................................ 2 1.1.2 Forward Bias................................ 2 1.2 General
1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver
Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,
Y.LIN ELECTRONICS CO.,LTD.
Features Current transfer ratio (CTR 50~600% at I F =5mA, V CE =5V) High isolation voltage between input and output (Viso=5000 V rms ) Creepage distance >7.62 mm Operating temperature up to +110 C Compact
Operating Manual Ver.1.1
Silicon, Zener, LED Diode Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
Basics of LED drivers. Functions Requirements Selection
Andreas Hagemeyer Master of Science 05.2015 This article is meant to provide the reader with basic knowledge about the functional principle of LED luminaires, to explain the requirements for an LED driver
Eliminating Parasitic Oscillation between Parallel MOSFETs
Eliminating Parasitic Oscillation between Parallel MOSFETs Based in part on a paper presented at Power Electronics Technology 2003 conference titled Issues with Paralleling MOSFETs and IGBTs by Jonathan
Chip Diode Application Note
Chip Diode Application Note Introduction The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components.
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
IR Communication a learn.sparkfun.com tutorial
IR Communication a learn.sparkfun.com tutorial Available online at: http://sfe.io/t33 Contents Getting Started IR Communication Basics Hardware Setup Receiving IR Example Transmitting IR Example Resources
Lab 1 Diode Characteristics
Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.
TRANSISTOR/DIODE TESTER
TRANSISTOR/DIODE TESTER MODEL DT-100 Lesson Manual ELENCO Copyright 2012, 1988 REV-G 753115 Elenco Electronics, Inc. Revised 2012 FEATURES Diode Mode: 1. Checks all types of diodes - germanium, silicon,
Fundamentals of Signature Analysis
Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
Study Guide for the Electronics Technician Pre-Employment Examination
Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology
Amplified High Speed Fiber Photodetectors
Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 [email protected] www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified
LEP 4.4.07. Rectifier circuits
Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple
Semiconductor I. Semiconductors. germanium. silicon
Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,
Regulated D.C. Power Supply
442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator
Theory of Transistors and Other Semiconductor Devices
Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per
0.9V Boost Driver PR4403 for White LEDs in Solar Lamps
0.9 Boost Driver for White LEDs in Solar Lamps The is a single cell step-up converter for white LEDs operating from a single rechargeable cell of 1.2 supply voltage down to less than 0.9. An adjustable
THE FIBRE-OPTICS TRAINER MANUAL
THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER MANUAL THE FIBRE-OPTICS TRAINER CONTAINS: TRANSMITTER UNIT RECEIVER UNIT 5m. LENGTH OF TERMINATED OPTICAL CABLE INSTRUCTION MANUAL (THIS BOOK) CARRYING
Photodiode/Phototransistor Application Circuit < E V3 I P I V OUT E V2. Figure 1. Fundamental Circuit of Photodiode (Without Bias)
Application Note Photodiode/Phototransistor Application Circuit FUNDAMENTAL PHOTODIODE CIRCUITS Figures 1 and 2 show the fundamental photodiode circuits. The circuit shown in Figure 1 transforms a photocurrent
Rectifier circuits & DC power supplies
Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
Amplifier Teaching Aid
Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
Current Loop Application Note 1495
Current Loop Application Note Document No. CLAN1495 International Headquarter B&B Electronics Mfg. Co. Inc. 707 Dayton Road -- P.O. Box 1040 -- Ottawa, IL 61350 USA Phone (815) 433-5100 -- General Fax
Solar Energy Discovery Lab
Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
Ultraviolet selective thin film sensor TW30SX
Features of the UV Photodiode Broad band UVA UVB spectral response (for UVC please apply SG01S) Hermetically sealed TO metal housing and UV-glass window. High photocurrent, even if illuminated with very
Analog Optical Isolators VACTROLS
Analog Optical Isolators VACTROLS What Are Analog Optical Isolators? PerkinElmer Optoelectronics has been a leading manufacturer of analog optical isolators for over twenty years and makes a broad range
SEMICONDUCTOR APPLICATION NOTE
SEMICONDUCTOR APPLICATION NOTE Order this document by AN7A/D Prepared by: Francis Christian INTRODUCTION The optical coupler is a venerable device that offers the design engineer new freedoms in designing
Application of Optical Sensors
Optical Sensors - Reflective Vishay is a leading manufacturer of optical sensors. These sensors integrate an infrared emitter and photo detector in a single package. The most common types of optical sensors
Chapter 3. Diodes and Applications. Introduction [5], [6]
Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero
Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This
LAB IV. SILICON DIODE CHARACTERISTICS
LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize
LM1596 LM1496 Balanced Modulator-Demodulator
LM1596 LM1496 Balanced Modulator-Demodulator General Description The LM1596 LM1496 are doubled balanced modulator-demodulators which produce an output voltage proportional to the product of an input (signal)
Silicon PIN Photodiode
VEMD940F Silicon PIN Photodiode DESCRIPTION VEMD940F is a high speed and high sensitive PIN photodiode in a miniature side looking, surface mount package (SMD) with daylight blocking filter. Filter is
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
THE BASICS OF PLL FREQUENCY SYNTHESIS
Supplementary Reading for 27 - Oscillators Ron Bertrand VK2DQ http://www.radioelectronicschool.com THE BASICS OF PLL FREQUENCY SYNTHESIS The phase locked loop (PLL) method of frequency synthesis is now
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
SFH Transmitter & Receiver
SFH Transmitter & Receiver 2003-01-00 Page 1 2003-01-00 Page 2 THE PARTNER FOR OPTICAL DATA TRANSMISSION 2003-01-00 Page 3 THE PARTNER FOR OPTICAL DATA TRANSMISSION PLASTIC fiberoptic transmitterdiodes
1Meg. 11.A. Resistive Circuit Nodal Analysis
11. Creating and Using Netlists PART 11 Creating and Using Netlists For this entire text, we have created circuits schematically and then run simulations. Behind the scenes, Capture generates a netlist
(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier
(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier
Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module
Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Fundamental Characteristics of Thyristors
A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
Diodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
Features. Applications. Truth Table. Close
ASSR-8, ASSR-9 and ASSR-8 Form A, Solid State Relay (Photo MOSFET) (0V/0.A/0Ω) Data Sheet Description The ASSR-XX Series consists of an AlGaAs infrared light-emitting diode (LED) input stage optically
conventional system operation
conventional system operation detection line operation Conventional detection systems normally operate on a 24VDC line. In the standby condition, the detectors will draw a low current, typically less than
2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS
NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated
Microcontroller Display Interfacing Techniques
Display Interfacing Techniques Document Revision: 1.01 Date: September 13, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: [email protected] Web:
Silicon PIN Photodiode
Silicon PIN Photodiode DESCRIPTION 94 8583 BPW34 is a PIN photodiode with high speed and high radiant sensitivity in miniature, flat, top view, clear plastic package. It is sensitive to visible and near
Silicon PIN Photodiode
Silicon PIN Photodiode DESCRIPTION 94 8632 is a PIN photodiode with high speed and high radiant sensitivity in a clear, side view plastic package. It is sensitive to visible and near infrared radiation.
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
How To Use A Kodak Kodacom 2.5D (Kodak) With A Power Supply (Power Supply) And Power Supply
Reflective Optical Sensor with Transistor Output Description The CNY7 has a compact construction where the emitting light source and the detector are arranged in the same direction to sense the presence
THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259
DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.
AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs
Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential
Project 2B Building a Solar Cell (2): Solar Cell Performance
April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion
EMERGING DISPLAY CUSTOMER ACCEPTANCE SPECIFICATIONS 16290(LED TYPES) EXAMINED BY : FILE NO. CAS-10251 ISSUE : JUL.03,2001 TOTAL PAGE : 7
EXAMINED BY : FILE NO. CAS-10251 EMERGING DISPLAY ISSUE : JUL.03,2001 APPROVED BY: TECHNOLOGIES CORPORATION TOTAL PAGE : 7 VERSION : 1 CUSTOMER ACCEPTANCE SPECIFICATIONS MODEL NO. : 16290(LED TYPES) FOR
Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification
Following are definitions for major parameters to consider when selecting a power line polarity protection diode for an automotive application.
Diode rectifiers are ideal solutions for automotive electronic power line protection and have several important parameters for these applications, including: Forward current, repetitive reverse voltage,
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)
BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer
Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power
Application Note, Rev.1.0, September 2008 TLE8366 Automotive Power Table of Contents 1 Abstract...3 2 Introduction...3 3 Dimensioning the Output and Input Filter...4 3.1 Theory...4 3.2 Output Filter Capacitor(s)
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.
Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an
Characteristic and use
. Basic principle A PSD basically consists of a uniform resistive layer formed on one or both surfaces of a high-resistivity semiconductor substrate, and a pair of electrodes formed on both ends of the
Reflective Optical Sensor with Transistor Output
TCRT5000, TCRT5000L Reflective Optical Sensor with Transistor Output FEATURES Package type: leaded Detector type: phototransistor Dimensions (L x W x H in mm): 10.2 x 5.8 x 7 Peak operating distance: 2.5
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
GLOLAB Two Wire Stepper Motor Positioner
Introduction A simple and inexpensive way to remotely rotate a display or object is with a positioner that uses a stepper motor to rotate it. The motor is driven by a circuit mounted near the motor and
BPW34. Silicon PIN Photodiode VISHAY. Vishay Semiconductors
Silicon PIN Photodiode Description The is a high speed and high sensitive PIN photodiode in a miniature flat plastic package. Its top view construction makes it ideal as a low cost replacement of TO-5
Reflective Optical Sensor with Transistor Output
Reflective Optical Sensor with Transistor Output Description The NY7 has a compact construction where the emitting light source and the detector are arranged in the same direction to sense the presence
4. Optical position sensor, photo-current measurement
4. Optical position sensor, photo-current measurement Task 1. Measure the output signal of photo-electric sensors Measure the relative dependency of output signal versus light intensity. The dependence
PHOTOTRANSISTOR OPTOCOUPLERS
MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
4N25 Phototransistor Optocoupler General Purpose Type
4N Phototransistor Optocoupler General Purpose Type Data Sheet Lead (Pb) Free RoHS 6 fully compliant RoHS 6 fully compliant options available; -xxxe denotes a lead-free product Description The 4N is an
Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF
Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier
High Voltage Current Shunt Monitor AD8212
High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator
