EFFICIENTANIMATIONTECHNIQUESBALANCING BOTHUSERCONTROLANDPHYSICALREALISM
|
|
|
- Maude Spencer
- 10 years ago
- Views:
Transcription
1 EFFICIENTANIMATIONTECHNIQUESBALANCING BOTHUSERCONTROLANDPHYSICALREALISM ADISSERTATION ZichengLiu INCANDIDACYFORTHEDEGREE PRESENTEDTOTHEFACULTY OFDOCTOROFPHILOSOPHY OFPRINCETONUNIVERSITY RECOMMENDEDFORACCEPTANCE BYTHEDEPARTMENTOF COMPUTERSCIENCE November1996
2 ccopyrightbyzichengliu1996 AllRightsReserved
3 Tomywifeandmyparents iii
4 Abstract Specifyingthemotionofananimatedlinkedguresuchthatitachievesgiventasks aretwosourceswhichcontributetothecomplexityproblem:oneisthesymbolic growthascreaturesandtasksapproachthoseonewouldliketoanimate.there (e.g.,throwingaballintoabasket)andperformingthetasksinarealisticfashion (e.g.,gracefully,andfollowingphysicallawssuchasgravity)hasbeenanelusivegoal forcomputeranimators.thespacetimeconstraintsparadigmhasbeenshowntobea valuableapproachtothisproblem,butitsuersfromthecomputationalcomplexity processingoftheanimator'sconstraintsandtheobjectivefunctionsderivedfromthe physicalmodelsandthesecondliesinthenumericaloptimizationphase.thisthesis reportsonworktoenhancethespacetimeconstraintstechniquesbothsymbolically andnumericallytosignicantlyspeedupcomputations. evaluationschemesothatthetimerequiredforgradientcomputationwhichisneeded bythenumericaloptimizationisreducedfromexponentialgrowthtotheoptimal quadraticgrowth.furthermore,withthenewsymbolicmethod,alanguagedeveloped interface. forthesymbolicexpressionscanbeeasilyinput,thusitprovidesamoreconvenient Ourrstcontributionistodevelopanewsymbolicinterfacewitharecursive toprovidecontroloverthemotionandtoreducethecomplexityoftheoptimization problem.thismethodhastheadvantageofprovidingmuchoftheusercontrolofthe parameterswhichmaybelessintuitivefortheanimator,byusingoptimizationmethods.thenoveltyofthisapproachisthattheuser-speciedkeyframesareusedboth specifyafewkeyframeswhilelettingthecomputerdeterminethespeedandtiming, Secondly,wedevelopakeyframeoptimizationsystemwhichallowstheuserto iv
5 traditionalanimationsystemwhileprovidingthephysicalrealismoftheoptimizationbasedsystem.duetothereducedcomplexityoftheoptimizationproblem,the computationtimeisnearlyinteractiveforcomplexgures. thefunctionsthroughtimeofthegeneralizeddegreesoffreedomarereformulatedin ahierarchicalwaveletrepresentation.thisprovidesameanstoautomaticallyadd arisinginthespacetimeconstraintsformulationbyusingwavelets.inthisscheme, detailedmotiononlywhereitisrequired,thusminimizingthenumberofunknowns. Inaddition,theoptimizationproblemisbetterconditionedsothattheconvergence Finallywedevelopahierarchicalschemetosolvethenonlinearvariationalproblem isfaster. v
6 Acknowledgements researcherandanicepersontoworkwith.withouthisinspirationandconstant Firstofall,Iwouldliketothankmyadvisor,ProfessorMichaelCohen,forintroducing metotheareaofcomputeranimation,andadvisingmythesisresearchevenafter heleftprinceton.itisapleasureandhonortoworkwithhim.heisbothagreat encouragement,thisthesiswouldhavebeenimpossible. putergraphicsandfascinatingmewithbeautifulpicturesandanimations. AndrewYao,fortheirtimeandeortinreadingmythesisandtheirhelpfulcomments. ThankstoProfessorDobkinforhelpingmewiththenancialsupportaftermyadvisor leftprinceton.thankstoprofessorandrewyaoforteachingmethetechniquesin IwouldliketothankProfessorPatHanrahanforteachingmethebasicsofcom- theoreticalcomputerscience.hisclassisalwaysinspiring. Iwouldliketothankmythesisreaders,ProfessorDavidDobkinandProfessor yearsatprinceton. degreeincomputerscienceandrecommandingmetoprincetonuniversity. thehierarchicalspacetimecontrol.iwouldalsoliketothankchuckroseforwriting IwouldliketothankProfessorJin-YiCaiforsupportingmeduringmyrsttwo aninterfaceforthehierarchicalspacetimecontrolsystemwhichispartofthethesis. IwouldliketothankProfessorDing-ZhuDuforencouragingmetopursueaPhD ManythankstoStevenGortlerforhishelpinclarifyingthewaveletworkusedin behisocemate. dicultrstmonthsatprincetonwithoutitbeingadisaster.ifeelsofortunateto EMACS,andotherhackingtools.Hishelpmadeitpossibleformetogothroughthe easierandalotmorefun.iwouldliketothankmyocematestefanosdamianakis forteachingmethebasicsofcomputersystemsandhowtousexwindow,unix, ThankstoRichardAlpertforhisfriendshipandhelptomakemylifeinPrinceton vi
7 FinallyIwouldliketothankmywifeXueLiforherloveandsupport. ThisworkwaspartiallysupportedbyNationalScienceFoundationGrantCCR- vii
8 Contents Abstract Acknowledgements 1Introduction 1.1ConventionalAnimationandComputerAssistance...2 iv 1.2Interpolation LinkedFigures...4 vi 1.4DynamicSimulation Control Preliminaries 1.6SpacetimeConstraints InteractiveSpacetimeConstraints ScopeoftheThesis Contributions Coordinatesystemsandtransformationmatrices Rotationaboutcoordinateaxis Linkedgurestructure Kinematics Dynamics SpacetimeConstraints TheFiniteElementMethod CubicSplines HermiteSplines...28 viii
9 2.9Wavelets NonlinearOptimization UniformB-splines HaarWavelets B-splineWavelets InteractiveSpacetimeConstraintSystem B-splineWaveletsonaBoundedInterval Compilation,CommonSubexpressionElimination,andSymbolicDifferentiation UnconstrainedOptimization LineSearch ConstrainedOptimization EcientSymbolicInterface 2.13Summary Introduction TheLanguage Constants Variables Operations AnExample SymbolicDierentiation TorqueVariables Evaluation InteractiveSpacetimeConstraintsSystemwiththeNewSymbolicInterface RepresentingKineticEnergy KeyframeOptimization 3.8Experiments Conclusion Introduction TheIdea...79 ix
10 4.2SystemOverview ComparisontoStandardKeyframingandConstrainedOptimization HermiteInterpolationasDOFRepresentation RelaxingSpeedandTiming HierarchicalSpacetimeControl 4.3KeyframeOptimization Results Conclusions...92 RelaxingTiming Introduction HierarchicalB-splines Wavelets AdvantagesofWaveletstoSpacetimeAnimation QuadraticFunction ChoiceofWavelets ConclusionsandFutureResearch 5.4Implementation Results Conclusion Scaling...99 Bibliography 6.1Contributions FutureWork x
11 ListofTables 1ComparisonoftheconvergencespeedsofusingHaarbwaveletbasis vs.usingboxbasis.eachentryw(l;k)representsthenumberoftimes among100teststhatthewaveletbasisisfasterthantheboxbasis..99 xi
12 ListofFigures 1Thebouncingballtrajectoriesunderlinearandcubicinterpolation.3 2Inversekinematicsandinterpolationoflinkedgures...5 3Thepathsofthepointmass X1andY1arerotatedbycounterclockwise Anexampleoflinkedgurestructure Computetransformationmatrices Computetherstorderderivativesofthetransformationmatrices..21 8One-linkarm TheHermitesplinebasisfunctionsover[0;1] TheuniformB-splinebasisfunctionsover[0;4] TwoscalerelationshipofHaarbasis TheHaarwaveletfunction 15FiveB-splinesL;jmaybecombinedusingtheweightshtoconstruct 13HaarbasisfunctionswhenL= f(t)=22;0+22;1+42;2+2;3=2:250;0+0:25 16ElevenB-splinesL;jmaybecombinedusingtheweightsgtoconstruct (t) Linesearch:bisectionmethod...50 thedoublewidthb-splinel 1; thewaveletfunction L 1; ;0 1:51; Linesearch:quadraticinterpolation TheInteractiveSpacetimeConstraintsSystem Thenumberofnodestobeevaluatedisgreatlydecreasedbycommon 21DierentiationRules(theunaryoperatorsarenotallenumeratedas subexpressionextraction.the\c"nodesrepresentthecosineoperator.55 manyaresimilar)...57 xii
13 22Theplanari-linkchain Theplanar3-linkchainthrowingabasketball Thenewinteractivespacetimeconstraintssystem ComparisonsofpreviousCSEmethodandthenewsymbolicmethod76 26Thegraphicalinterface Controlvs.Automation One-linkarmthrowingtheballintothebasket =(t) MotionsequencewhenT1=2:0andT2=1: MotionsequencewhenT1=0:5andT2=0: Motionsequences HierarchyofB-splineandWaveletBases ConvergenceofArmandBallexamplefor4dierentstartingtrajectories.Therstandfourthexamplesresultedinunderhandthrows,and therestoverhand.timeisinseconds,andthecostisaweightedsum ofconstraintviolationsandenergyabovethelocalminimum Aplanarthree-linkarmanda6DOFbasketballplayer Scenefromabasketballgame Thetwobasketballplayers xiii
14 Chapter1 Introduction Animationoriginatedfromartistry.Itistheprocessinwhichartistsbringlifetotheir positioncanbeconsideredanimationsinceitgeneratesavisualchange. lifelessobjectssuchasowingwaterorarollingball.eventhechangeofacamera becausetheyexistonlyintheformofimages.whenspeakingofanimation,people usuallythinkofmotionoflifelikegures,butanimationalsocoversthemotionof virtualguresbyaddingmotion.waltdisney'sdonaldduckandmickeymouseare twowellknownexamplesofanimatedgures.theseguresaresaidtobevirtual animationandalleviatesomeoftheworkoftheartists. scienticresearch.movieshaveincreasedtheiruseofcomputeranimationincreatingspecialeects.thecartoonindustryisutilizinganimationsoftwarepackages toproducemorerealisticandcomplexmotionfortheircharacters.theknowledge scienticconceptsandvisualizeprocesseswhichcannotbeseenintherealworld. Flightanddrivingsimulatorsareusedtosafelytrainbeginnersforsituationswhich otherwisecouldnotbetaughtintherealworld.molecularsimulationtechniques andabilitytouseanimationsoftwarepackagesisbecomingmoreimportantfora professionalanimator'swork.ineducation,peopleuseanimationtodemonstrate Techniquesandtoolshavebeendevelopedinanattempttoautomatetheprocessof imation(orsimplyanimation)hasbecomeanactiveeldforcomputerscientists. Computeranimationiswidelyusedinentertainment,education,trainingand Withthedevelopmentofcomputertechnologyinthepastdecade,computeran- 1
15 CHAPTER1.INTRODUCTION haveallowedscientiststoviewmolecularinteractionsandtoperformexperimentsin avirtualmolecularworld. Theworkpresentedinthisthesis,however,willfocusprimarilyonanimating 2 linkedguresrepresentinganimatecreatures. 1.1ConventionalAnimationandComputerAssistance thefollowingstepsasdescribedin[9,22].first,astoryboardislaidout,consisting Conventionalanimationisafairlyroutineprocess.Generallyspeaking,itconsistsof ofasequenceofskeletaldrawingswhichoutlinesthewholestory.eachsketchinthe sequencerepresentsasegmentinthewholestory.thenforeachsegment,certainkey framesaredrawn.eachkeyframecorrespondstoascenewherethecharactersor sceneswheretheballisonthegroundoratitsmaximalheightcanbeusedaskey otherobjectsareattheirextremeorcharacteristicpositionssothattheintermediate positionscanbeinferred. frames,andtheotherintermediateframescanbeinferredfromthesepositionsbased onthefactthattheballisinbetweentheseextremepositions. Forinstance,ifasegmentrepresentsthemotionofabouncingball.Thenthose buildings,desks,pipes,etc.computerscanalsobeusedforimagecompositionsuch iscalledkeyframeanimation. computer.computersaregoodfordrawingobjectswithregulargeometrysuchas inbetweening).becauseoftheuseofkeyframesandinbetweening,thistypeofmethod Manyofthetasksinconventionalanimationcanbeperformedorassistedbythe Thentheintermediateframesarelledinbytheanimatororanassistant(called asblendingthebackgroundandforeground. taskisparticularlyinterestingforthetopicofthisthesissinceitaectstheappearance ofthemotion.thekeyframesonlydeterminetheskeletonofthemotion,while detailsofthemotionlargelydependontheinbetweening.inbetweeningisessentially amultidimensioninterpolationproblem. Inbetweeningisanothertaskinwhichthecomputercanprovideassistance.This
16 CHAPTER1.INTRODUCTION 3 1.2Interpolation Toillustratetheideaofinterpolation,let'sconsiderthebouncingballasanexample. AsinFigure1,assumingtheballisontheoorA=(x0;y0)attimetime0and Figure1:Thebouncingballtrajectoriesunderlinearandcubicinterpolation bouncedtothehighestpositionb=(x1;y1)attime1,wewanttodeterminethe positionoftheballatanyintermediatetimetwhere0<t<1.thesimplestsolution respectively.theballgoesstraightfromatobwithauniformvelocity.theresulting wouldbetousealinearfunctiontointerpolatethetwopointsaandb,thatis, motiondoesshowtheballgoingupwardafterbouncing,butdoesn'treecttheeect Figure1(A)showsthepositionsoftheballattime0,0.2,0.4,0.6,0.8,and1.0, y=y0+t(y1 y0) x=x0+t(x1 x0) ofthegravity,andasaresult,themotiondoesn'tlookrealistic. (1) Itturnsoutthatgiveny(0),y(1),_y(0)and_y(1),thereisauniquecubicpolynomial y=a0+a1t+a2t2+a3t3whichsatisesallofthe4conditions.(suchpolynomials suchthat_y(t)(thederivative)is0whent=1,aswellasy(0)=y0andy(1)=y1. whentheballisatitshighestpositionb.sowecantrytondafunctiony=y(t) performingtheinterpolation.weknowthattheverticalvelocityoftheballiszero Aremedyforthisproblemwouldbetotakeintoconsiderationthevelocitieswhen arecalledhermitepolynomials,anditsconstructionisdescribedinsection2.8.1). y A B (A): Linear interpolation t y A B (B): Cubic interpolation t
17 CHAPTER1.INTRODUCTION Inthisexample,wedonotknow_y(0),butgiventheheighttheballiesplusgravity thiscanalsobesolvedfor.figure1(b)showsthepositionsofballattime0,0.2, 0.4,0.6,0.8and1.0byusingthecubicpolynomialastheinterpolationfunction.We 4 sothatthemotioninbetweenthekeyframesdoesnotvarytoomuch.forexample, able.second,thetimeintervalbetweentwoconsecutivekeyframeshastobesmall ifwechoosethetwokeyframeswheretheballisatitshighestpositionsandskipthe Firsttheuserhastosupplythevelocitiesatthekeyframeswhichmaynotbeavail- canseethatthemotionlooksmorerealistic. onewheretheballisontheoor,thenintheinterpolatedmotion,theballwould Therearestilltwoproblemsingeneralwiththecubicpolynomialinterpolation. determinethecongurationsandperhapsvelocitiesoftheobjectsorguresatthese ystraightforwardhorizontallyandtherewouldbenobouncingmotionatall.in 1.3LinkedFigures keyframeswhichmayrequirealotoftrialanderror. practice,morekeyframesmeansmoreworkfortheanimator,sincehe(she)hasto aretheindependentparameterswhichcompletelydetermineitsconguration.for example,aplanarthreelinkarmasshowninfigure2(a)has3degreesoffreedom, sincethe3angles0,1,and2completelydeterminethecongurationofthelinkage. Alinkedgureconsistsofrigidlinksconnectedbyjoints.Humanbeingsandanimals areexamplesoflinkedgures.thegeneralizeddegreesoffreedomofalinkedgure thecoordinate(x,y)oftheendeectorisequaltothatofa.tosolvesuchaninverse determinethecongurationofthethreelinkarmsuchthattheendeectorreaches pointa(seefigure2(b)).weneedtondthethreeangles0,1,and2sothat aproblemiscalledinversekinematicsproblem.forexample,supposewewantto miningtherotationalanglesgivenadesiredlocationfortheendofthelinkage.such Forlinkedgures,thetaskofdeterminingthecongurationofteninvolvesdeter- describedinsection2.4. kinematicsproblem,wecanwritedowntheequationswhichrelateendeectorpositionstorotationalangles.theseequationsarecalledkinematicsequationsandare
18 CHAPTER1.INTRODUCTION 5 end effector L 3 θ 2 A L 2 θ 1 L 1 θ 0 (A) (B) E B Figure2:Inversekinematicsandinterpolationoflinkedgures E B A A solutionmaynotbewhatwewant.forexample,ifwearesimulatingahuman y=y(0;1;2):thentheproblembecomessolvingthesystemofnonlinearequations. solutionisnotunique(figure2(b)showstwosolutions).ingeneral,anarbitrary (C) (D) being'sarm,wemaywanttoputsomelimitsonthethreejointangles(suchasthe Forthisexample,wecanwritedownequationsoftheformx=x(0;1;2)and E linear interpolation three angles of A and B. three linearly interpolated from elbowshouldnotbendbackward).jointlimitconstraintsareinequalityconstraints, Ingeneral,therearemoreunknownsthanthenumberofequations,sothatthe angles found by inverse initial and final kinematics solver. configurations. thus,theinversekinematicsproblemwithjointlimitconstraintsbecomesasystem ofnonlinearequationsandlinearinequalities.
19 CHAPTER1.INTRODUCTION systemofnonlinerequationsandlinearinequalities.theyshowedthattheirinverse kinematicssolverachievesnearlyinteractivespeed(inafewseconds)forfairlylarge ZhaoandBadler[57]usedRosen'sprojectedgradientmethod[21]tosolvethe 6 gures(withupto30degreeoffreedoms).theirtechniqueshavebeenusedincommercialanimationsystemssuchasthosefromsoftimage,alias,andwavefront. onecanndthepositionoftheendeectorbylinearinterpolation.thenonecan problemwiththisapproachisthatthejointanglesmaynotbeacontinuousfunction consideraplanarthreelinkarmmovinganobjectfrompositionatopositionb(see Figure2(C)).Intherstapproach,tondthecongurationatagiventimepoint, applytheinversekinematicssolvertondthejointangles(seefigure2(c)).one Forlinkedgures,interpolationbecomesmorecomplextoo.Asanexample, oftime.toseewhy,noticethattheinversekinematicssystemhasmultiplesolutions sothatthesolutionsfoundbytheinversekinematicssolveratconsecutivetimepoints maynotbeconsistent.forexample,infigure2(b),ifatpositiona,theinverse kinematicssolvergivesthesolutionasdrawnwiththesolidline,butatthenext isnotclearhowtondatrajectoryoftheendeectorrstsothatthemotionlooks positionwhichisclosetoa,givesasolutionclosetotheotheroneasdrawnwiththe realistic. isthatinsomecases,arealistictrajectoryoftheendeectormaybediculttond. Forexample,ifinsteadwewantthethreelinkarmtothrowaballintoabasket,it dashedline,thenthetwosolutionsarenotconsistent.asaresultofsuchinconsistent solutions,theresultingmotionwouldhavesuddenchanges(jumps).anotherproblem ofthemiddlecongurationarelinearlyinterpolatedfromthejointsoftheinitialand nalcongurations).thismethodhastheadvantagethattheangleswillbecontinuous,thusthemotionhasnojumps.but,thedicultissuesremainofhowtoachievrectly.onecanndafewkeycongurationsofthemotionaskeyframes,then interpolatethejointanglestoobtainthemotion.(infigure2(d),thejointangles Anotherapproachforinterpolationwouldbetointerpolatethejointanglesdi- motionrealismaswasdiscussedinsection1.2.
20 CHAPTER1.INTRODUCTION 1.4DynamicSimulation Notsurprisingly,dynamicsimulationisaneectiveapproachtoachievemotionrealism.Forthebouncingballexample,themotionoftheballafterbouncingcan7 beeasilycomputedbyusingnewton'slaw.ingeneral,asimulationproblemisan theresultingmotionlooksrealisticsincethemotionobeysphysicallaws.sofar,this approachhasbeenusedtosuccessfullycreatmotionsofchains,bowling,pool,waves, snakes,automobiles,etc[2,3,6,27,30,31,36,41,44,55,10,42]. andtheinitialcongurationandvelocitiesaretheinitialconditions.thesolution initialvalueproblem([19])wherethedierentialequationsdescribethephysicallaws totheinitialvalueproblemisthemotion.theadvantageofthisapproachisthat themotiononcetheinitialconditionsarespecied.thereforeitisdiculttocreate motionswithsomedesiredgoals.forexample,onecanusedynamicsimulationto generateaphysicallycorrectrotationmotionofagureskaterintheairiftheinitial (attakeo)velocitiesaregiven(bothrotationalvelocityandthevelocityofcenterof gravity).buttoguaranteethattheskatercompletesthedesirednumberofrotations Oneproblemwiththesimulationapproachisthattheuserhasnocontrolover intheair,theanimatorhastondthecorrectinitialvelocities.themathematicalmodelofsuchacontrolproblemisaboundary-valueproblem[19]whichusually requiresmoreelaboratesolutionmethodsthantheforwardsimulationapproachfor solvinginitialvalueproblems[48]. doesnotaddress,namely,howtodeterminetheinternalforces(whicharefunctions overtime).linkedguresareusuallyautonomous,thatis,theycanexertforces whetherthegoalisreachedornot.thus,forlinkedgures,themotioncontrol ortorques.theinternalforcesaecttheappearanceofthemotionanddetermine problembecomesndingtheinternalforcessothatthegoalisreachedandthemotion Foranimatelinkedgures,thereisanotherproblemwhichthesimulationapproach looksrealistic. includingtheworkreportedinthisthesis.inparticular,thisthesisconcentrateson theproblemofhowtogenerategoaldirectedmotionforlinkedgures.beforewe describeourwork,let'sbrieyreviewsomeoftheworkwhichhasbeendoneinthis direction. Howtogaincontroloveradynamicsystemhasbeenthefocusofmanyresearchers
21 CHAPTER1.INTRODUCTION 1.5Control Oneapproachtogaincontroloveradynamicsystemistodesigncontrollers.A controllerisaspecicationofforcesortorquesasfunctionsofthepositionsand8 state,themotioncanbecomputedbyintegratingovertime.forexample,consider aparticlewithunitmassatinitialpositionx=x0andvelocity_x=0.wewant toapplyaforceftobringittorestatpositionx=0.intuitively,wewouldlike velocities(calledthestate)ofanobjectorgure.givenacontrollerandtheinitial becomes velocity,whichleadstoacontrollerofthefollowingform: wherek1andk2arepositiveconstantstobedetermined.nowthemotionequation toapplyaforcewhosedirectionisoppositetothedirectionofthedisplacementand f= k1 k2_ x= k1 k2_ (2) ank2sothatk2>4k1,thesolutionwillhavetheform: detaileddiscussionisomittedhere.wejustwanttopointoutthatifwechoosek1 rameters)andseeifwecanndthedesiredk1andk2sothatthegoalissatised.a Wecanthensolvethisdierentialequation(thesolutioncontainsk1andk2aspa- (3) wherec;c2;w1;w2aresomeconstantswithw1>0,w2>0.clearlybothxand_x solutions. tendto0astgoestoinnity.althoughinpractice,tcanneverbecomeinnity,but whentisbigenough,bothxand_xwillbecomeverysmallsothattheyareacceptable x=c1e w1t+c2e w2t ofavarietyofsimulatedandrealcreatures[51].morerecently,hodginsandher colleagueshavedevelopedcontrollerstoproduceavarietyofathleticmotions[28]. Controllersareusedtoregulatespeedandgait,maintainbalance,etc.However,each trollers,andthemotionisthesolutionstoasequenceofoptimalcontrolproblems. Raibertandhiscolleagueshavedesignedcontrollerstoproducerunningmotions BrotmanandNetravali[7]useanoptimalcontrolformulationtodenetheircon- newmotion(e.g.adierentnumberofrotationsindiving)wouldrequiredesigning
22 CHAPTER1.INTRODUCTION anewcontrollerandthemotionhastobetunedmanuallyinordertocreatethe desiredbehavior.boththedesignofacontrollerandthene-tuningaretedioustasks. Systematicwaysneedtobedevelopedforsuchmethodtobeusefulinpractice. 9 controllertorepresentmotionwithanarrayofstimulus-response(sr)parameters touseparameterizedcontrollerstorepresentmotionwhiletheparametersarefound throughanoptimizationprocess[54,43].ngoandmarksuseastimulus-response asunknowns[54].vandepanneandfiumeuseasensor-actuatornetworkwith weightedconnectionsasthecontrollertorepresentmotionwiththeweightsasunknownparameters[43].giventhevaluesofthesrparametersorweightsineither ofthesetwomethods,themotionisgeneratedbyforwarddynamicssimulation.the Toautomatetheprocessofndingcontrollers,techniqueshavebeendeveloped controloverthemotionisrealizedbyspecifyingaperformancefunctionwhichisa mixtureofsomeobjective(e.g.,maximizingthedistancetobetraveled)andsome whichwecansimulate.agoodexampleisthatsuchsystemcaneasilygeneratemotionswithcontactandcollisionwhichthetrajectorybasedapproach,asdiscussedin theresultingmotionisalwaysphysicallyplausibleanditcangenerateanymotions resultingmotionhasthemaximumscore.theadvantageofsuchmethodsisthat constraints(e.g.,theguredoesn'tfall)inapenaltyfunctionform.theparametersorweightsmustbefoundbyusingsomenumericsearchalgorithmssothatthe thenextsection,hasdicultytodealwith.thedisadvantageofbothmethodsis goaldirectednature. thedicultyofsearch.sinceitisnotclearhowtocomputegradients,thesearchs objectivesaresetsuchastomaximizethedistancetraveled.theresultingmotions usuallyhaveconvincingcontactsandcollisionsbutmaynothavegracefulnessanda usuallyhaveabruce-forcenature.withsucharudimentarysearchstrategysolving aconstrainedoptimizationproblemisexpensive.inpractice,usuallyonlysimple example,supposeapointwithunitmass,initiallyatrestatpositionx=0,isrequired 1.6SpacetimeConstraints Anotherapproachtogaincontrolistorepresenttheuser'sgoalsasconstraints.For
23 CHAPTER1.INTRODUCTION 10 toreachpositionx=1withvelocity_x=10attimet=1.theinitialandnal conditionscanberepresentedasthefollowingconstraintequations: Figure3:Thepathsofthepointmass Togetherwiththedynamicequationf=x,weobtainasystemofequations: _x(0)=0 _x(1)=10 (4) rectlytothepositionx=1withthedesiredvelocity.forinstance, Intuitively,onecaneasilythinkofasolutionsuchthatthepointacceleratesdi- _x(0)=0 _x(1)=10 (5) ofthispointasahammer,theninordertohitsomethinghard,amorenatural issuchasolution.figure3(a)isaplotofthetrajectoryx=x(t). Butthissolutionisnotthemostnaturallylookingsolution.Why?Ifwethink f=8<:10=9;t2[0;9=10] 90;t2[9=10;1] (6) x(t) t (A) x(t) t (B)
24 CHAPTER1.INTRODUCTION andecientwaywouldbetoswingthehammerbackwardrsttogainenoughspace foracceleration.thereasonwhythiswayismoreecientisbecauseitrequires lesspower.thissuggestsustondthesolutionwithminimumamountofforces. 11 is,wehavethefollowingformulation: Mathematicallywecanminimizetheintegralofthesquareofforcesovertime,that MinimizeRf2dt s:t Thistypeofoptimizationproblemwheretheunknownsarefunctionsiscalled f _x(0) _x(1) =x =0 =10 (7) avariationalproblem[19].itturnsoutthisparticularproblemhasananalytical motion. Figure3(B)isaplotofthetrajectory.Wecanseethatthepointgoesbackwardrst andthenacceleratestothedesiredvelocity,whichisasmootherandmorenatural solution[19]: Theideaofndingthemotionwhichminimizessomesmoothnesscriteriasuchas x= 7t2+8t3: (8) themotion.forexample,minimizingtheintegralofforcesasintheaboveexample Kass[56],andthemethodiscalledthespacetimeconstraintsmethod. asthedynamicequations.anobjectivefunctionisoptimizedtocontrolthestyleof timecourseincludingtheinitialandnalconguration,thegoalconstraints,aswell tominimizethetotalforcesasintheaboveexamplewasproposedbywitkinand resultsinagracefulmotion,whileaminimumtimeobjectivefunctionwouldresult inarushedmotion. Inthespacetimeconstraintsformulation,theusercansetupconstraintsoverthe (DOF)functions(trajectories).Numericaltechniquescanbeusedtosearchforthe trajectorieswhichsolvetheoptimizationproblem,asdescribedbrieyinthenext sectionandinthenextchapterwithmoredetail. Theunknownsofaspacetimeconstraintsformulationarethedegreeoffreedom
25 Thespacetimeconstraintsformulationleadstoanonlinearconstrainedvariational CHAPTER1.INTRODUCTION 1.7InteractiveSpacetimeConstraints problem,thatingeneral,hasnoclosedformsolution.inpractice,thesolutionis 12 linearcombinationofbasisfunctionssuchascubicb-splines.thisresultsinarelated constrainedoptimizationproblem(i.e.,optimizingthecoecientstocreatemotion curvesforthedofthatminimizetheobjectivewhilesatisfyingtheconstraints). carriedoutbyreducingthespaceofpossibletrajectoriestothoserepresentablebya Unfortunately,generalsolutionstosuchanonlinearoptimizationproblemarealso unknown. methodovercomessomeproblemsinthepreviousspacetimeconstraintsystemas attentiononsubsetsorwindowsinspacetimetoperformlocalrenement.this systemusingahybridsymbolicandnumericalprocessingtechniques[13].inthis system,theusercaninteractwiththeiterativenumericaloptimizationandcanguide theoptimizationprocesstoconvergetoanacceptablesolution.onecanalsofocus Observingsuchadiculty,Cohendevelopedaninteractivespacetimeconstraints problemsisthecentralfocusoftheresearchasreportedinthisthesis. 1.8ScopeoftheThesis proposedbywitkinandkass.butsomecomputationaldicultiesstillremain,most Thisthesisconcentratesonthegoaldirectedanimationoflinkedgures.Webelievethatapracticalanimationsystemmusthavethefollowingproperties.First,it notablyasthecomplexityofthecreatureoranimationincreases.addressingthese theanimationsystemisproductive.whilespacetimeconstraintssystemdoprovide physicalrealismsandsomeusercontrol,theyhavebeencomputationallyexpensive. mustgeneraterealisticmotionsbyincorporatingdynamicsintothesystemtosave Howtoimprovethespacetimeconstraintsmethodtoachieveeciencyisthecentral animatorsothattheanimatorcancreatemotionswhichperformthedesiredtaskor achievethedesiredgoal.finally,itachievesinteractivecomputationspeedsothat theanimatorfromtedioustrialanderror.secondly,itmustprovidecontroltothe author[40,39,38]. focusofthethesis.mostoftheresultsreportedherearealsofoundinpapersbythe
26 CHAPTER1.INTRODUCTION 1.9Contributions Ourrstcontributionistodevelopanewsymbolicinterfacewitharecursiveevaluationschemesothatthetimerequiredforgradientcomputationwhichisneededbythe 13 numericaloptimizationisreducedfromexponentialgrowthtotheoptimalquadratic methods.thenoveltyofthisapproachisthattheuser-speciedkeyframesareused ingparameters,whichmaybelessintuitivefortheanimator,byusingoptimization face.secondly,wedevelopakeyframeoptimizationsystemwhichallowstheuser tospecifyafewkeyframeswhilelettingthecomputerdeterminethespeedandtim- symbolicexpressionscanbeeasilyinput,thusitprovidesamoreconvenientinter- growth.furthermore,withthenewsymbolicmethod,alanguagedevelopedforthe theoptimizationbasedsystem.duetothereducedcomplexityoftheoptimization problem,thecomputationtimeisnearlyinteractiveforcomplexgures.finallywe controlofthetraditionalanimationsystemwhileprovidingthephysicalrealismof developahierarchicalschemetosolvethenonlinearvariationalproblemarisinginthe bothtoprovidecontroloverthemotionandtoreducethecomplexityoftheoptimizationproblem.thismethodhastheadvantageofprovidingmuchoftheuser spacetimeconstraintformulationbyusingwavelets.theadvantageofthewavelet cessing,optimizedkeyframes,andhierarchicalwaveletbasis.finallyweconcludeand representationistwofold.first,theoptimizationproblemisbetterconditionedso discussfutureresearchideasinchapter6. thattheconvergenceisfaster.secondly,thenumberofunknownsisminimizedso thateachiterationtakeslesstime. groundandnotationinchapter2.chapter3through5describethesymbolicpro- Therestofthethesisisorganizedasfollows.Weprovidesomenecessaryback-
27 Chapter2 Preliminaries Inthischapter,wegivethenecessarybackgroundandnotationswhichwillbeused throughoutthisthesis.foramoregeneraltreatmentoflinkedguremodeling,kinematics,anddynamics,thereaderisreferredto[14,20,17].fletcher[21]givesan excellentintroductiontovariousoptimizationmethods. 2.1Coordinatesystemsandtransformationmatrices system=(x;y;z;o),foranypointp,thereexistthreerealnumberspx,py,and andz,thenthecoordinatesystemisdenotedtobe(x;y;z;o).givenacoordinate pendicularunitvectors.ifwedenotetheorigintobeoandthethreeaxistobex,y Eachcoordinatesystemconsistsofanorigin,andthreeaxiswhicharemutuallyper- pzsothat thecoordinatesystem,andisdenotedbyp.similarly,foreachvectorv,there P=O+pxX+pyY+pzZ: py pz1caiscalledthecoordinateofthepointpwithrespectto (9) existthreerealnumbersvx,vy,andvzsothat V=vxX+vyY+vzZ: 14 (10)
28 CHAPTER2.PRELIMINARIES 15 vy vz1ca,denotedbyv,iscalledthecoordinateofthevector Vwithrespecttothecoordinatesystem. Giventwocoordinatesystems1=(X1;Y1;Z1;O1)and2=(X2;Y2;Z2;O2). The33matrix(X2 1;Y2 1;Z2 1)iscalledtherotationmatrix(alsoorientationmatrix) of1withrespectto2,andisdenotedbyr2 1.The44matrix,W2 1, 1O A (11) iscalledthehomogeneoustransformationmatrix(orsimplytransformationmatrix) of1withrespectto2.from(10),wehave V2=R2 1V1; (12) andfrom(9),wehave 0@P2 11A=W2 10@P1 11A: (13) Foranycoordinatesystem,thevector 0@P 11A iscalledthehomogeneouscoordinateofthepointpwithrespectto.wewillalso useptodenoteitshomogeneouscoordinatewherethereisnoconfusion. Foranycoordinatesystem,since X1=R2X2 1; Y 1=R2Y2 1; Z1=R2Z2 1; (14) wehave R1=R2R2 1: (15) Furthermore,from(9), O1=O2+R2O2 1: (16)
29 CHAPTER2.PRELIMINARIES 16 Therefore W1=W2W2 Figure4:X1andY1arerotatedbycounterclockwise andp=w2p21p1 GivenanypointP,since P=W1P1 =W2W2 1: (17) sop2=w2 (18) 1P1 (19) 2.2Rotationaboutcoordinateaxis Givenacoordinatesystem1=(X1;Y1;Z1;O1),let'srotateitaroundZ1and (20) denotetheresultingcoordinatesystemas2=(x2;y2;z2;o2).noticethatz2=z1 ando2=o1.tocomputex2andy2,wecanseefromfigure4that Y2= sin()x1+cos()y1 X2=cos()X1+sin()Y1 (21) (22) Y 2 θ Y 1 X 2 θ X 1 θ
30 CHAPTER2.PRELIMINARIES 17 L θ Therefore, Figure5:Anexampleoflinkedgurestructure 2 2 Q L 2 1 θ 1 L 0 Q 1 θ 0 Q WecallthismatrixtherotationmatrixaroundZ-axis,anddenoteitby<z().SimilarlywecanderivetherotationmatricesaroundXandY-axisas R1 2=0B@cos() sin()0 sin()cos()0 0 L the base. L 0 0 has child L 1. L 1 has child L 2. L 0 rotates about joint Q 0, L 1 rotates about joint Q 1, and L 2 rotates about joint Q 2. <y()=0b@cos()0sin() <x()=0b@10 00cos() sin() 10 0 Figure5).Eachlink,exceptone,hasaparentandandcanrotatearounditsparent 2.3Linkedgurestructure Throughoutthisthesis,weassumethegurestructureisatreeofrigidlinks(See CA (23) sin()0cos()1ca; 0sin()cos()1CA: (25) (24)
31 jointcanhave1to3degreesoffreedomandweuseeulerangles(rotatedaroundz, Y,andXsuccessively)torepresenttherotationanglesateachjoint.Givenagure, CHAPTER2.PRELIMINARIES aboutajoint.thespeciallink,whichdoesn'thasaparent,iscalledabase.each 18 oflinki.denoteqitobethejointwhichconnectslinkiwithitsparent. labelofitsparent.andweused(i)todenotethesetofthelabelsofallthechildren wherethelabelingordersarearbitrary.foreachlinki,weusethe}itodenotethe welabelthelinksasl0,l1,...,andln 1andthejointanglesas0,1,...,andm 1, originofthislocalcoordinatesystemisatthejointwhichconnectsthislinktoits 2.4Kinematics Eachlinkisattachedtoalocalcoordinatesystemwhichrotateswiththelink.The parent. notationsforhomogeneoustransformationmatrices. totheworldcoordinatesystem.andweuserjitodenoterj PitodenotePi.WeuseRitodenoteRi,therotationmatrixoflinkiwithrespect linki.wealsoassumethereisaxedworldcoordinatesystem,denotedby.for anypointp,wewilluseptorepresentpwhenthereisnoconfusion.andweuse Fortherestofthischapter,weuseitodenotethelocalcoordinatesystemof havethesameorientationastheworldcoordinatesystem.nowlet'sseehowto computethetransformationmatricesofthesecoordinatesystemsasfunctionsofthe rotationalangles.tocomputer}i Weassumethatwhenalltherotationalanglesare0's,allthecoordinatesystems i,i.e,thetransformationmatrixoflinkiwith i.wewillusesimilar respecttothecoordinatesystemofitsparent}i,noticethatriisobtainedbythe Z-axisbyiz,thenrotatearoundY-axisbyiy,andnallyrotatearoundX-axisby ix.sowehave Therefore followingprocess.startwiththesameorientationas}i,thenrotateiaroundits Ri=R}i<z(iz)<y(iy)<x(ix) R}i i=<z(iz)<y(iy)<x(ix) (26) (27)
32 CHAPTER2.PRELIMINARIES voidtransmatrices(inti/*thecurrentlink*/) fw}i i=<z(iz)<y(iy)<x(ix) 19 gforallj2d(i) if(iisthebase) elsewi=w}iw}i transmatrices(j); i Figure6:Computetransformationmatrices i Thehomogeneoustransformationmatrixis NoticethatQ}i011A: Inthecasewhenlinkiisabase,wesimplyhave W}i Ri=<z(iz)<y(iy)<x(ix): i=0@r}i iq}i i (28) thealgorithminfigure6. transformationmatriceswiforallthelinks,wecandoarecursivetreetraversalusing ForanypointPwhichisxedonlinki,itscoordinatewithrespecttotheworld iisconstantsinceqiisaxedpointonthelink}i.tocomputethe (29) coordinatesystemcanbecomputedfromitslocalcoordinatepiasthefollowing NoticethatPiisconstantsincethelinkisrigid,thusthevelocityofPis SinceWi=W}iW}i P=_Wi_ P=WiPi: _ Pi: (30) _Wi=_W}iW}i i+w}i_w}i i,wehavei: (32) (31)
33 CHAPTER2.PRELIMINARIES From(29)andrecallingthatQ}i _W}i 001A: i0 iisconstant,wehave (33) 20 Andthederivativesof<z,<y,and<xare Dierentiating(27),weobtain sin() cos()0 _R}i i=_<z(iz)<y(iy)<x(ix)+<z(iz)_<y(iy)<x(ix)+<z(iz)<y(iy)_<x(ix):(34) sin()0cos() cos()0 sin()1ca_; 0cos() sin() CA_; (36) (35) Figure7). Similarlyallthederivatives_Wicanbecomputedbyarecursivetreetraversal(see 0 sin() cos() 0cos() sin()1ca_ 0 (37) 2.5Dynamics ForeachpointPwithlocalcoordinatePi=0B@xyx1CA;consideraninnitelysmallcube bethemassdensityofthelinkiwhichmaybeafunctionofthepositioninthislink. Inthissection,weshowhowtocomputeLagrangiandynamics. atthispointwithedgelengthsdx;dy;anddz,respectively.thenthekineticenergy Firstlet'sseehowtocomputethekineticenergyoflinki.Denotei(x;y;z)to ofthispieceisapproximately0:5i(pi)dxdydz_ PT_ P.By(31),_ P=_WiPi.Denoting
34 CHAPTER2.PRELIMINARIES voidtransmatricesdot(inti/*thecurrentlink*/) fcompute_w}i 21 else_wi=_w}iw}i if(iisthebase) iusing(33-37) i Figure7:Computetherstorderderivativesofthetransformationmatrices gforallj2d(i) transmatricesdot(j); i+w}i_w}i i X=0@Pi weobtainthekineticenergyoflinki Ei=0:5ZXT_WT 11A,theenergybecomes0:5i(x;y;z)X_WT i_wixidxdydz i_wixdxdydz.integratingthis, thislinkwithrespecttothelocalcoordinatesystem. wherex=(x;y;z;1)trangesoverthehomogeneouscoordinatesofallthepointsin thediagonalelementsofm.noticethatforanycolumnvectory,wehave GivenasquarematrixM,lettr(M)denotethetraceofM,i.e.,thesumofall (38) Therefore YTY=tr(YYT): Ei=0:5Rtr(_WiXXT_WT =0:5tr(_WiJi_WT =0:5tr(_WiRXXTidxdydz_WT i); i)idxdydz (40) (39) linkbeingattached. localcoordinatesystem.noticethatallthecomponentsofjiareconstantssince theyonlydependonthegeometryandmassdistributionoflinki.andtheycanbe computedoncethelinkedgureisgivenwiththelocalcoordinatesystemsforeach whereji=rxxtidxdydzistheinertialtensoroftheithlinkwithrespecttoits
35 CHAPTER2.PRELIMINARIES 22 Figure8:One-linkarm @jji_wt @j) i) (43) vectorofthecenterofmassofthelinki,andg=(0;9:8;0)isthegravityvector.so @j= (44) ThereforebyLagrangianequation[32],thegeneralizedforcewithrespecttojis @jjiwt (45) 2.6SpacetimeConstraints Todemonstratetheideaofspacetimeconstraints,let'sseeanexample.Supposewe haveaonelinkarmwithonerotationaldegreeoffreedomaroundthezaxis(see (46) Y Ω Y 0 Ω 0 L Q 0 ball (in hand) θ H X X 0 B basket
36 CHAPTER2.PRELIMINARIES Figure8).Therectanglerepresentsthearm.Thecirclerepresentsaball.Letbe therotationalangleofthearmwithrespecttothexaxisinthecounterclockwise direction. 23 straightdownposition(= 2)attimet0,throwsaball(ofnegligiblemass)attime t1,andnallycomesbacktothestraightdownpositionattimet2.therequirement isthattheballisinthehandfromt0tot1,thenisinfreeightfromt1tot1+t,and attimet1+ttheballiscoincidentwithabasketwhichisthepositionbasshown infigure8. Supposewewanttoanimatethefollowingmotionsequence.Thearmstartsina andendingconditions,goalrequirement,andsomelimitsonthephysicalparameters oftheguresuchasjointangles,torques,etc. downposition.sowehavethefollowingequations: Thespacetimeconstraintmethodstartsbyspecifyingconstraintsincludingstart Inthisexample,thestartandendingconditionsarethattheballisinthestraight (b)thenalcondition: (a)thestartcondition: (t2)= 2 (0)= 2 _(0)=0: _(t2)=0: (47) whichcorrespondstothefollowingequation(noticethattheballisinfreeightafter leavingthehandattimet1). (c)h(t1)+t_h(t1) 12GTT2=B Thegoalconstraintinthiscaseisthattheballgoesintobasketattimet1+T (48) positionoftheendeectorofthearm(seefigure8)whichisafunctionovertime. whereg=(0;g;0)isthegravityvector,bisthepositionofthebasket,andhisthe alimitedrange.forexample,ahumancannotmovehis(her)armbackandup.to Wemaywanttoputsomelimitsonthejointanglesothatthearmonlymovesin (49)
37 CHAPTER2.PRELIMINARIES simulatethis,wecanlimittobeintherange[ ;=2].Thuswehavethefollowing inequality: (d) (t)=2;8t2[0;t2]: 24 suchastoperformthetasksspeciedbytheconstraintswithminimumenergyor someotherstyleconsideration.inthisexample,wecanusethegeneralizedforces (see(46))astheobjectivefunctiontominimize.noticethatthegeneralizedforce Aftertheconstraintsarespecied,theuserneedstosupplyanobjectivefunction (50) isafunctionovertime,soweneedtointegrateovertime.formallytheobjective functionisthefollowing: whereisthegeneralizedforce. constrainedoptimizationproblemwheretheunknownsareasetoffunctionsthrough Afteraseriousofspecicationsofobjectiveandconstraints,weendupwitha Z2((t);_(t);(t)); time(trajectories)ofeachdegreeoffreedom(dof).inthisexample,theoptimization (51) problemis: minimize(51) maticsanddynamicsformulasasderivedintheprevioussections.inthefollowing intermsoftheunknowns.ingeneral,thiscanbeperformedbyusingthethekine- Theunknownis(t)whichisascalarfunctionovertime. Inordertosolvetheoptimizationproblem,theexpressionshavetoberepresented s:t: (47) (50) (52) linkisdenoted0.theoriginofthelinkisdenotedq.let(qx;qy;0;1)denotethe thepurposeistodemonstratethegeneralframework. pressionsin(52).forsuchasimpleexample,thismaynotbethesimplestway,but wewillshowindetailhowtousetheformulasinprevioussectionstoderivetheex- Theworldcoordinatesystemisdenoted,andthelocalcoordinatesystemofthe
38 CHAPTER2.PRELIMINARIES homogeneouscoordinateofqwithrespectto.letldenotethelengthofthelink. Thetransformationmatrixof0is sin() sin()cos() CA,from(30), CA: (53) and_h=w0h0=0b@ Lsin()_ H=W0H0=0B@Lcos() 01 1CA Lcos()_ (54) Soconstraint(c)becomes 0 1CA qx+lcos() TLsin()_=bx (55) densityofthelinkisconstant,thenrlx=0x2dx=13l3=13l2mwheremisthe computethetorque,weneedtocomputetheinertialtensorj.assumingthemass wherebxandbyarethexandyworldcoordinatesofb.touseequation(46)to qy+lsin()+tlcos()_ 0:5gT2=by (56) massofthislink.therefore (57) J=0B@13L2m CA (58)
39 (thedetailsareomitted),onecanobtainthat CHAPTER2.PRELIMINARIES wheremeanswedon'tcareaboutthevalue.finallythecenterofgravityr0= (0;L=2;0)T.Nowwecanapplyequation(46),andaftersomealgebraicmanipulations 26 Insummary,wehavethefollowingoptimizationproblem: =13mL2+12mgLcos(): s:t:(0)= 2 minrt2 0(13mL2+mgL 2cos())2dt (59) qy+lsin((t1))+tlcos((t1))_(t1) 12gT2=by qx+lcos((t1)) TLsin((t1))_(t1)=bx (t2)= 2 _(0)=0 (t)=2;8t2[0;t2] _(t2)=0: (60) Problemslikethis,inwhichtheunknownsarefunctions(inthisexample,theunknown isthetrajectory(t)over[0;t2]),iscalledavariationalproblem[19].ingeneral,there Finiteelementmethodsconvertaninnitedimensionalproblemintoanitedimensionalproblembyreducingthefunctionspaceofpossibletrajectoriestoanite isnoclosedformsolution.numericallywecansolvethisproblembyusingnite elementmethodswhicharethetopicofthenextsection. 2.7TheFiniteElementMethod thefunctionspace.thenanydegreeoffreedomfunctioni(t)canberepresentedas alinearcombinationofthesebasisfunctions: dimensionalfunctionspace.forexample,wecanchoosesplinespaces,whichare havechosenanitedimensionalfunctionspace,wecanchooseabasisforthisspace. SupposeB1(t),B2(t),...,Br(t)arethebasisfunctionswhereristhedimensionof spacesofpiecewisepolynomials,asthenitedimensionalfunctionspaces.afterwe i(t)=ci1b1(t)+ci2b2(t)+:::+cirbr(t) (61)
40 CHAPTER2.PRELIMINARIES wherecijarecoecients.thederivativesaresimply _i(t)=ci1_b1(t)+ci2_b2(t)+:::+cir_br(t); (62) 27 andi(t)=ci1b1(t)+ci2b2(t)+:::+cirbr(t) optimizationproblem....,andcir.theproblemthusbecomesanitedimensionalnonlinearconstrained as(60),replacingtheunknowntrajectoryfunctionwithscalarunknownsci1,ci2, Wecansubstitutetheseequationsintothespacetimeconstraintformulationsuch (63) coecients)canbecomputedbyusingchainrules GivenafunctionF(i;_i;i),itsgradient(partialderivativeswithrespecttothe Eachintegralcanbeapproximatedbysomequadratureformulas[48].Thesimplest Foranintegralexpression,wehavethesimilarformula: @ibkdt (64) istosimplysumtheintegrandvaluesatsamplepointsoverthewholeintegration interval.tosaveunnecessarycomputations,weactuallyonlyneedtosamplepoints wherebkisnonzero.thesubintervaloverwhichbkisnonzeroiscalledthesupport (65) 2.8CubicSplines Splinesarepiecewisepolynomialswhichareusedtoapproximatefunctionsinnumericalcomputations.Inthisthesis,wemainlyusetwotypesofcubicsplines:Hermite Bkiscalledcompact. ofbk,andbkissaidtocoverthesupport.ifthesupportofbkisaniteinterval, here.thereaderisreferredto[22,4]fordescriptionsofgeneralsplines. splinesanduniformb-splines.sowewillonlytalkaboutthesetwotypesofsplines
41 Givenaninterval[t0;t1],andfournumbersA0,P0,A1andP1,thereisauniquecubic CHAPTER2.PRELIMINARIES 2.8.1HermiteSplines polynomial 28 sothath(t0)=a0; h(t)=a+b(t t0)+c(t t0)2+d(t t0)3 h(t1)=a1; dh(t0) dt=p0; (66) cally,wecanthinkoftheproblemasinterpolatingtwopoints(t0;a0)and(t1;a1)with ThispolynomialiscalledacubicHermitepolynomial(orHermitespline).Geometri- dh(t1) dt=p1: (67) ittobeh(a0;a1;p0;p1;t0;t1;;t)toshowitsdependenceona0;a1;p0;p1;t0;t1. andthisinterpolationmethodiscalledhermiteinterpolation.sometimeswedenote theslopesp0andp1,respectively.thecorrespondingcurveiscalledahermitecurve, Bysolvingequationsfrom(67),onecanndthat Substituting(68)into(66),andcollectingterms,wehavetherepresentationinterms a=a0; oflinearcombinationofbasisfunctions: b=p0; c=(3a1 3A0 P1(t1 t0) 2P0(t1 t0)) d=2a0 2A1+P1(t1 t0)+p0(t1 t0) (t1 t0)3 (t1 t0)2 ; wherethebasisfunctionsare h(t)=a0b0(t)+a1b1(t)+p0b2(t)+p1b3(t) B2(t)=(t t0)+ 2(t1 t0)(t1 t0)3(t t0)3 B0(t)=1+ 3 B1(t)=3 (t1 t0)2(t t0)2+ 2 (t1 t0)2(t t0)2+2 (t1 t0)2(t t0)2+(t1 t0) (t1 t0)3(t t0)3 (t1 t0)3(t t0)3 (69) B3(t)= (t1 t0) (t1 t0)2(t t0)2+(t1 t0) (t1 t0)3(t t0)3 (70)
42 CHAPTER2.PRELIMINARIES Figure9showsthefourbasisfunctionswitht0=0andt1= A0;A1;:::;AnandP0;P1;:::;Pn,thereisauniquefunctionH(t)whichisapolynomial overeachsubinterval[ti;ti+1],sothath(ti)=aianddh(ti) Figure9:TheHermitesplinebasisfunctionsover[0;1] H(t)iscalledaHermitecubicspline,orpiecewiseHermitecubiccurve,orHermite Supposewearegivenasequenceofpointst0<t1<:::<tn.Foranygiven H(t)=h(Ai;Ai+1;Pi;Pi+1;ti;ti+1;t);t2[ti;ti+1];0in 1: dt=pi.infact, (71) x sincethebasisrepresentationisrarelyused,wewillnotgivethedetails.itisnot interpolation. hardtoverifythatthathermitesplineshavecontinuousrstorderderivatives,but notsecondorderderivatives. Wecanalsoobtainthebasisfunctionrepresentationbyusing(69).However, TherearerichtheoriesaboutgeneralB-splines[4],butweonlydescribecubicuniform 2.8.2UniformB-splines B-spineshere. 0;:::;n 1,wherenissomepositiveinteger.Inotherwords,eachsplineisa(cubic) FirstweconsiderB-splinesovertheinterval[0;n]withnsegments[i;i+1];i= y
43 CHAPTER2.PRELIMINARIES functionsbi(t);i= 3; 2; 1;0;1;:::;n 1,where polynomialovereachsubinterval[i;i+1],i=0;:::;n 1.Therearen+3basis Figure10:TheuniformB-splinebasisfunctionsover[0;4] B0(t)=8><>: t36 3(t 1)3+3(t 1)2+3(t 1) (4 t)3 3(t 2)3 6(t 2) t<0 0t<1 2t<3 1t< t<4 x andtheotherbasisfunctionsareallthetranslationsofb0(t):bi(t)=b(t i), i= 3; 2;:::;n 1.Figure10showsthe7basisfunctionsover[0;4]:B 3;:::;B3. 0 4t (72) EachB-splinecurveisalinearcombinationofthesebasisfunctions Bi 2(t),Bi 1(t),andBi(t).Thus wheretheci'sarecoecients.noticethatforanyt2[0;n],thereareonlyfourbasis functionswhicharenonzeroatt.ift2[i;i+1],thesefourbasisfunctionsarebi 3(t), b(t)=n 1 X b(t)=ci 3Bi 3(t)+ci 2Bi 2(t)+ci 1Bi 1(t)+ciBi(t): (74) y i= 3ciBi(t); (73)
44 CHAPTER2.PRELIMINARIES lineartransformations.theb-splinebasisfunctionsover[a;b]are B-splinesovertheinterval[a;b]canbeobtainedfromB-splinesover[0;n]using Bi(t)=Bi(t a b an);i= 3; 2;:::;n 1: (75) 31 terminologyanddescribetheconstructionoftwowavelets:haarwaveletsandchui-.2.9wavelets Inthissection,wegiveabriefintroductiontowavelets.Wewillintroducesome thesetwofunctionsisdenedas WangB-wavelets.Forageneralandmoretheoreticaltreatmentofwavelets,the readerisreferredtothemonographsbychui[12]anddaubechies[16].partofthe materialsgiveninthissectionisextractedfrom[40]. functionspaces.givenanytwofunctionsf(t)andg(t),the(l2)innerproductof Beforewegototheintroductiontowavelets,let'sreviewafewconceptsregarding (hf(t);f(t)i)12iscalledthe(l2)normoff(t),denotedbyjjfjj.ifhf(t);g(t)i=0,we sayfandgareorthogonaltoeachother.givenanytwofunctionspacesvandw, theirsumisafunctionspacewhichconsistsofallthefunctionsoftheformf(t)+g(t) hf(t);g(t)i=z+1 wheref2vandg2w.ifallfunctionsinvareorthogonaltoallfunctionsinw, 1f(t)g(t)dt (76) h(t)=f(t)+g(t).inthiscase,f(t)iscalledtheorthogonalprojectionofh(t)into calledadirectsum,andisdenotedbyv_+w. V.Itisanimportantfactthatf(t)isthebestapproximationofh(t)inthespaceV, thatis, thenvandwareorthogonaltoeachother,inwhichcase,thesumofvandwis IfU=V_+W,thenforanyh(t)2U,thereexistf(t)2Vandg(t)2Wsothat Theproofissimplythefollowing: jja hjj2=jja f gjj2=jja fjj2+jjgjj2jjgjj2=jjf hjj2: jjf hjjjja hjj;8a(t)2v: (77) (78)
45 CHAPTER2.PRELIMINARIES 32 ToillustratethebasicconceptoftheHaarwaveletconstruction,let'sconsiderthe 2.9.1HaarWavelets spacevlofallthosefunctionswhicharedenedover[0;1]andarelinearcombinations Figure11:TwoscalerelationshipofHaarbasis positiveinteger,and ofthe2lbasisfunctionsl;j(t)=(2lt j),j2[0;2l 1],whereLissomegiven whichareconstantsovereachinterval[2 Lj;2 L(j+1)),j2[0;2L 1].Nowlet's (t)=8<:10t<1 considervl 1whichisgeneratedbythe2L 1basisfunctionsL 1;j(t)=(2L 1t j) to1over[2 Lj;2 L(j+1))and0elsewhere.SoVLconsistsofallthosefunctions iscalledascalefunction.foreachj2[0;2l 1],L;jisaboxfunctionwhichisequal 0otherwise (79) VL;j,weneedthefollowingequality,calledthetwoscalerelationship, aswideasthoseinvl.clearly, wherej2[0;2l 1 1].EachbasisfunctionL 1;jisalsoaboxfunction,butistwice ToseehowtorepresentL 1;jasalinearcombinationofthosebasisfunctionsin (t)=(2t)+(2t 1): VL 1VL: (81) (80) thatis, SeeFigure11. Substituting2L 1t jfortin(81),weobtain L 1;j=L;2j+L;2j+1: (2L 1t j)=(2lt 2j)+(2Lt 2j 1); (83) (82) ϕ(t) ϕ(2t) ϕ(2t 1) =
46 CHAPTER2.PRELIMINARIES 33 thatvl 1_+WL 1=VL: SinceVL 1VL,theremustexistasubspaceWL 1ofVLorthogonaltoVL 1so Figure12:TheHaarwaveletfunction (t) ThisiscalledadecompositionofVL.Infact,WL 1isgeneratedbythefollowingbasis functions: L 1;j(t)= (2L 1t j);j2[0;2l 1]; (84) where (t)=8><>: 10t<1=2 0otherwise 11=2t<1 (86) (85) fortintheaboveequality,weobtain asshowninfigure12 whichiscalledthetwoscalerelationshipforwaveletfunctions.substituting2l 1t j Inthefollowing,weshowwhy(84)istrue.Itiseasytoseethat (2L 1t j)= (2Lt 2j)+(2Lt 2j 1); (t)= (2t)+(2t 1); (88) (87) 1 1 ψ(t) t
47 CHAPTER2.PRELIMINARIES thatis L 1;j= L;2j+L;2j+1: (89) 34 Theinverseof(83)and(89)is Thisshowsthat WL 1VL: L;2j=12L 1;j 12 L;2j+1=12L 1;j+12 L 1;j (90) ThisshowsthatVLVL 1_+WL 1;ItisatrivialvericationtoseewhyL 1;jis orthogonalto Noweachfunctionf(t)inVLhastworepresentations: L 1;iforalliandj.Therefore(84)holds. (91) andf(t)=2l 1 1 Xj=0cL;jL;j; Xj=0cL 1;jL 1;j+2L 1 1 Xj=0wL 1;j L 1;j: (92) Asdiscussedinthebeginningofthissection,thetermPjcL 1;jL 1;jisthebestapproximationoff(t)inthespaceVL 1,andiscalledthesmoothpartoff(t).Theother termpjwl 1;j L 1;jisthedierenceofthisapproximationfromtheoriginalfunction (93) f(t),calledthedetailpart.thecoecientscl 1;j'sarecalledsmoothcoecients,and thecoecientswl 1;j'sarecalleddetail(orwavelet)coecients. fcl;jg2l 1 Nowlet'sseehowtotransformbetweenthetwosetsofcoecients,namely, j=0andfcl 1;j;wL 1;jg2L 1 1 f(t)=p2l =P2L 1 1 j=0(cl;2j(12l 1;j 12 j=0(cl;2jl;2j+cl;2j+1l;2j+1) j=0cl;jl;j j=0((12cl;2j+12cl;2j+1)l 1;j+( 12cL;2j+12cL;2j+1) j=0.from(92),wehave L 1;j)+cL;2j+1(12L 1;j+12 L 1;j)) L 1;j)(94)
48 CHAPTER2.PRELIMINARIES wherethethirdequalityisfrom(91)andthelastoneisbycollectingterms.compare thiswith(93),wehave cl 1;j=12cL;2j+12cL;2j+1 35 Wecanimmediatelyseetheinverseofthisrelationship,namely, wl 1;j= 12cL;2j+12cL;2j+1 cl;2j+1=cl 1;j+wL 1;j cl;2j=cl 1;j wl 1;j (96) (95) andanyfunctionf(t)2vlcanberepresentedas way,wehaveanotherdecompositionofvl WecanrepeatthisdecompositionlogicandreplaceVL 1byVL 2_+WL 2.Inthis Ingeneral,foranyL0<L,wehaveadecompositionofVL: f(t)=2l 2 1 VL=VL 2_+WL 2_+WL 1; Xj=0cL 2;jL 2;j+2L 1 1 Xj=0wL 2;j L 2;j+2L 1 1 Xj=0wL 1;j L 1;j: (97) VL=VL L0_+L 1 i=l L0Wi; X (98) andf(t)canberepresentedas f(t)=2l L0 1 Xj=0cL L0;jL L0;j+L 1 l=l L02l 1 XXj=0wl;j l;j: (100) (99) WhenL0=L,wehave andf(t)=c0;00;0+l 1 VL=V0_+L 1 Xi=0Wi; ThecasewhenL=3isshowninFigure13. Xl=02l 1 Xj=0wl;j l;j: (101) (102)
49 CHAPTER2.PRELIMINARIES 36 ϕ waveletbasis(orsimplyhaarbasis).inthisnewbasis,each Thisnewbasisf0;0g[f Figure13:HaarbasisfunctionswhenL=3 l;jj0j2l 1;0lL 1giscalledtheHaar 0,0 average,andateachlevelgoingdown,thewaveletbasisfunctionsrepresentthener (orawaveletfunction).andallthefunctions functionshierarchically.thewidestboxfunction0;0(t)=(t)representstheoverall translationofthesinglefunction Thisnewbasisalsocontains1+PL 1 (t).thisspecialfunction l=02l=2lbasisfunctions.butitrepresents l;jarecalledwaveletfunctions. (t)iscalledawavelet l;jisascalingand andnerdetails.ifatsomepoint,thefunctionhasnomoredetail(i.e.,thefunction isconstantoverthesupportofthewavelet),thecorrespondingwaveletcoecientwill bezeroaswillallnerwaveletsbelow. Forexample,considerthefunction(seeFigure14) f(t)=8><>:2t2[0;14) 2t2[14;24) coecients2:25;0:25;0,and 1:5,respectively(wewilldescribethealgorithmsto respectively.alternatively,onecanusethewaveletbasis0;0; Wecanuse2;0,2;1,2;2,and2;3torepresentf(t)byusingcoecients2;2;4;1, 4t2[24;34) 1t2[34;1) 0;0; 1;0,and 1;1with (103) iscalledapyramidtransformation.giventhecoecientsfcl;jg2l 1 thecoecientof functionissmooth(constant)overinterval[0;0:5]which computethesecoecientslater).noticethatthecoecientof ThetransformationtoandfromthecoecientsoftheHaarwaveletbasisfunctions 0;0is2.25,theaveragevalueoverthethewholedomain. 1;0covers.Alsonotethat 1;0is0,becausethe j=0oftheoriginal ψ 0,0 ψ 1,0 ψ 1,1 ψ 2,0 ψ 2,1 ψ 2,2 ψ 2,3
50 CHAPTER2.PRELIMINARIES 37 basisfunctions,thecoecientsofthehaarbasisfunctionscanbecomputedbyusing theformula(95)(seehaarcoefxformup)ltimes,asshowninhaarcoefpyrmup. Conversely,giventhecoecientsoftheHaarbasis,c0;0andwl;j,j2[0;2l 1] l2[0;l 1],haarcoefpyrmdowncomputescL;j;j2[0;2L 1],byapplying(96) Figure14:f(t)=22;0+22;1+42;2+2;3=2:250;0+0:25 0;0 1:51;1 (seehaarcoefxformdown)ltimes. haarcoefpyrmup(cin[],cout[],wout[][],l) cout[0]=ctemp[0][0]; for(l=l;l1;l ) ctemp[l][]=cin[]; haarcoefxformup(ctemp[l][],ctemp[l 1][], wout[l 1][],l); f(t) 1/4 2/4 3/4 1 t
51 CHAPTER2.PRELIMINARIES haarcoefpyrmdown(cin[],win[][],cout[],l) ctemp[0][0]=cin[0]; 38 for(l=1;ll;l++) cout[]=ctemp[l][]; haarcoefxformdown(ctemp[l 1][],win[l 1][], ctemp[l][],l); haarcoefxformup(cin[],cout[],wout[],l) gfor(j=0;j<2l 1;j++)f wout[j]= 12cin[2j]+12cin[2j+1]; cout[j]=12cin[2j]+12cin[2j+1]; haarcoefxformdown(cin[],win[],cout[],l) for(j=0;j<2l 1;j++)f cout[2j]=cin[j] win[j]; 2L+1 1,andhencetheyruninlineartime(intermsofthenumberofbasisfunctions, gbothhaarcoefpyrmupandhaarcoefpyrmdowntaketime2l+2l 1+:::+1= cout[2j+1]=cin[j]+win[j]; whichis2linthiscase).
52 thenconsiderwaveletsontheintervalinthenextsection. Inthissection,weconsiderthewaveletsonthewholereallineRrst,andwewill CHAPTER2.PRELIMINARIES 2.9.2B-splineWavelets 39 generatedbyboxfunctions(zeroorderb-splines),b-splinewaveletbasisisanalternatebasisforthefunctionspacegeneratedbycubicb-splinefunctions(inthis section,wewillonlyconsideruniformcubicb-splines).thescalefunctionisthe cubicb-splinebasisfunction: UnliketheHaarwaveletbasiswhichisanalternatebasisforthefunctionspace andletvlbethefunctionspacegeneratedbyfl;jjj2zgwherezissetofall whereb0isdenedin(72).similarlydene L;j=(2Lt j); (t)=b0(t) (105) (104) wellknownb-splineknotinsertionalgorithm[5,12],whichis ThetwoscalerelationshipfortheB-splinescalefunctioncanbeobtainedfromthe integers.againwehave (t)=4xi=0hi(2t i): VL 1VL: (106) wherethenonzeroelementsofhisdenedinthefollowing: h[0::4]=18f1;4;6;4;1g: (107) obtainl 1;j=2j+4 Substituting2L 1t jfort,andreplacingibyk 2jontherighthandside,we k=2jhk 2jL;k X (109) (108) SeeFigure15. functionsothatitsscalingandtranslationsformabasisofwl 1.Actuallythereare SimilarlythereexistsaWL 1sothatVL=VL 1_+WL 1,andthereexistsawavelet
53 CHAPTER2.PRELIMINARIES 40 Figure15:FiveB-splinesL;jmaybecombinedusingtheweightshtoconstructthe morethanonesuchwaveletfunction.theonewegivebelowiscalledchui-wang Figure16:ElevenB-splinesL;jmaybecombinedusingtheweightsgtoconstruct thewaveletfunction L 1;0 doublewidthb-splinel 1;0g B-wavelet[12].ThetwoscalerelationshipforChui-WangB-waveletfunctionis wherethesequencegisgiveninthefollowing(see[40,50]): g[0::10]=18!f 1;124; 1677;7904; 18482;24264; 18482;7904; (t)=10xi=0gi(2t i): 1677;124; 1g: (111) (110) obtain Substituting2L 1t jfort,andreplacingibyk 2jontherighthandside,we ofl 1;jand SeeFigure16. Similarto(91)inHaarwaveletcase,onecanalsorepresentL;jasacombination L 1;j=2j+10 L 1;jasthefollowing: k=2jgk 2jL;k X (112) L;j=Xk~hj 2kL 1;k+Xk~gj 2k L 1;k (113) φ L 1 φ L ψ L 1 φ L 0 g = h = 1/8 * φ L 1,0 ψ L 1,0 g 1 g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10
54 functionsanddualwavelets. CHAPTER2.PRELIMINARIES Toseehowtocompute~hand~g,weneedtointroducetheconceptofdualscaling Thefunctions~L;jarecalleddualtoL;k(ordualscalingfunctions)if 41 wherej;k=8<:1j=k h~l;j;l;ki=j;k;j;k2z 0j6=k (114) iscalledthekroneckerdelta. Thefunction~L;jarecalleddualto h~l;j; L;ki=j;k;j;k2Z L;k(ordualwavelets)if and~gj 2k=hL;j;~L 1;ki; Takinginnerproductsin(113)with~L 1;kand~L 1;krespectively,weobtain ~hj 2k=hL;j;~L 1;ki; (116) (115) [12].Thesequences~hand~ghaveinnitelengthbutdecayquicklyfromtheircenters. coecientscanbederivedinthesamewayasinthehaarwavelets.similarto(92) ThepyramidtransformationbetweentheB-splinecoecientsandthewavelet Thederivationofthedualscalingfunctionsandthedualwaveletsaredescribedin (117) and(93),afunctioninvlhastworepresentations: andf(t)=xjcl 1;jL 1;j+XjwL 1;j f(t)=xjcl;jl;j; L 1;j: (118) Comparing(118)and(119),andsubstituting(109)and(112)into(119),weobtain XjcL;jL;j=XjcL 1;j2j+4 k=2jhk 2jL;k+XjwL 1;j2j+10 X k=2jgk 2jL;k X (120) (119)
55 CHAPTER2.PRELIMINARIES Exchangingthesummationorders,weobtain XjcL;jL;j=XkX k=2 2jk=2cL 1;jhk 2jL;k+XkX k=2 5jk=2wL 1;jgk 2jL;k(121) 42 obtaincl 1;j=XjcL;j~hj 2k; Therefore Similarlyifwesubstitute(113)into(119),andcomparing(118)and(119),we cl;k=x k=2 2jk=2cL 1;jhk 2j+X k=2 5jk=2wL 1;jgk 2j (123) (122) andwl 1;j=XjcL;j~gj 2k: whicharedenedoverthewholerealliner.butinananimationcontext,only 2.9.3B-splineWaveletsonaBoundedInterval TheB-splinewaveletsdescribedinthelastsectionareusedtorepresentfunctions (124) a)=(b a))sothatg(t)isdenedover[0;1]. functions. afunctionf(t)denedoverageneralinterval[a;b],onecandeneg(t)=f((t eciencypointofview,itisimportanttoonlydealwithanitenumberofbasis functionsoversomexedniteintervaloftimeneedtobeexpressed,and,fromthe zero'sin[0;1]canbeignored.letvlj[0;1]denotethespaceofthefunctionsofvl truncatedon[0;1].itiseasytocheckthatonlyforj2[ 3;2L 1],L;j(t)'ssupport Sinceweareonlyinterestedintheinterval[0;1],thosebasisfunctionswhichare Withoutlossofgenerality,weassumeallthefunctionsaredenedover[0;1].For intersects[0;1].andthesefunctionsarelinearlyindependent.sothebasisfunctions ofvlj[0;1]arefl;jjj= 3;:::;2L 1g,andhencethedimensionofVLj[0;1]is2L+3. entirelyinside[0;1].theyarecalledinnerb-splinebasisfunctions.andthereare 3functionstruncatedoneachofthetwoboundaries,whicharecalledleftandright boundaryb-splinebasisfunctions.fortheboundarybasisfunctions,analternative Amongthisbasis,thereare2L 3functions,L;j;j2[0;2L 4],whosesupportsare
56 CHAPTER2.PRELIMINARIES wayistousespecialboundarybasisfunctionsthatarisefromplacingquadrupleknots attheboundaries[5].thiscompletesetofbasisfunctionswillbedenotedl;jwith jin[ 3;2L 1],whereitisunderstoodthattherstandlastthreebasisfunctions 43 arethespecialboundaryb-splinebasisfunctions. basisfunctionsas lastthreebasisfunctionsarethespecialboundarywaveletbasisfunctionswhichwill boundarywaveletbasisfunctions.theinnerbasisfunctionsare 7,asdenedin(112).Theseinnerbasisfunctionsliecompletelyinside[0;1].There arethreespecialboundarywaveletbasisfunctionsoneachside.wedenotethese ThewaveletbasisforWL 1j[0;1]alsocontainsinnerwaveletbasisfunctionsand bedescribedbelow.afulldescriptionofthisconstructionisgivenin[11,50]. L 1;jj2[ 3;2L 1 4],withtheunderstandingthattherstand L 1;j,j=0;:::;2L 1 wherehj;karegivenbelow: ThetwoscalerelationshipsfortheboundaryB-splinebasisfunctionsare L 1;2L 1 (4+j)=P2j+4 L 1;j k=jhj;kl;2l 4 k;j2[ 3; 1] k=jhj;kl;k;j2[ 3; 1] h 2;[ 2;0]=116f8;12;3g; h 3;[ 3; 2]=116f16;8g; (125) Thetwoscalerelationshipsfortheboundarywaveletbasisfunctionsare h 1;[ 1;2]=116f4;11;8;2g: L 1;j L 1;2L 1 (7+j)=P10+2j k= 3gj;kL;k;j2[ 3; 1] k= 3gj;kL;2L 4 k;j2[ 3; 1] (126) (127)
57 CHAPTER2.PRELIMINARIES wheregj;karegivenbelow(see[40,50]): 44 18! g g g 11CA B@ (128) : : 0 HerethestartingsmoothfunctionspaceisV3insteadofV0asinthecaseofHaar Similartotheequation(101),onecanobtainthedecompositionofVLas VL=V3_+L 1 Xl=3Wl : basisfunctionsdon'tintersecttherightboundaryfunctions.thecorrespondingbasis waveletbasis.thereasonisbecauseweneedtomakesuretheleftboundarywavelet consistsofthefunctionsf3;kjk2[ 3;7]g[[L 1 l=3f l;kjk2[ 3;2l 4]g. (129) theprocedurecoefxfromdownasdenedbelowcomputesthecoecientsfcl;jjj2 [ 3;2L 1]gbyusing(109),(112),(125)and(127): GiventhecoecientsfcL 1;jjj2[ 3;2L 1 1]gandfwL 1;jjj2[ 3;2L 1 4]g,
58 CHAPTER2.PRELIMINARIES coefxformdown(cin[],win[],cout[],l) cout=0;/*zerovector*/ 45 for(k=0;k2l 1 4;k++) for(kin[ 3, 2, 1,2L 1 3,2L 1 2,2L 1 1]) for(k=0;k2l 1 7;k++) for(j=2k;j(2k+10);j++) for(j=2k;j(2k+4);j++) cout[j]+=g[j 2k]win[k]; cout[j]+=h[j 2k]cin[k]; for(kin[ 3, 2, 1,2L 1 4,2L 1 5,2L 1 6]) cout+=hkcin[k];/*vectoraddition*/ g2l 1 j;k=gj 7;2L 4 k,2l 2jk2L 1,j=1;2;3. where h2l 1 j;k=hj 4;2L 4 k,2l 2jk2L j,j=1;2;3, cout+=gkwin[k]; andsotheinverseprocedurecoefxformup(cin[],cout[],wout[],l)canbe obtainedbysolvingthisbandedlinearsystem. Theaboveprocedurecanbeexpressedasmultiplicationbyabandedmatrix, indexingusinglinearstorage). transformsan2l+3-vectortoan2l+3-vector,itcanbeimplementedwithproper tocoefxformupeachtimewithaninputvectorof12thelength.(notesincethis cientscanbedonebyusingtheprocedurecoefpyrmup,thatmakesl 3calls ThetransformationfromtheB-spinecoecientstothefullwaveletbasiscoef-
59 CHAPTER2.PRELIMINARIES coefpyrmup(cin[],cout[],wout[][],l) ctemp[l][]=cin[]; 46 for(i=l;i4;i ) Theinversetransformationis cout[]=ctemp[3][]; coefxformup(ctemp[i][],ctemp[i 1][], wout[i 1][],i); coefpyrmdown(cin[],win[][],cout[],l) for(i=4;il;i++) ctemp[3][]=cin[]; coefxformdown(ctemp[i 1][],win[i 1][], series(2l+2l2+2l4+:::+1)=o(2l),sotheyruninlineartime. Therunningtimeofthesepyramidtransformationsisgovernedbythegeometric cout[]=ctemp[l][]; ctemp[i][],i); Anunconstrainedminimizationproblemhastheform UnconstrainedOptimization 2.10NonlinearOptimization wheref(c)=f(c1;c2;:::;cn)isamultivariatefunction,andrnisthen-dimensional Euclideanspace.Apointxiscalledalocalminimumpointiff(x)hasthesmallest minimizef(c);c2rn (130)
60 thesmallestvalueinthewholespacern. CHAPTER2.PRELIMINARIES valueinsomeneighborhoodofx.xiscalledaglobalminimumpointiff(x)has Wewillonlydiscussthemethodofndinglocalminimumpoints.Theproblem 47 ofndingtheglobalminimumpointisconsiderablymoredicultandnopractical methodshavebeenfoundsofar.theinterestedreaderisreferredto[18]. whereg(x)isthegradientoffatx[21].suchapoint,atwhichthegradientiszero, iscalledastablepoint.alocalminimumpointmustbeastablepoint,butthestable pointmaynotbealocalminimumpoint.however,almostalltheknownnonlinear optimizationmethodscanonlyguaranteetondastablepoint. Thenecessaryconditionsforxtobealocalminimumpointisthatg(x)=0, pointhasbeenfound).otherwise,letsk= gk. Thesimplestmethodisthegradientdecentmethod: Initialization:letc0betheinitialguess.andk=0. Step1. Step1:computethegradientgkoff(c)atck.Ifgk=0,terminate(thestable Step4:Stopifterminationconditionholds.Otherwise,letk:=k+1andgoto Step3:setck+1=ck+ksk. Step2:nd(k)tominimizeF(ck+sk). NoticethatdF(ck+sk) Thisensuresthatthefunctionvaluestrictlydecreasesateachstep.Whengk=0, isclosetozero.suchadirectionskiscalledadecentdirection.fromstep2and step3,f(ck+1)<f(ck): dj=0=gtksk= gtkgk<0:sof(ck+sk)isdecreasingwhen thenwehavereachedastablepoint,sowearedone.inpractice,weusuallywantto terminatewhenthesolutionisclosetoaminimumpoint.thechoiceoftermination conditionsdependontheapplications.somepossibilitiesare(1)jf(ck+1) F(ck)j<, (131) othermethodswhichrequiresecondorderderivatives,thismethodisalotcheaper. possibilitiesanddiscussions. chosenc0[21].suchpropertyiscalledglobalconvergence.anotheradvantageofthis methodisthatitonlyrequirescomputingtherstorderderivatives.comparedto or(2)jjgkjj<,or(3)jjck+1 ckjj<.thereaderisreferredto[21]forother Itcanbeprovedthat,underminorcondition,thismethodconvergesforany
61 CHAPTER2.PRELIMINARIES solutionsgetclosetothenalsolution,thesolutionmaytendtobouncebackand force.this\zigzag"phenomenoncanbecomeseriousandresultinpoorconvergence. Therateofconvergence,however,isonlylinear.Especiallywhentheiterative 48 ton'smethodisessentiallyarootndingmethodappliedtothegradientfunction. Theschemeisthesameasthegradientdecentmethodexceptskisdierent.Here sk= G 1 gence,butitmaynotconvergeforsomeinitialguesses.thereasonisthefollowing. Afastermethod,whichusessecondorderderivatives,isNewton'smethod.New- searchdirectionsk= G 1 Toensureconvergence,theobjectivevaluehastodecreaseateachiteration,i.e.,the positivedenite.therefore,inordertoensuretheconvergence,theinitialguessc0 hastobechosensuchthatthehessianmatrixatc0andallthesubsequentiterative kgkwheregkisthehessianmatrix.thismethodhasquadraticconver- pointsareallpositivedenite.forsimplicity,let'sassumethatthehessianmatrixat theoptimalsolutionispositivedenite.bycontinuity(assumingthattheobjective functionhassecondcontinuousderivatives),thereexistsaneighborhoodoftheoptimalsolution,suchthatthehessianmatrixatanypointinthisregionisalsopositive denite.ifwepickupc0fromthisregion,thenitcanbeshownthatallthesubse- theoptimalsolution,wesayitconvergeslocally. majordisadvantageisthatitrequirescomputingsecondorderderivativeswhichmay beexpensiveinpractice. EventhoughNewton'smethodcanbemodiedtoensureglobalconvergence,its kgkhastobeadecentdirection.thisrequiresgktobe [21].SinceNewton'smethodconvergencesonlywhenc0isinsomeneighborhoodof quentiterativepointsarealsointhisregion.thereforetheconvergenceisguaranteed. Foramoregeneraldiscussionontheconvergencecriteria,thereaderisreferredto whichhasbeenusedsuccessfullyinpracticeisthebroyden-fletcher-goldfarb-shanno (BFGS)method.IntheBFGSmethod,H0ischosenbytheuserwhichshouldbe matrixhkwhichiscorrectedorupdatedfromiterationtoiteration.onesuchmethod, Newton'smethodbutonlyrequirerstorderderivatives.Thistypeofmethodislike Newton'smethod,exceptthatG 1 Quasi-Newtonmethodsareaclassofmethodswithconvergenceratecloseto kisapproximatedbyasymmetricpositivedenite
62 CHAPTER2.PRELIMINARIES apositivedenitematrix(e.g.theidentity)toensurethats0= H0g0isadecent direction.ateachiteration,hkisupdatedbyusingtheformula Hk+1=Hk+ 1+THk T!T T THk+HkT 49 =ck+1 ck(thechangeinthecoecients). where=rfk+1 rfk(thechangeinthegradientofthecostfunction)and T! Hk'sarealsopositivedenite,andasaresult,sk'sarealldecentdirections.Therefore ItcanbeshownthataslongasH0ispositivedenite,thenallthesubsequent (132) whenh0ischosentobepositivedenitesuchastheidentity,bfgsmethodconverges foranychosenc0. Fletcher'sbook[21].Inourapplication,wedon'twanttocomputethegradientsduringthelinesearchsincegradientcomputationisexpensive.Thereforewewillonly discussmethodswhichdonotneedgradientcomputation.weperformanapproxi- iscalledalinesearch.thereareavarietyoflinesearchmethodsasdiscussedin Nomatterwhetherweusegradientdecentmethodorquasi-Newtonmethod,atstep LineSearch matelinesearch,thatis,weseekansothatf(ck+sk)sucientlydecreases(from 2ofeachiteration,weneedtondk>0whichminimizesF(ck+sk).Thisstep F(ck)).Wewilldescribetwosuchmethods:bisectionandquadraticinterpolation. userhastochooseaninitialguess0>0.tomakesurethat0isnottoosmall,we cantesttoseeifboth andf(0)<f(0=2): Forconvenience,denotef()=F(ck+sk).Foranylinesearchmethod,the Ifoneofthemisnottrue,thenweknowthatthereisaminimumpointintheinterval f(0)<f(0) (133) [0;0].Otherwise,wecandouble0toseeifthenew0(afterdoubled)satises (133)and(134).Repeatthisprocessuntilwenda0whichdoesn'tsatisfybothof (134)
63 CHAPTER2.PRELIMINARIES foata,b; oatbisectlinesearch(oat0) 50 fif(f(a)<f(b)) a=0; b=0; while(terminationconditionisnottrue) ggreturn(f(a)<f(b)?a:b); elsea=(a+b)/2; b=(a+b)/2; them.noticethattheoreticallyforsomefunctionsitmaytakeforevertondsuch 0,butinourexperiments,itcanalwaysbefoundeasily. bystartingwith[a;b],wherea=0andb=0,andcomparef(a)andf(b).if Thesimplestlinesearchmethodisthebisectionmethod.Bisectionmethodworks Figure17:Linesearch:bisectionmethod f:=df(0) (Figure17). be[(a+b)=2;b],andrepeatuntilsomeprespeciedterminationconditionissatised f(a)<f(b)thenletthenewintervalbe[a;(a+b)=2],otherwiseletthenewinterval f0+_ sothesearchstops.otherwise,wecomputetheminimumpointofthequadratic functioninterpolatedfromf0,fkand ThepseudocodeforthequadraticinterpolationmethodisgiveninFigure18. f0+f1+f1 f0 _ Thismethodseeksanksothatf(k)f0+0:5k_ f<f0+0:5_ d.noticethatsuchkmustexistsincewhenapproaches0,f() 212.Theminimumpointis _ f1f.iff(k)f0+0:5k_ f.theinterpolatedquadraticfunctionis f,thenf(k)hasdecreasedsuciently, 2f1 f0 _ ffwheref0:=f(0),and thealgorithm. Nowweshowthat0<k+1<ksothatwecanrepeatthisprocess. 21whichisusedask+1in f1
64 CHAPTER2.PRELIMINARIES 51 oatquadraticinterpolationlinesearch foat_ fi(i1)isanarraytodenotef(i). 1:=0; while(1) oatf0:=f(0); intk:=1; i(i1)isanarraystoringthevaluesintheiterations f:=df(0) d; ffk:=f(k) if(fkf0+k elsereturnk; fk+1:= _ 2_ f) gfigure18:linesearch:quadraticinterpolation ggk++; 2fk f0 _ (k)2. ffk
65 CHAPTER2.PRELIMINARIES Infact,sincef(k)>f0+0:5k_ k+1>0; f,fromthedenitionofkwehave (135) 52 andbyarrangingterms,oneobtains Adding 2 _ f<2(fk f0) ftobothsides,oneobtains =2kfk f0 kf k: k 2_ (k)2: (136) Dividingbothsidesby2fk f0 k k+1<k: (k)2,wehave (137) ConstrainedOptimization Aconstrainedminimizationproblemhastheform minimizef(c) (138) wheref(c)istheobjectivefunctiontominimize,theci'sarecalledequalityconstraints,andthedi'sarecalledinequalityconstraints. subjecttoci(c)=0;i=1;2;:::;m1 Aconstrainedoptimizationproblemcanbetransformedintoanunconstrained Di(c)0;i=1;2;:::;m2 (139) oneusingpenaltyfunctions.suchas problem139(fortheconstrainedoptimizationproblem,themeaningofstablepoint wherew1iandw2iarepositivenumbers,calledweights.itcanbeshownthat,as w1iandw2itendto1,thestablepointsofapproachthestablepointsofthe =F+m1 Xi=1w1iC2i+m2 Xi=1w2i(min(Di;0))2; hastobemodied.thisleadstothedenitionofkuhn-tuckerconditions[21]which isnotdiscussedinthisthesis).
66 CHAPTER2.PRELIMINARIES asdiscussedpreviously. Anothermoredirectmethodiscalledsequentialquadraticprogramming.Thisconsistsofasequenceofquadraticsubproblems(whicharesecondorderapproximations oftheoriginalproblem)makingaseriesofnewtonstepstowardsasolution.theattractionofthemethodisitsquadraticconvergence.buttherearetwodisadvantages. Afterthetransformation,wecanapplytheunconstrainedoptimizationmethod 53 methodrequirescomputingexplicithessian,thatis,secondorderderivatives.in theconvergencerate[21]).thesecondandmoreseriousdisadvantageisthatthis arenotclosetotheoptimalsolution,thismethodmaydiverge.however,thereare somewaystomodifythismethodtoensureglobalconvergence(withthesacriceof initialguessesaresucientlyclosetheoptimumsolution.whentheinitialguesses Firsttheconvergenceislocal,meaningthatthismethodconvergesonlywhenthe practice,thisisoftenexpensive.inourapplicationsasdescribedinthelaterchapters,computinghessiansisconsiderablymoreexpensivethancomputinggradients. However,thismethodhasbeenusedtosolvespacetimeconstraintproblems[56,13]. Whenthegurebecomesmorecomplex,theHessiancomputationalonecanbecome asthequasi-newtonmethods. computationallyforbidding.thus,weusemethodswhichonlyneedgradients,such thelackofgradients,thesemethodsdonothaveadecentnaturemeaningthatthe objectivevaluecangoupanddownduringthesolutionprocess.thustheconvergence nextsolutionisfoundwithsomerandomness(thesearchdirectionmayberandomly chosenorthenewsolutionisgeneratedthroughsomerandomprocess).becauseof search[54],geneticsearch[43],etc.ateachiterationofthesesearchmethods,the Thereareothersearchmethodswhichdonotrequiregradientssuchasstochastic methodsusinggradientinformation. 2.11InteractiveSpacetimeConstraintSystem Theinteractivespacetimeconstraintsystem,introducedbyCohen[13]in1992,has cannotbeguaranteed,andthesemethodsusuallyrequiremoreiterationsthanthe thestructureasshowninfigure19.inthissystem,theusercaninteractwiththe
67 CHAPTER2.PRELIMINARIES 54 Interactive Spacetime Constraints System Graphical User Interface Text Based Interface USER input to Constraint Numerical and Objective DiffEQs Optimization Equations Symbolic Solution of Motion Differentiation and Creature Optimizing Description Compiler Animation Display Figure19:TheInteractiveSpacetimeConstraintsSystem
68 c CHAPTER2.PRELIMINARIES 55 cos(θ) * cos 2 (α) + θ * cos 2 (θ) * cos 2 (α) + + * * * * A * * * * c c c iterativenumericaloptimizationandcanguidetheoptimizationprocesstoconverge subexpressionextraction.the\c"nodesrepresentthecosineoperator. B * * * toanacceptablesolution. Figure20:Thenumberofnodestobeevaluatedisgreatlydecreasedbycommon c c c c c θ α θ α expressions,whichformulateanoptimizationproblem,areparsedandtheevaluation treesgenerated.asymbolicdierentiationisappliedtotheseevaluationtreesand le),andphysicalequationsofmotioncanbegeneratedautomatically.thesymbolic Theuserspeciedconstraintscanbetypedinbytheuser(orreadfromaninput (a) (b) generatesnewevaluationtrees(calleddierentiationtrees)forgradient(andhessian) computation. theoptimizationparameterssuchasweightsinthepenaltyfunction,anddeleteor insertconstraints. usingakeyframingsystemandstarttheoptimizationprocess.ateachiteration,the usercanlookattheresultingmotion,andcanmodifythecurrentsolution,change Afterthepreprocessingstageisdone,theusercanprovideaninitialguessby
69 CHAPTER2.PRELIMINARIES 2.12Compilation,CommonSubexpressionElimination,andSymbolicDierentiation 56 Thecompilerisresponsibleforparsingtheexpressionsoftheconstraintsandobjective andgeneratingevaluationtreesforthenumericaloptimizationphase.itbeginswitha bottomupparserthatreadstheexpressions(objectiveandconstraints)andproduces anevaluationtreeforeachexpression(figure20(a)).formallyspeaking,anevaluationtreeisadirectedacyclicgraphinwhicheachleafrepresentseitheraconstant oravariable(dofvariablesandtherederivatives),andeachinnernoderepresentsa functionwhichcanbebinaryoperators+,-,*,or/,ortheunaryminus,sin, andrecursivelyevaluatingnodesupwarduntilthevalueoftheexpressioniscontained atthetopmostnode. nodet,l(t)andr(t)representthetwochildrenoft. cos,tan,cot,exp,log,and^a(power)whereaisanyrealnumber.foreach sionsareusuallyverylongresultinglargeevaluationtrees.forexample,evenaplanar three-linkarmcanresultinevaluationtreescontainingover145,000nodesthatmust TheevaluationiscarriedoutbyinsertingtheDOFvaluesintheleavesofthetree beevaluatedmultipletimesduringtheoptimizationprocess.toreducethesizeofthe evaluationtrees,thecompileroptimizationtechniqueofcommonsubexpressionelimination(cse)canbeused.morespecically,commonsubexpressionsareextracted Onebottleneckinthespacetimeconstraintsystemisthatthesymbolicexpres- byrecursivelymovingfromtheleavestothetopnode,makingalistofuniquenodes andcheckingeachnewnodeagainstthelist.inthecaseofleafnodesthatarealwaysvariableid's,thisissimple,forinternalfunctionnodestheirchildrenmustbe &&right==right) (left==right&&right==left))mustbechecked.ifthe nodesaredeterminedtobeequivalent,onenodeisusedforboth(figure20(b)). foreachinputnode,thusthegrowthduetodierentiationiso(n)withaconstant case,itcanbeseenthatanysingledierentiationgeneratesatmost5outputnodes checked,andinthecaseofcommutativeoperationsbothpossibilities((left==left GivenanevaluationtreeTandavariablex,thederivativeofTwithrespectto
70 CHAPTER2.PRELIMINARIES 57 + T T/ x L R R/ x L/ x * + L R * * R/ x L/ x / / Figure21:DierentiationRules(theunaryoperatorsarenotallenumeratedasmany ^2 aresimilar). L R L/ x R/ x sin * L cos L/ x
71 CHAPTER2.PRELIMINARIES factorof5.infact,sinceintheanimationapplicationthedivideisrare,theaverage growthismuchlessthanafactorof5. Asanexampleofthepowerofthecommonsubexpressionelimination,theevaluationtreesforaplanarthree-linkarmwithoutCSEcontained145,584nodes,compared to2,932nodesaftercse! 2.13Summary Wehaveintroducedthebasicideaoftheinteractivespacetimeconstraintssystem andthenecessarybackgroundforthenumericalandsymboliccomputations.while theinteractivespacetimeconstraintssystemsdoprovidephysicalrealismandcertain usercontrol,theyhavebeencomputationallyexpensive.inthesymbolicphase,even withcommonsubexpressionelimination,thesizesoftheevaluationtreesstillgrow exponentiallyintermsofthenumberofdegreesoffreedomsaswewillshowinthenext chapter.thenumericaloptimizationphaseisanotherbottleneckbecausethenumber ofunknownsintheresultingnonlinearoptimizationproblemisusuallylargeandeach iterationusuallyrequiresnumericalintegrations.wewillpresentbothsymbolicand 58 numericaltechniquestoaddresstheseissuesinthenextthreechapters.
72 Chapter3 EcientSymbolicInterface 3.1Introduction AsdescribedinChapter2,symbolicmethodshavebeenusedtorepresentconstraints Inthischapter,wedescribeanewsymbolicinterfaceforoptimizationbasedanimation andobjectivesinmanyoptimizationbasedanimationsystems[56,13].themajor system.thematerialsarefromthepaper[38]. automaticallybysymbolicdierentiation.forexample,withoutsymbolicmethods, allpossibletypesofconstraintsmustbehardcodedasinzhaoandbadler's[57] advantageofsymbolicmethodsisthattheyaregeneralenoughtorepresentvarious kindsofconstraintsandobjectivesandthegradientsandhessianscanbeobtained inversekinematicssystem.inaddition,gradientshavetobederivedmanuallywhich isverytediousevenwhentheexpressionsaresmall,andalmostimpossiblewhenthe expressionsbecomecomplex.anotheradvantageisthattheusercanmodifythe expressionssuchastheconstraintandobjectionfunctionsatruntime. techniqueshavebeenusedtoreducethesizesoftheevaluationtreesasdescribedin oftheresultingsymbolicexpressionsareexponentialinthedepthofthetreeofdegrees offreedom(dofs).thisproblemhasbeennoticedandsubexpressionelimination Section2.12([33]alsogivessimilartechniques).However,thisdoesnotfullysolve theproblemsincethesizeoftheevaluationtreesaftersubexpressioneliminationare However,onemajordisadvantageofprevioussymbolicsystemsisthatthelength 59
73 CHAPTER3.EFFICIENTSYMBOLICINTERFACE 60 L θ linki 1,isequalto haveaplanari-linkchainasshowninfigure22.usingtheterminologyinchapter2, Ri 1 stillexponentialingeneral.toseewhy,let'sconsiderasimpleexample.supposewe i,theorientationmatrixoflinkiwithrespecttothelocalcoordinatesystemof Figure22:Theplanari-linkchain ι 1 i 1 L 1 θ 1 L 0 θ Thereforetheorientationmatrixoflinkiwithrespecttoworldcoordinatesystemis 0@cos(i) sin(i) WeclaimthattheelementsofRicontainatleast2imanydierentsummationterms. Forexample, Ri=R0R01R12:::Ri 1 0 sin(0)sin(1).ingeneral,itiseasytoshowbyinductionthatricontainsallofthe termswiththeformf0(0)f1(1):::fi 1(i 1);whereeachfjcanbeeitherasinorcos containsthefourdierenttermscos(0)cos(1),cos(0)sin(1),sin(0)cos(1),and R2=0@cos(0)cos(1) sin(0)sin(1) cos(0)sin(1) sin(0)cos(1) function.intotalthereare2isuchterms.noticethatthecommonsubexpression sin(0)cos(1)+cos(0)sin(1) sin(0)sin(1)+cos(0)cos(1)1a(142) eliminationwouldnoteliminateanyofthese2itermssincenotwotermsarethesame. sin(i)cos(i)1a i (140) (141)
74 CHAPTER3.EFFICIENTSYMBOLICINTERFACE Thereforeevenaftercommonsubexpressionelimination,Riwillcontainatleast2i terms.however,ifwedon'texpandrisymbolicallybutinsteadevaluatematrices R0,R01,...,Ri 1 irstandthendomatrixmultiplicationnumericallywecancomputeri 61 inlineartime. isnotagoodideaunlessthenumericalmatrixmultiplicationismoreexpensivethan expandingandevaluatingthefullexpressions.wewillseethatthisisnotthecase wedon'texpandthem).togetherwithafewspecialoperatorsthatactonmatrices exceptinthemosttrivialexamples.weproposetousepositionvectorsandorientationmatricesasrstclasssymbolicvariablesinthesymbolicexpressions,(i.e., ThissuggeststhatexpandingthematricesasexplicitsymbolicfunctionsofDOFs paradigmcommonkinematicanddynamicexpressionscanberepresentedasasmall numberofoperationsonthejointpositionsandlinkorientations.theseexpressions areusuallysmallenoughtobesimplytypedin,andmoreimportantly,therearevery ecientwaystoevaluatetheseexpressions. andvectorswhichwillbedenedlaterinthischapter,wewillshowthatwiththis tem. algorithm.ourcontributionisthatweextendtheideatotheconstrainedoptimizationarenaandintegratethenumericaltechniquesintoasymbolicinterfacetoachieve anecientandgeneralsymbolicinterfacetotheoptimizationbasedanimationsys- AsimilarinsighthasbeenusedbyHollerbach[29]indevelopingafastdynamics Section2.12exceptthattherearenewtypesofvariablesandoperations. expression.thestructureofanevaluationtreeissimilartowhatwehaveseenin parserisgeneratedwithlexandyacc[1].itgeneratesanevaluationtreeforeach ThefullsyntaxofanexpressionisshownbelowbyusingYACCnotations.The 3.2TheLanguage :expr'+'expr expr'-'expr expr'*'expr expr'/'expr
75 CHAPTER3.EFFICIENTSYMBOLICINTERFACE '('expr')' '-'expr%precuminus fun'('expr')' 62 SUMA'['ID']''('expr')'/*sumoveralljointangles*/ SUML'['ID']''('expr')'/*sumoveralllinks*/ ITG'['const','const']'/*integral*/ VDOT'('ID','expr','expr')' VCROSS'('ID','expr','expr')' fun variable const ROWV'['const','const','const']'/*rowvector*/ COLV'['const','const','const']'/*columnvector*/ ;:SIN COS TG CTG EXP variable:dofvar LN '^'NUMBER/*exponent*/ SQR/*square*/ TRANS/*transpose*/ const:id posvar orivar ; torquevar NUMBER ID''ID
76 CHAPTER3.EFFICIENTSYMBOLICINTERFACE dofvar:dof''number'['order','time']' posvar:pos''id'['der','time','number','number','number']' 63 orivar:ori''id'['der','time']' torquevar:torque''id'['time']' torquevar:torque''number'['time']' POS''ID'['der','time']' order:number time :ID idornum:id der idornum NUMBER NUMBER ;:der' 'idornum Therearefourtypesofconstants:realnumbers,3Drowvectors,3Dcolumnvectors, providetheecienciesdiscussedabove Constants Intherestofthissection,wewillexplainindetailtheinterestingextensionsthat and33matrices.arowvectorhastheformrowv[x,y,z],acolumnvectorhasthe mat[a11;a12;a13;a21;a22;a23;a31;a32;a33].
77 NormalscalarvariablesrepresentingDOFfunctionsandtheirtimederivativesare CHAPTER3.EFFICIENTSYMBOLICINTERFACE 3.2.2Variables representedbydoflabel[d,t]wherelabelisthelabel(aninteger)ofthedof(recall 64 typesofvariablesareintroduced:positionvariables,orientationvariables,andtorque variables.apositionvariablehastheform:posname[der-info,t,x,y,z]where ofthederivative(withrespecttotime),andtisthetime.inaddition,threenew thateachdofhasalabel,seesection2.3),dis0;1or2representingtheorder der-infoisasequenceofintegersoftheform(i1;i2;:::;ip;j)whichstorethederivative (x,y,z)isthecoordinateofthispositioninthelocalcoordinatesystem,andnally nameisthelabelofthelinkatwhichthispositionislocated,tiseitherareal numberrepresentingaspecictimeorsimplythesymboltindicating\atalltimes", E(t)todenotetheworldcoordinateoftheendeectorattimet.ThenE(t), t].forexample,supposewehavethreelinkslabeledl1,l2,andl3.ifweuse centerofgravity,itcanbeomitted.thatis,wecansimplywriteposname[der-info, _E(t),andE(t)canberepresentedasposL3[0;t;ex;ey;ez];posL3[1;t;ex;ey;ez]; dtj:when(x;y;z)representsthe endeectorrelativetothelocalcoordinatesystemofl3.thepartialderivative andposl3[2;t;ex;ey;ez];respectively,where(ex;ey;ez)isthecoordinatesofthe posl3[(2;3;1);t;ex;ey;ez]:howdowerepresentthepartialderivativeswithrespect anypartialderivativeswithrespecttotimederivativesofanglescanalwaysbereducedtopartialderivativeswithrespecttoangles(withouttimederivatives).inmost caseswhereonlyuptosecondorderderivativesareunderconsideration,thefollowing (145) (143) (144)
78 (146) (147) 65 theorientationmatrixofthelinknameoritsderivativesincludingmixedpartialand timederivatives. (148) withrespecttotherotationalanglenamedidattimet.noticethattorquevariables 3Dvector.Forexample,iftheorientationmatrixoflinkL1intheworldcoordinate systemism1(t),then representedasfunctionsofpositions.thereasontointroducethetorquevariables arenotessentialtothissymbolicsystemsincetorques(generalizedforces)canbe Atorquevariablehastheformtorid[t],whichrepresentsthegeneralizedforce dm1(t) dt=oril1[1;t]: (149) istogaintheoptimumeciencyforcomputingtorquesandtheirgradientssince torquesarethemostexpensivequantities.wewillshowhowtoextendhollerbach's technique[29]ofcomputinglagrangianinversedynamicstoevaluatethegradientsof allthetorquesino(m2)time,whichistheoptimumsincewehavetoevaluateo(m2) entries.withoutsuchspecialtreatment,itwouldtakeo(m3)time. syntaxanddierentiationrules.similarly,commonmatrixandvectoroperationsare representquantitieslikekineticenergyandangularmomentumofarigidlink.given dened.inadditiontonormalmatrixoperations,weneedtwospecialoperationsto Manyoperationsonscalarvariablesandconstantsaredenedwiththeexpected 3.2.3Operations two33matricesm1andm2,andalinkl,wedeneoperatorsvdotandvcross asthefollowing: Vdot(L;M1;M2)=Z(M1(X C))(M2(X C))(X)dX (150)
79 CHAPTER3.EFFICIENTSYMBOLICINTERFACE andvcross(l;m1;m2)=z(m1(x C))(M2(X C))(X)dX wherexrangesoverthecoordinatesofallthepointsonthelinklinitslocal (151) 66 massdensityatx. ism,thentherotationalenergyoflis coordinatesystem,cisthelocalcoordinateofitscenterofmass,and(x)isthe anditsangularmomentumaboutitscenterofmassis GivenalinkLwithalocalcoordinatesystemandassumingitsorientationmatrix Itshouldbepointedoutthatthecomputationofbothintegralscanbereducedto 0:5Z(_ Z(M(X C))(_ M(X C))(_ M(X C))(X)dX=Vcross(L;M;_ M(X C))(X)dX=0:5Vdot(L;_M;_M); M): (152) threecolumnsofmasm1;m2andm3,andthethreecolumnsof_ thecomputationofinertialtensorsasdenedinsection2.5.toseewhy,denotethe Mas_M1;_M2and (153) R(_ =RP3i;j=1MiMj(xi ci)(xj cj)dx1dx2dx3 x2 =P3i;j=1MiMjR(xi ci)(xj cj)dx1dx2dx3 M(X C))(_ M(X C))(X)dXc2 c31ca:then andr(_ =RP3i;j=1MiMj(xi ci)(xj cj)dx1dx2dx3 M(X C))(_ M(X C))(X)dX (154) InordertocomputeR(xi ci)(xj cj)dx1dx2dx3forall1i;j3,allweneedis thematrix =P3i;j=1MiMjR(xi ci)(xj cj)dx1dx2dx3 (155) whichistheinertialtensormatrixofthislinkasdenedinsection2.5. x2 x3 1 1 CAx1x2x31dx1dx2dx3 (156)
80 CHAPTER3.EFFICIENTSYMBOLICINTERFACE 67 Figure23:Theplanar3-linkchainthrowingabasketball basket ball neoustransformationinsection2.5.inoursymboliclanguage,weneedtorepresent 3.2.4RepresentingKineticEnergy Wehavederivedformulastorepresentkineticenergyofalinkbyusingthehomoge- thekineticenergyintermsofthecentersofgravityandorientationmatrices.since thekineticenergyofarigidbodyisthesumofrotationalenergyandthekinetic energyofthecenterofgravity,thekineticenergyoflinklis 3.3AnExample Wegiveanexampletoshowalltheexpressionsinaspacetimeconstraintformulation +12Vdot(L;oriL[(1);t];oriL[(1);t]): 12trans(posL[(1);t])trans(posL[(1);t]) animateaplanarthreelinkarm(seefigure23)whichstartsbyholdingaballatthe endeector(or\hand")initsrestpositionattimet0,throwstheballattimet1, theballhastogointobasket. andcomesbacktoitsrestpositionattimet2.theadditionalrequirementisthat inthisnewlanguage.theexampleisextractedfrom[40].supposewewantto handis(hx;hy;hz).andletg=9:8bethegravityconstant.assumetisthetime periodduringwhichtheballiesfromleavingthehandtogettingintothebasket. Assumethebasketlocationis(Bx;By;Bz),thelocalcoordinateoftheendofthe L 1 θ 0 L 2 L 3 θ 1 θ 2 end effector
81 CHAPTER3.EFFICIENTSYMBOLICINTERFACE Therearethreetypesofconstraints: (1).Theballshouldgointothebasket. Theobjectivefunctionistheintegralofthesumofsquaresofthethreetorques. 68 upperandlowerboundwhicharestoredintheguredatastructure),sotheuser doesn'thavetoinputjointlimitconstraints. Usingourlanguage,theobjectivefunction,theintegralofthesumofthesquared (3).Eachjointanglehasalimitedrange. Thethirdconstraintisabuilt-inconstraint,(i.e.,eachrotationalanglehasan (2).Attimet0andtf,thearmisstillandinitsrestposition. torques,canbewrittenas constraint(1)is itg[t0;tf](sqr(tor0[t])+sqr(tor1[t])+sqr(tor2[t])); posl3[(0);t1;hx;hy;hz]+posl3[(1);t1;hx;hy;hz]t+ 0:5colv(0; g;0)tt=colv(bx;by;bz); (157) andconstraint(2)isrepresentedbytwelveequations, dof0[0;t0]=0;dof1[0;t0]=0;dof2[0;t0]=0; (158) dof0[1;t0]=0;dof1[1;t0]=0;dof2[1;t0]=0; dof0[0;tf]=0;dof1[0;tf]=0;dof2[0;tf]=0; (159) (160) [39]),wecanrepresenttheobjectivefunctionas Ifweinsteadusethechangeofenergyastheobjectivefunction(forexample,see dof0[1;tf]=0;dof1[1;tf]=0;dof2[1;tf]=0: (161) itg[t0;tf](sqr(m1trans(posl1[1;t])posl1[2;t] (162) +sqr(m2trans(posl2[1;t])posl2[2;t] +sqr(m2trans(posl3[1;t])posl3[2;t] +Vdot(L1;oriL1[1;T];oriL1[2;T])) +Vdot(L2;oriL2[1;T];oriL2[2;T])) +Vdot(L3;oriL3[1;T];oriL3[2;T]))) (163)
82 oneofthemajoradvantagesofasymboliclanguage.thesymbolicdierentiation Theabilitytoautomatethegradientcomputationusingsymbolicdierentiationis CHAPTER3.EFFICIENTSYMBOLICINTERFACE 3.4SymbolicDierentiation 69 canbecarriedoutessentiallythesamewayasthepreviousmethodasdiscussed insection2.12exceptthatwhiletheleavesrepresenteitherapositionoramatrix Thedierentiationformulaeofthesetwooperatorsaresimply variable,der-infoshouldbeupdatedusingthereductions(3)-(8)ifnecessary.forthe torquevariables,thepartialderivativeinformationisstoredinthenode,andwewill showhowtocomputethetorquesandtheirpartialderivativesecientlyatevaluation @ @);@):(165) (164) gradientsoftorqueswithoptimumeciency. 3.5TorqueVariables Inthissection,weshowhowtoextendHollerbach'stechnique[29]tocomputethe LetWuvbetheorientationmatrixoflinkvinthecoordinatesystemoflinku,(i.e., LetD(l)bethesetofindicesofallthedescendentsoflinkl.LetD(l)=D(l)[flg. ofgravity.letg=(0;g;0)bethegravityvector.denoteujtobetheindexofthe linkwherejislocated(i.e.,jisoneofthedegreesoffreedomallowingthislink torotatearounditsparent).letk(l)bethesetofindicesofthechildrenoflinkl. LetWirepresentthe44transformationmatrixoflinki.Letribeitscenter therelationshipthatukiseitheranancestorofujoruk=uj.givenamatrixm,let respecttojis Wv=WuWuv).Fork2D(l),weuseRktodenoteWlk.Weuseukujtodenote tr(m)bethetraceofm.asshownin(46)ofsection2.5,thegeneralizedforcewith (166)
83 CHAPTER3.EFFICIENTSYMBOLICINTERFACE tives,weneedtousethefollowingintermediatevariables: Inordertoderivetherecursiveformulasforcomputingf(j)anditspartialderiva- Al=X i2d(l)wl ijiwt i; (167) 70 bl=x Bl;k=X i2d(l)miwl i2d(l)wl (168) anddl;k=x Cl;k=X i (169) i2d(l)wl i (170) Sincefj=X (171) i) (173) (172) i2d(uj)(wuj ijiwt iri) (174) (175) @j@kbuj;ukuj @j@kbuk;otherwise (177)
84 CHAPTER3.EFFICIENTSYMBOLICINTERFACE @jcuj;kg; (178) @kg i (179) =X@j@kri) +mig@2wuj i (180) =trf@2wuj i2d(uj)miwuj i2d(uj)wuj iji(wi)t+@wuj i2d(uj)wuj i (181) Theothercasewhenukisuj'sdescendentissimilar.Whatfollowsarethederivations @_kg i (184) (183) =trfx i (185) (186) (187)
85 (188) (189) i (190) bl=mlrl+x Al=JlWT l+x u2k(l)ruau; (192) (191) Bl;k=Jl@WT u2k(l)rubu; (193) Dl;k=Jl@WT l@k+x lu2k(l)rudu;k; u2k(l)rucu;k; (194) (195) for(192).al=jlwt Thederivationsof(192)-(196)aresimilartoeachother.Soweonlygivetheone l+x i2d(l)(wl ijiwt i) (196) k2k(l)x i2d(k)(wlkwk ijiwt i) (199) (197) =JlWT l+x k2k(l)rkx k2k(l)rkak i2d(k)(wk ijiwt i) (200) (201) (198)
86 CHAPTER3.EFFICIENTSYMBOLICINTERFACE 73 Tocomputethegradients,foreachk,wetraversetheguretreetocomputeAl, Bl,Bl;k,Cl;k,andDl;kforalllbyusing(192)-(196).Then(172)-(179)areapplied tocomputethetorquesandalloftheirpartialderivatives.sointotal,thegradient computationtakeso(m2)time.noticethatwehavem2componentstoevaluate(the gradientofeachtorquecontainsmcomponents),soinaverageeachcomponenttakes constanttime.clearlythisistheoptimum. 3.6Evaluation Theevaluationoftheevaluationtrees(includingdierentiationtrees)beginswith thethevariablesattheleaves.thedofvariablesareevaluateddirectlyfromtheir representations(e.g.,b-splines,b-splinewavelets,piecewisehermitesplines,etc.). Fromthelastsectionwecanseethattheevaluationoftorquevariablesreduceto theevaluationoforientationmatrices,theirrstandsecondorderderivatives,and theirpartialderivatives.inaddition,itiseasytoseethattheevaluationofpositions andtheirtimeorpartialderivativescanbecomputedrecursivelyfromtheorientationmatrices.thus,allthatisneededistorecursivelycomputealltheorientation matrices,theirrstandsecondordertimederivatives,andtheirpartialderivatives. @kforalliandk. WehavegivenalgorithmstocomputeWiand_WiinSection2.4.ThecaseforWi issimilar,therecursionformulais Wi=W}iW}i i+2_w}i_w}i i+w}iw}i i: (202) wheretheformulaforw}i icanbeobtainedbydierentiating(33)insection2.4,the detailsareomitted. @jw}i (204)
87 Display CHAPTER3.EFFICIENTSYMBOLICINTERFACE 74 objective/constraints design objective/constraints (symbolic expressions) figure design parser symbolic differentiator keyframes DOF representation intermediate evaluation GUI (control panel) andthepartialderivativeswithrespecttothetimederivativesofthedofvariables Figure24:Thenewinteractivespacetimeconstraintssystem final evaluation BFGS canbecomputedusingthereductions(143)through(148). someexpressionsmayneedtobeevaluatedatmultiplesampletimepointstoevaluate integralexpression.toavoidredundantrecursivematrixevaluations,foreachtime expressionsatthistime. samplepointonecandoarecursivematrixevaluationonceandevaluateallthe Ingeneral,anoptimizationformulationmaycontainmultipleexpressions,and Withthenewsymbolicinterfaceinplace,theinteractivespacetimeconstraintssystem canbemodiedasshowninthefigure24.theintermediatestepevaluatesvariables 3.7InteractiveSpacetimeConstraintsSystemwith
88 allthevariables(includingthedierentiationtrees)canbeevaluatedimmediately(in constanttime). CHAPTER3.EFFICIENTSYMBOLICINTERFACE takesm2timewheremisthenumberofdofs.afterthisintermediateevaluation, Experiments Teststocomparethecomputationtimeofthepreviousmethodandthisnewmethod wereconducted.thetestcasesarelinearchainswiththenumberoflinksrangingfrom eliminationasdescribedin[40].figure25(c)plotstheevaluationtimevs.the ofnodesoftheevaluationtreesvs.thenumberoflinksaftercommonsubexpression methodbeforecommonsubexpressionelimination.figure25(b)showsthenumber endeector.theresultsareshowninfigure25.figure25(a)showsthenumber ofnodesoftheevaluationtreesvs.thenumberoflinksusingprevioussymbolic 9to16.Eachjointhasonedegreeoffreedom.Theexpressionisthepositionofthe numberoflinksusingtheprevioussymbolicmethodwithcommonsubexpression elimination.figure25(d)showstheevaluationtimevs.thenumberoflinksusing ournewsymbolicmethod.notethechangesinscalesofthehorizontalandvertical axesẇecanseethatinthepreviousmethod,evenaftersubexpressionelimination, Thelineargrowthiscriticaltoallowingtheinteractivespacetimeconstraintmethods toextendtocomplexgures. theevaluationtimegrowslinearlyasexpected.figure25(e)zoomsinonthelower leftcornerofgraphs(c)and(d)toshowadirectcomparisonusingthesameaxes. boththenumberofnodesandtheevaluationtime(figure25(c))aregrowingexponentiallyasthenumberoflinksincreases.butifweusethenewsymbolicmethod, methodisgeneralenoughtorepresentthekinematicanddynamicquantitiesthatarise inthespacetimeconstraintmethodforanimatinglinkedgures.theevaluationofthe resultingsymbolicexpressionsandtheirgradientsareincomplexity,thesameasthe 3.9Conclusion Inthischapter,wehavedescribedanewsymbolicmethodandshowedthatthis
89 CHAPTER3.EFFICIENTSYMBOLICINTERFACE num_nodes (A) num_nodes (B) num_dofs num_dofs (C) 100 microseconds (D) 100 microseconds Figure25:ComparisonsofpreviousCSEmethodandthenewsymbolicmethod num_dofs num_dofs 100 (A). Number of nodes before CSE. 80 old method (B). Number of nodes after CSE. new method 60 (C). Evaluation time after CSE using the previous method. 40 (D). Evaluation time using (E) the new method. (E). Evaluation time of both 20 methods when the depth of DOFs ranges from 0 to 10. The dashed curve is the new method. num_dofs 100 microseconds
90 CHAPTER3.EFFICIENTSYMBOLICINTERFACE equivalentnumericalmethods.furthermore,theexpressionsareusuallyverysmall, sothismethodmakesageneral,easytouse,andecientinterfacetooptimization basedlinkedgureanimationsystems.currentlythesymbolicexpressionsareread 77 fromalewhichiscreatedbyhand.figure26isasnapshotoftheinterfacewherethe button\loadexps"atthebottomleftisusedtoselectaleandreadinthesymbolic expressions.clearly,workneedstobedonetoprovidemoregraphicallybasedand/or intuitivemeanstogenerate,modifyandinspectthesymbolicexpressions.
91 CHAPTER3.EFFICIENTSYMBOLICINTERFACE 78 Figure26:Thegraphicalinterface
92 Chapter4 KeyframeOptimization availabletosolvesuchnonlinearconstrainedoptimizationproblem.thischapter 4.1Introduction describesavariationofthefullspacetimeconstraintsmethodwhichusesusersupplied informationtoreducethecomplexityoftheoptimizationproblem. Inadditiontosymbolicprocessing,anotherbottleneckofthespacetimeconstraints systemisthenumericaloptimization.thenumberofunknownsandthenumberof constraintstendtobelarge.ingeneral,therearenoecientnumericalmethods 4.1.1TheIdea Figure27listschoicesofanimationparadigmsoutlinedinChapter1bytheirextent ofcontrolversusautomation,(theportionoftheworkwhichthecomputerdoes togenerateamotion).theapproachpresentedinthischapter(labeled\keyframe basedsystems.thecentralideaintheworkpresentedhereistomaintainasmuchof thesemanticsandcontroloeredbykeyframesystemsaspossible,whilestillproviding someofthebenetsofoptimizationbasedsystems. optimization")llsagapbetweensimplekeyframesystemsandotheroptimization couragetheiterativemodicationandevaluationoftheanimationdesignprocess. Reducingthecomplexityofthenumericalprocessisachievedinanumberofways: byreducingthedimensionalityofthespaceofpossiblesolutions,bycreatingamore Wealsowishtoprovideresultsatinteractivespeeds(i.e.,afewseconds)toen- 79
93 CHAPTER4.KEYFRAMEOPTIMIZATION 80 linearproblem,byconstrainingtheproblemmoretightly(implicitlyreducingthe spaceaswell),andbyprovidingabetterstartingguessforsolutions. Theobservationwemakeinreformulatingtheproblemtoachievethesegoals Figure27:Controlvs.Automation Keyframe Optimization isthattheanimatormayhaveagoodsenseofspecickeypositionsacharacter shouldpassthrough(thekeyframes).butingeneral,theinexperiencedanimator mayhavelessintuitionabouttheprecisetimingofthekeyframesandthevelocityof theindividualdofastheypasstheseunknownpointsintime.beyondtheimplicit constraintsofthekeyframes,theanimatormayalsoknowspecicinstancesofhigher levelconstraintsonthemotion.forexample,givenadesiretohavethegurejumpto acertainheight,theverticalvelocityofthecenterofgravity(cog)atthebeginning ofajumpcanbederived. 1.xtheuserspeciedkeyframedpositionsasconstraints,aswellasafewkey Basedontheseobservations,thesolutionweproposeisto 3.selectapiecewisecubicHermiteinterpolationbetweenkeyframesastheunderlyingrepresentationofthetrajectories,but thecenterofgravityforajump,orthevelocityofanendeectortoachievea 2.allowspecicationofotherhigherlevelconstraints,forexamplethevelocityof physicallyrealisticthrow,and timepointsselectedbytheanimator, 4.leavethetimeofmostkeyframesandtherstderivativeofeachDOFneededto Thesechoicessatisfythecriteriasetoutaboveinthatthey"trust"theanimatortopositionthecharacteratkeyframes.Thisleavesintactanyuserinterfaceforpositioning fullyspecifythehermitesegmentsasunknownstobesolvedforbyasimplied optimizationprocess. Control Keyframe * Spacetime constraints Automation Simulation Controller based
94 CHAPTER4.KEYFRAMEOPTIMIZATION thekeyframesthemselves.theanimatorisalsoimplicitlyxingtheamountoffreedomineachdoffunctionthroughthenumberofkeyframeschosen(i.e.,additional 81 keyframesinsertedautomaticallyincreasethefreedomintheresultingtrajectory). velocityunknownsperdofperkeyframe.thiscontrastswithprevioussystems whichsolveforanunknownnumberofpositionvaluesforeachdof.inaddition, inthisapproach,thevelocitytermsappearaslineartermsinanenergyfunctional asopposedtothequadraticpositionterms.thechoiceofpiecewisehermitecubic curvesforthetrajectoriesmatchesthemixofknownandunknownquantitiesinthe Theoptimizationproblemisgreatlysimpliedasthereareonlytimemarksand system(i.e.,knownposition,unknownvelocitiesandtiming). onlytodecidevelocitiesandthosetimemarksnotexplicitlyspeciedbytheanimator. Theseconstitutearguablythemostdicultpartofakeyframesystemtoproduce Comparedtoapurekeyframesystem,themethodoutlinedhereusesoptimization 4.1.2ComparisontoStandardKeyframingandConstrained agracefulandnaturallookingmotion.inessence,theseideasprimarilyreplacethe Optimization tobeimplementedinanykeyframesystem. interpolationstep(andtheparameter-to-time,i.e.\ease-in,ease-out"function)in traditionalkeyframesystems.sincetheoptimizationisfast,themethodiswellsuited boundaryvalueproblems.incontrast,weperformauniedsolutionoverasmany solvesthecompleteanimationfromasequentialsolutionofaseriesoftwo-point timeintervalsasdesired. keyframesisrelaxed.inthespacetimeconstraintsetting[56,13,40],theuserhadto Thismethoddiersfromtheoptimalcontrolinterpolationmethodof[7]which cost.itisinexpensivesincethereisonlyonetimevalueperkeyframe,thatis,itis specifywheneachconstraintwastohold1.ourexperimentssuggestthatleavingthe timingtotheoptimizationprocessresultsinsignicantlybetterresultsataminimal nottiedtothegure'scomplexity. Anotherfeaturewhichisdierentfrompreviousworkisthatthetimingbetween however,itisnotreportedassuch. 1Itappearsthatasimilarconceptmayhavebeenemployedinoneoftheexamplesin[56],
95 CHAPTER4.KEYFRAMEOPTIMIZATION thespaceofpossiblesolutionsrequiresmorespecicationfromtheanimator(i.e., thisisnotasystemforcreatingautonomouscreatures).theresultsarealsonot Thereare,ofcourse,disadvantagesintheproposedsystem.Thereductionin 82 reallydoesverylittlefortheanimator,sincethekeyframesprovidethebackbone systems,objectivefunctionssuchasminimizationofenergy,orotherphysicallybased objectivessuchasmaintainingbalancemustbespecied,andbeabletobeevaluated anddierentiated.finally,itcanalsobearguedthatthesystembeingproposed guaranteedtobephysicallyaccurate,asthespaceofsolutionsishighlyconstrainedby oftheanimationsequence.however,wewillshowthatthesubtletiesoftimingand thechoiceofkeyframes.furthermore,beyondwhatisprovidedinstandardkeyframe velocityaddsignicantlytothelifelikefeelingofananimation.althoughahighly cannot. 4.2SystemOverview Theanimationsystemcanbethoughtofeitherasakeyframesystemrelyingona skilledanimatormayhavetheabilitytodirectlyspecifythisalso,manyanimators spacetimeconstraintparadigmforinterpolationbetweenkeyframes,orasaspacetime constraintsystemtakingkeyframesasconstraints.thebasicstructureisdescribedin Figure24wheretheDOFrepresentationistheHermiterepresentation,thekeyframes areusedasconstraints,andaschemeisprovidedfortheusertox/relaxthevariables. ofindividualjointsorthroughtheuseofanyinversekinematicsmethod2thetime Higherlevelconstraintscanbespeciedaswell3.Forexample,theCOGofthegure oranendeectorcanbeconstrainedtohaveaspecicvelocityatsomekeyframe. pointsforafewkeyframesmayalsobexed,asmaybevelocities,ifsodesired. Theuserinteractivelydenesguresandmanipulatesthembychangingtheangles mumenergyobjective),theoptimizationprocessisrun,andtheresultingmotionis commercialsystemsandisnotdiscussedhere. symbolicmethodasdevelopedin[38]shouldprovideagoodinterfaceforsuchanimationsystem. 2Theinteractivesystemusedtotesttheideasinthisworkisquiterudimentarycomparedto 3Thereisnohighlevelinterfacedevelopedfortheexperimentsreportedinthispaper,butthe Giventheuserspeciedkeyframes,andanobjectivefunction(currentlyamini-
96 otherconstraints,andreruntheoptimizationprocedure. CHAPTER4.KEYFRAMEOPTIMIZATION displayed.atthispoint,theusermaygobackandmodifyoraddkeyframesand Theoptimizationprocessinvolvesiterativegradientcomputationandanoptimizationstep.Theoptimizationstepismadeeitherwithalinesearchalongthe 83 secondsarerequired. structedwiththebroyden-fletcher-goldfarb-shanno(bfgs)nonlinearoptimization algorithm[49,40]discussedinchapter2.typically3to10iterationsoffrom1to5 negativegradientoralongagradientmodiedbythepseudo-inversehessiancon- PiecewisecubicHermitesplines(seeSection2.8.1)wereselectedastheunderlying representationforthedoftrajectoriesduetotheirgoodmatchbetweentheanimator specicationandoptimizationparameters,andthehermitebasis.eachhermitesegmentisdenedbyendpointpositions(thekeyframes),endpointvelocities(unknowns 4.2.1HermiteInterpolationasDOFRepresentation keyframesplusthemtimevalues. tobedeterminedthroughoptimization),andendpointparametervalues(inthiscase time,alsotobedetermined).thus,formtimesegments,thereare2n(m+1)+m parametersintotal(thepositionandvelocityofeachofndofateachofm+1 isminimized. remainingvelocitiesarealsoprescribedbytheanimator,suchasperhapsstarting problem,thenistondthesen(m+1)+m(orfewer)parameterssothattheobjective thereareonlyhalfofthese,orn(m+1)+mremainingasunknowns.someofthe andendingatrest,asaresometimepoints,furtherreducingtheproblemsize.the Sincetheanimator'skeyframesaretakenasexplicitsolutionsforthepositions, Asimplesoccerplayerservesasanexampletodemonstratehowthisideaworks. Supposethesoccerplayer,startingfromaninitialstandingposition,istokickaball intothegoal,andreturntoastandingposition(seethemiddleoffigure32).the animatorhassomeintuitivenotionabouthowtokickaball,forexample,theplayer 4.2.2RelaxingSpeedandTiming swingshislegbackwardtoprepareforthekick,thenswingsitforwardtokickto
97 CHAPTER4.KEYFRAMEOPTIMIZATION 84 ball.thus,fourkeyframesaredenedwiththelegswungbackward,withtheleg Figure28:One-linkarmthrowingtheballintothebasket abouttokicktheball(inthiskeyframe,wemakesurethatthetoeisattheball's position),plusonekeyframeeachforthebeginningandnalstandingpositions.the timingofandvelocitiesthroughthemiddletwokeyframesisleftunspecied.the rstandlastkeyframesarexedbothintimeandwithzerovelocity.oneadditional constraintproblems.althoughthesolutionspaceisquiterestrictive,itisgenerally thethirdkeyframe.withthegureconstrainedtostartandstopatrest,weareleft withaverysmalloptimizationproblemwithonlythesecondandthirdvelocities,and thethreetimeintervalsasunknowns.these(2n+3)unknownsrepresentamuch smaller,albeitmorerestrictive,problemthanthosethatariseingeneralspacetime constraintrequiresthefoottohavesucientvelocitytokicktheballatthetimeof RelaxingTiming stillbigenoughtocontaingoodsolutions(givenreasonablekeyframesofcourse). Let'suseasimpleexampletodemonstratethefactthatrelaxingtimingcangenerate Inexperimentsbelow,asmoothandrealistickickingmotionofa3Dgurewith15 bettermotions. degreeoffreedomswasfoundin3secondsonansgir4000processor. (3.5).Assumethelengthofthelink,L,isequalto2.Thetaskistostartwiththe restposition(thearmisstraightdown,= =2)attimet0=0andthrowtheball infigure28.recallthatwehavederivedthespacetimeconstraintformulationin Supposethereisaonelinkarmwithonerotationaldegreeoffreedom,asshown
98 CHAPTER4.KEYFRAMEOPTIMIZATION 85 θ π π/ t π a. T 1 =2.0, T 2 =3.5 θ π π/2 Figure29:=(t) π b. T 1 =0.5, T 2 =0.5 t
99 CHAPTER4.KEYFRAMEOPTIMIZATION 86 Figure30:MotionsequencewhenT1=2:0andT2=1:5
100 CHAPTER4.KEYFRAMEOPTIMIZATION 87 Figure31:MotionsequencewhenT1=0:5andT2=0:5
101 CHAPTER4.KEYFRAMEOPTIMIZATION attimet1andcomebacktoitsrestpositionattimet2.suppose(t1)= =2+=4, whichhasbeenxedbytheuser.supposebxandbyandtarechosensuchthat _(t1)mustbeequalto4:0inorderfortheballtomakethegoal.denotet1=t1 t0, 88 andt2=t2 t1.noticethatover[t0;t1],isdeterminedbyt1,andover[t1;t2],is determinedbyt2. theball,quicklydecelerates,andmovesbackwardtoitsrestposition.themotionis isshowninfigure29(b).thecorrespondingmotionsequenceisshowninfigure31. Thetimeintervalbetweeneachframeis0:1.Foreachframe,wealsodrawtheball sothatwecancomparethevelocityoftheballwiththatofthearmaroundthe momentofthrowing.wecanseethatthearmmovesforwardimmediately,throws IfwechooseT1=0:5andT2=0:5.UsingHermiteinterpolation,(t)over[t0;t2] theballisnotdrawntosavespace).again,thetimeintervalbetweeneachframe is0:1.inthiscase,thearmrstlymovesbackwardslowlytoobtainsomepotential, motionsequenceisshowninfigure30(thelengthofthearmisscaleddownand andthenacceleratesforwardtoachievethespeedandheighttothrowtheball.after achievesitsminimum,theresultingtrajectoryof(t)isshowninfigure29(a).the veryrigid.butifwechooset1=2:0andt2=1:5,atwhichtheobjectivefunction backwardtoitsrestposition.thismotionismuchmorenaturalthantheprevious one. 4.3KeyframeOptimization throwing,itcontinuestomoveforwardandslowdowngraduallyandnallymoves dueinparttothefactthatasimplisticinterpolationofthekeyframesalreadyplaces problems,wehavefoundapuregradientdescentisallthatisrequired.eachiteration consistsofalocalgradientdeterminationfollowedbyabisectionlinesearch(see,for example,[49])alongthenegativegradient.theabilitytousesuchasimplesystemis BFGSdefaultstoasimplegradientdescentfortherstiteration.Infact,forsmall TheoptimizationusedinthisworkisastandardBFGSquasi-Newtonsolver[49]. goalconstraint(seethenextparagraphforthereason)asopposedtothepositions thesolutionnearalocalminimum,andthusinawellbehavedregionofthesolution space.inaddition,theunknownvelocitiesofthedofappearaslineartermsinthe
102 levelconstraintsarenonlinear,however,theinitialvaluesimpliedbytheanimators keyframesprovideasucientstartingpointforalocaldownhillsearch. CHAPTER4.KEYFRAMEOPTIMIZATION thatappearasnonlineartermsinageneralsystem.thetimevaluesandhigher 89 conguration,thelefthandsideisalinearfunctionof_(t). constraintbecomesj(t)_(t)=v.sincej(t)isaconstantmatrixduetothexed goalconstraintisthefollowing.afterthecongurationisxed,thegoalconstraintis aconstraintonthevelocityoftheendeectororthecenterofgravitywiththeform P(t)=V.Noticethat ThereasonthattheunknownvelocitiesoftheDOFappearaslineartermsinthe 4.4ResultsP(t)=J(t)_(t)whereJisthewell-knownJacobimatrix,the Aseriesofexperimentswereconductedontwogures.Therstisatruncated3D aball.ineachcase,shortanimationsegmentswereexplored.transitionsbetween human-likegurewith2legs(jointedattheknees),apelvisandabody,withatotalof 15rotationaldegreesoffreedomplustranslationandrotationwithintheenvironment. Thesecondgureisamorecompletehumanlikecreaturewith29internalDOF.There isagroundplaneandaballwithwhichtheguresinteract.theexperimentsinvolved evenlyspacedintervals.thevelocitiesforthisinterpolationaretakenfromthecentral jumping,landingfromajump,walking,running,andmotionthrowingandkicking nitedierencesbetweenpreviousandfuturekeyframes(orforwardorbackward segmentswerealsoexploredwiththesametechniques,forexampletransitioningfrom walkingtorunningtokickingaball. dierencesatendframes).onewouldexpectaskilledanimatortodobetterthan thisonarstpass,however,itserveswellasastartingpointfortheoptimization. Arstguessinterpolationcanbefoundbyxingthetimesofthekeyframesat machine.thedominantportionofthetimewastakenbygradientcomputationand objectiveevaluationduringthelinesearch.solutionsforshortsegmentswereoften foundinonlytwoiterations,however,somecontinuedtoimprovefor10iterations. simplegureand4to5secondsforthemorecompletegureonanr4000sgi Ingeneral,eachoptimizationiterationtookapproximately1to2secondsforthe
103 CHAPTER4.KEYFRAMEOPTIMIZATION 90 Jump Keyframes Jump Results Kicking Keyframes Kicking Results Figure32:Motionsequences Throw Results Color Plate: Jumping, Kicking, Throwing From: Keyframe Motion Optimization by Relaxing Speed and Timing by: Zicheng Liu and Michael F. Cohen
104 CHAPTER4.KEYFRAMEOPTIMIZATION tion,swingbackward,swingforward,takeo.thecenterofgravityisconstrainedto haveadesiredupwardvelocityattake-o.thepositionofthecogisbasedonfree Therstexampleisajumper.Therearefourkeyframes:aninitialrelaxedposi- 91 ightdynamicsafterleavingtheground.theoptimizationprocessdeterminesthe velocitiesatthesecond,third,andfourthframesandthethreetimesegmentlengths arerelaxed(48unknowns).sixiterations(about10seconds),resultinarealistic jumpingmotionwithdesiredtakeovelocityresults(seetopoffigure32). gureisrequiredtoland,absorbtheenergyofthefall,andthenstandup.there arethreeframes:landing,followthrough,andstandingup.fouriterationsresultin anaturallookingmotion. Asimilarlandingsequencewasalsodetermined.Giventhelandingvelocity,the congurationwiththefootdrawnback,andthethirdonerepresentswhenthefoot position,theplayerkickstheball(hopefully)intothegoalandcomesbacktohisrest position.theball'smotioniscomputedfromsimplenewtonianphysicsassuming itsimplytakesonthevelocityofthefootatimpact.therearefourkeyframes: therstandfourtharetrivialrestconguration.thesecondoneistheprekicking Thesecondexperimentlooksatasoccerplayer.Initiallyinastandingatrest strikestheball.aconstraintissetforthevelocityofthefootatthethirdkeyframe soastokicktheballintothegoal. ananticipatorybendofthekneeandafollowthroughthatprojectstheballwith desiredvelocity(seemiddleoffigure32). Thetotalof33variablesaredeterminedintwoiterationsresultinginakickwith constantandwiththefullmodel.theabilitytorelaxthetimevaluesshowsa markedimprovementinndingalowerenergy(andmorenaturallooking)solution. bottomoffigure32).asinthekickingmotionthereare4keyframes,andaconstraint forthevelocityofthehand.experimentswererunbothholdingthetimepoints TheroughlydoublednumberofDOFledtoapproximately5seconditerations,with Furtherexperimentswererunonathrowingmotionwiththelargergure(see thesolutiontaking20iterations.thegradientdeterminationisatworstquadratic inthesizeofthetreedescribingthegure. soccerplayerwalks,thenrunsandnallykickstheballintothegoaltoscore.the Amultisegmentmotionwasconstructedstartingfromastandingposition,the
105 CHAPTER4.KEYFRAMEOPTIMIZATION run,walkandkickmotionsarecreatedrst.thenthethreetransitionmotionsare created:frominitialstandingtoaperiodicwalk,fromwalkingtorunning,andfrom runningtothekick.transitionphasesmaytaketheirrstandlastkeyframesfrom 92 othersegmentsandmayattheanimator'sdiscretionhaveintermediatekeyframes specied.eachpieceofthemotionincludingtransitionsisindividuallyoptimized, 4.5Conclusions Thegoalofcombiningintuitiveusercontrolwithautomatedsolutionsforanimation andtheresultsaresplicedtogether.eachindividualparttookfrom2to6iterations, orabout3to10secondsofcputime. sequencesisadelicatebalancingact.thischapterhaspresentedanewanimation addition.thedoffunctionsarerepresentedbypiecewisehermitesplines.initial theoptimizationisdistinctfromothersystemsandhasproventobeanimportant additionalkeyconstraintsonthegure'smotion.thevelocitiesandtimingare thencomputedbyanoptimizationprocess.theinclusionofthetimepointswithin paradigmtoachieveagoodbalanceinthiscontinuum.theanimatorisrequired resultsoftheuseofsuchasystemwerereported. tospecifykeyframesforwhichheintendstheguretopassthrough,aswellasany Hermiterepresentationandthegradientcomputationareeasytoimplement,this methodcanbeintegratedinanykeyframesystem. creategracefulandrealistic3dcomplexgureanimations.inaddition,sincethe enoughforuseinaninteractivesetting.ithasbeenshowntobeabletoeectively Thisparadigmeectivelyunburdenstheoptimizationprocesssothatitrunsfast
106 Chapter5 HierarchicalSpacetimeControl constraintproblemmoreecientlybyusingawaveletrepresentation.aswewilldiscuss,thismethodachievesbothfasterconvergenceandfasteriterationsthanprevious methods.thisworkhasbeenreportedinthepaper[40]. 5.1Introduction Inthischapter,wedescribeahierarchicalschemetosolvethegeneralspacetime AsdescribedinSection2.7,solvingthespacetimeconstraintproblemrequiresrestrictingthesolutiontosomenitedimensionalfunctionspace,leadingtoanite numberofscalarunknowns.thepossibletrajectoriesaparticulardofcantakeare thusrestrictedtobealinearcombinationofbasisfunctionschosentorepresentthe DOFmotioncurve.Inthepreviouschapter,werestrictedthesolutiontoacombinationofasmallnumberofHermitebasisfunctionsindirectlyindicatedbytheuser. Inthischapter,weremovethisrestrictionbyreturningtothemoregeneralproblem 5.2HierarchicalB-splines systemstodate,witkinandkass[56]useddiscretizedfunctionsconsistingofevenly usingnbasisfunctions, wherethecoecientsciscalethebasisfunctionsi(t).inthespacetimeconstraint (t)=nxi=1cii(t) 93 (205)
107 provisiontochangetheresolutionoftheb-splineswithinspeciedregionsofthe CHAPTER5.HIERARCHICALSPACETIMECONTROL spacedpointsintimefromwhichderivativeswereapproximatedbynitedierencing. CohenrepresentedtheDOFfunctionsasuniformcubicB-splinecurves,withsome 94 intermsofcomputationalresourcesforthisextrafreedom.theextraunknown thespaceofpossiblesolutions.unfortunately,fortworeasons,onepaysahighcost curve. coecientstranslateintolargersubproblemsateachiterationofthesolution.in addition,discretizationsofthistypealsoleadtoill-conditionedsystemsrequiring moreiterationstosolve[53]. Themorebasisfunctionsandcorrespondingcoecientsthatareused,thelarger inthetrajectoriesastheiterativesolutionproceeds. narrowerbases.unfortunately,theoptimaltrajectoriesarenotknowninadvance andthusamoreexiblebasismustbedevelopedthatcanadapttothelocaldetail bewiderandinregionswherethetrajectoryvariesquickly,thereshouldbemore, analmostoptimalanswer.insmoothportionsofthetrajectories,basisfunctionscan Ideally,onewouldliketoselectafunctionspacewithjustenoughfreedomtoallow basisfunctionsbelow. splinebasisconsistsofapyramidoftranslationsanddilationsofb-splines(therows labeledvinfigure33)rangingfromverywideb-splinesatthetoptonerscaled calb-splineshavebeenusedinthecontextofshapedesign[23]toallowmodication ofcurvesandsurfacesatlevelsofdetailselectedbytheuser.thehierarchicalb- Hierarchicalsystemsofbasisfunctionsoerjustthistypeofadaptivity.Hierarchi- Thishierarchicalbasishasattractivepropertiesforuseindescribingthetrajectories inthecurrentapplication.however,thisisaredundantbasis,sinceanyfunction realizableatonelevelcanalsobecreatedfromthenerbasisfunctionsbelow.in addition,howtoachievethedesiredadaptivityisnotimmediatelyapparent. Eachlevelgoingdowncontainstwiceasmanybasisfunctionsperunitlength.
108 CHAPTER5.HIERARCHICALSPACETIMECONTROL 95 V 5.3Wavelets W Amoreelegantandconcisehierarchicalbasis,andonethatleadsnaturallytoan Figure33:HierarchyofB-splineandWaveletBases. L 2 L 2 V L 1 W L 1 V L. V = V W L L 1 + eachnewlayerisnotredundantwiththoseabovebutratheraddsonlylocaldetailin advantagesofwaveletsandwaveletformulationsinthespacetimeanimationproblem. adaptivebasis,isoeredbyawaveletconstruction.thissectionconcentratesonthe theresultatsomeresolution. todirectlyrepresentingthelocalfunctionvalue.also,unlikehierarchicalb-splines, waveletcoecientsateachlevelrepresentdierencesfromthelevelsaboveasopposed TheprimarydierencebetweenwaveletsandhierarchicalB-splinesisthatthe 5.3.1AdvantagesofWaveletstoSpacetimeAnimation L 1 Thewaveletconstructionresultsinanon-redundantbasisthatprovidesthemeansto beginwithalowresolutionbasisandthenadaptivelyrenetherepresentationlayer basisfunctionswithresultingcoecientsgreaterthansomewillhaveasignicant bylayerwhennecessarywithoutchangingtherepresentationabove.ifrenements arerequiredinonlypartoftheinterval,thenonlythosecoecientswhosebaseshave supportinthisregionneedtobeadded. torythecoecientsencodingnerscaledetailwillbenearlyzero.thus,onlythose Sincethewaveletcoecientsencodedierences,insmoothportionsofthetrajec-
109 function[26,25],(discussedlater)thatcanpredictwhichcoecientswillbeabovea threshold,onlythecorrespondingsubsetofwaveletsneedstobeincluded. CHAPTER5.HIERARCHICALSPACETIMECONTROL inuenceonthecurveandtherestcanbeignored.inotherwords,givenanoracle 96 waveletbasisprovidesabetterconditionedsystemofequationsthantheuniform unknowncoecientsinthewaveletbasisprovidefasteriterations.inaddition,the B-splinebasis,andthusrequireslessiterations.Theintuitionforthisliesinthe dependsonthenumberofunknowncoecients.thesmallernumberofsignicant involveaseriesofquadraticsubproblemsforwhichthecomputationalcomplexity Solutionstothenon-linearspacetimeproblem,asdiscussedinmoredetailbelow, factthatthereisnosinglebasisintheoriginalb-splinebasisthatprovidesaglobal estimateofthenaltrajectory(i.e.,thelocalityoftheb-splinebasisis,inthiscase, adetriment).thus,iftheconstraintsandobjectivedonotcauseinteractionsacross pointsintime,theninformationaboutchangesinonecoecienttravelsveryslowly sometestresultsonquadraticfunctionsshowingthatusingawaveletrepresentation isusuallyfasterthannon-hierarchicalrepresentationswhenboththesolutionandthe (ino(n)iterations)tootherpartsofthetrajectory.incontrast,thehierarchical initialguessaresmoothfunctions.fornonsmoothfunctions,especiallywhenonlythe therelatedhierarchicalmethodsdiscussedhere.inthenextsection,wewillreport waveletbasisprovidesashorter(o(log(n)))\communication"distancebetweenany nestdetailcoecientsaresignicant(i.e.,thereisnoreasonableglobalestimate), twobasisfunctions.thisisthebasicinsightleadingtomultigridmethods[53],and samplingdensityonlyneedstobeincreasedintheseareas. resolutionresults,bydenition,inasmoothertrajectory,lesssamplesmustbetaken duringthenumericalquadrature.aswaveletsareaddedinparticularregions,the smoothsothatwaveletrepresentationachievesfasterconvergence. thewaveletrepresentationwillnotperformwell.butinpractice,functionsareusually levelsolutionandonlyworkondetailssimplybyremovingthecoarserlevelbasis Finally,thewaveletrepresentationallowstheusertoeasilylockinthecoarser Anadditionalbenetinvolvestheintegrationoftheobjective.Sincealower functionsfromtheoptimization.thisprovidesthemeanstocreatesmallsystems thatsolveveryrapidlytorenethenestdetailsinthetrajectories.
110 Inthissection,wereportsometestresultsonasimplequadraticfunctiontoshow CHAPTER5.HIERARCHICALSPACETIMECONTROL 5.3.2QuadraticFunction thatthewaveletrepresentationleadstofasterconvergence. 97 solutionisclearly=. where(t)andf(t)areknownfunctions,andf(t)>0forallt2[0;1].theoptimum Suppose Theoptimizationproblemconsideredissimplyto minimizez1 (t)=2l 1 Xj=0cjL;j 0((t) (t))2f(t)dt (206) insection2.9.1,andlissomegiveninteger.ifwealsorepresent(t)asalinear combinationofthesebasisfunctions,thatis, whereisthescalefunctionusedinthehaarwaveletconstructionasdescribed (t)=2l 1 Xj=0cjL;j; (207) thenr10((t) (t))2f(t)dt=r10p2l 1 =R10P0i;j2L 1(ci ci)(cj cj)l;il;jf(t)dt j=0(cjl;j cjl;j)2f(t)dt j=0(cj cj)2l;jf(t)dt (208) wherethethirdequalityholdsbecauseforallt2[0;1] L;i(t)L;j(t)=8<:0i6=j j=0(cj cj)2rj+1 2Lf(t)dt j (209) Letc=(c0;c1;:::;c2L 1)T,c=(c0;c1;:::;c2L 1)T,and [email protected] 1 1i=j 1 (210) CA (211)
111 CHAPTER5.HIERARCHICALSPACETIMECONTROL wherefj=rj+1 Z1 0((t) (t))2f(t)dt=(c c)tm(c c) 2Lf(t)dt.Then j (212) 98 Sotheproblem206becomesaquadraticminimizationproblem: thecoecientsofthesebasisfunctions.section2.9.1showedthatthereisalinear j2l 1;0lL 1g(seeSection2.9.1)torepresent(t).Denotedtobe Wedenotethisproblemby@(M;c). AsshowninSection2.9.1,wecanalsouseHaarbasisfunctionsf0;0g[f minimize(c c)tm(c c): l;jj0 (213) then(c c)tm(c c)=(d d)tutmu(d d) transformation(pyramidtransformation)betweencandd.denoteutobethematrix suchthatc=ud.letdbethehaarwaveletbasiscoecientsof,thatis,c=ud, randomlypicknumbersfrom[20 l0:1;20+l0:1]toformavectorc0whichisused numbersfrom[10 k0:1;10+k0:1]toform100c's,andthenforeachc,we Sotheproblem@(M;c)istransformedintotheproblem@(UTMU;U 1c). Inourexperiments,L=4.foreachk;l2f1;3;5;7;9;11g,werandomlypick (214) bothproblemsfor10iterations,andcomparetheobjectivefunctionvalues.theone weusew(l;k)todenotethenumberoftimesthat@(utmu;u 1c)isfasterthan astheinitialguessfor@(m;c).theinitialguessfor@(utmu;u 1c)isU 1c0. Fromthetablewecanseethatusingwaveletbasisisusuallyfasterthanusing Thenwerunthegradientdecentoptimizationalgorithm(seeSection2.10.1)on fasterthanaatbasis. smoothfunctionsasinitialguessestoachievefastconvergence. [10 k0:1;10+k0:1],thesmallerthek,thesmootherthefunction.therefore, thistablebasicallyshowsthatwhenissmooth,thewaveletrepresentationisusually boxbasiswhenkissmall.sinceeachcomponentofcisrandomlychosenfrom Thistablealsoshowsthatwhentheoptimumsolutionissmooth,weshouldchoose
112 CHAPTER5.HIERARCHICALSPACETIMECONTROL lnk thewaveletbasisisfasterthantheboxbasis. Table1:ComparisonoftheconvergencespeedsofusingHaarbwaveletbasisvs.using boxbasis.eachentryw(l;k)representsthenumberoftimesamong100teststhat ChoiceofWavelets weneedtocomputesecondorderderivatives.thesemi-orthogonalitypropertyresults waveletsbecauseoftheirsmoothness(theyhavecontinuoussecondorderderivatives), semi-orthogonalityandcompactness.therequirementforsmoothnessisobvioussince ThewaveletbasiswechooseisChui-WangB-waveletbasisonboundedintervalas inbestapproximationsoffunctions.thedesireforcompactnessisforlocality. describedinsection2.9.3.wechoosewaveletsonboundedintervalbecauseanimation problemsareconsideredoversomenitetimeinterval.wechoosechui-wangb- Onenalissueisthescalingratiobetweenthebasisfunctions.Traditionally[12]the 5.3.4Scaling waveletfunctionsaredenedwiththefollowingscaling: arescaled1 i;j(t)=2(i L)=2(2(i L)t j) bewellconditioned[15]itisadvantageoustoemphasizethecoarserlevelsandhence foroptimizationpurposesitiscounterproductive.fortheoptimizationprocedureto Thismeansthatateachlevelup,thebasisfunctionsbecometwiceaswide,and p2timesastall.whileinmanycontextsthisnormalizingmaybedesirable, (2(i L)t j) (215)
113 CHAPTER5.HIERARCHICALSPACETIMECONTROL usethescalingdenedby i;j(t)=2l i(2(i L)t j) (2(i L)t j) (216) Implementation Theinputtothewaveletspacetimeproblemincludesthecreaturedescription,theobjectivefunction(i.e.,symbolicexpressionsofjointtorquesgeneratedfromthecreature multiplyingallofthehandgentriesby2. wherethewiderfunctionsarealsotaller.inthepyramidcode,thisisachievedby ures,onecanuseeitherthesymbolicsystemasdescribedinfigure19ortheone asdescribedinfigure24.forlargegures,thelateroneistheonlyfeasiblechoice. Sinceourexperimentsonlyusesmallgures,wehavechosentousetherstsymbolic method.asdiscussedinsection2.12,thesymbolicexpressionsaredierentiatedand description),anduserdenedconstraintsspecifyingdesiredactions(throw,catch, compiledintodags. etc.),andinequalityconstraintssuchasjointlimitsontheelbow.forsmallg- Atthispoint,aconstrainedvariationalproblemisdened minimizef(;_;) unknownsarethentheb-splinecoecients,c,ortheequivalentwaveletcoecients, whereisthevectoroftrajectoriesofthedegreesoffreedomofthecreature. Eachtrajectory,(t),isrepresentedintheuniformcubicB-splinebasis.The subjecttoci(;_;)=0;i2neq Ci(;_;)0;i2nineq (217) w,scalingtheindividualbasisfunctions.thisnitesetofcoecientsprovidethe informationtoevaluatethe(t),_ (t),and BFGSmethodisusedtosolvetheresultedunconstrainedoptimizationproblem. strainedoptimizationproblemintoanunconstrainedoptimizationproblem.the constrainednon-linearoptimizationproblem. ofthedags.thisniterepresentationtransformsthevariationalproblemintoa ThepenaltymethodasdescribedinSection2.10.3isusedtotransformthecon- (t)atanytimet,thatcomprisetheleaves
114 oftheinverseofthehessian(usuallyanidentitymatrixleadingtotherstiteration CHAPTER5.HIERARCHICALSPACETIMECONTROL (thatcanbederivedfromb-splinecoecientsusingcoefpyrmup)andaguessh0 BFGSiterationsbeginwithauserprovidedinitialguessofwaveletcoecientsc0 101 thebroadb-splinesandasinglelevelofwavelets,aftereachiterationasimpleoracle beingasimplegradientdescent). function(seethenextparagraph)maybecalledtoaddwaveletsatnerlevelsonly putedandthenew(better)solutionwkisobtained.thissolutioncanbetransformed backtob-splinecoecientsbyusingcoefpyrmdownfordisplay. Iftheinitialfunctionspaceisrestrictedtoacoarserepresentationconsistingof Ateachiteration,thegradientwithrespecttothewaveletcoecientsarecom- sucientdetailinthoseregionsthatrequireit. renethedofrepresentation.todecidewheretoaddcoecients,foreachwavelet coecientwl;j(ofthebasisfunction whenthewaveletcoecientaboveexceedssometolerance.thisprocedurequickly,theoracleaddsallthecoecientswl+1;kofthenerlevelwaveletbasisfunctions approximatestheoptimaltrajectoryandsmoothlyconvergestoanalanswerwith l+1;jwhosesupportsaresubsetsofthesupportof Eachtimewhentheoracleiscalled,itaddswaveletcoecientsatnerlevelsto l;j)whoseabsolutevalueisbiggerthansome achieved,thustheoracleiscalledsothattheoptimizationprocesscontinuesata nerrepresentation. canbeassumedthatthelocalminimumatthecurrentresolutionhasbeennearly bedecidedbycheckingtheprogressoftheoptimizationprocess.ifthethedierence oftheobjectivefunctionattwoconsecutiveiterationsisbelowsomethreshold,it l;j.whentocalltheoraclecan whichrepresentlocalminimainthesameoptimizationproblem.thenextiteration framesystemtohelpguidethenumericalprocess.thisiscriticaltoallowtheuser, implementation.theusercandirectlymodifythecurrentsolutionwithasimplekey forexample,tomovethesolutionfromanunderhandtoanoverhandthrow,bothof thenbeginswiththesenewtrajectoriesasthecurrentguess. Animportantfeatureofthesystemdiscussedin[13]isalsoavailableinthecurrent
115 CHAPTER5.HIERARCHICALSPACETIMECONTROL 5.5Results Asetofexperimentswasrunontheproblemofathree-linkarmandaball(see Figure35).Thegoalofthearmistobeginandendinarestpositionhanging 102 straightdown,andtothrowtheballintoabasket.theobjectivefunctionisto minimizeenergy,whereenergyisdenedastheintegralofthesumofthesquaresof thejointtorques.gravityisactive. theconvergencewithb-splinerepresentation,fullwaveletrepresentationandadaptive waveletrepresentation,respectively.eachplotdiersonlyinthestartingtrajectories ofthearmdof.eachrunconvergedtoeitheranunderhandoroverhandthrow intothebasket.thefullb-splinebasiscontained67basisfunctionsforeachof armandballexample.theshortdashedline,solidlineandlongdashedlinerepresent ThefourgraphsinFigure34showtheconvergenceoffourdierenttestrunsofthe conditioningoftheb-splineformulation. Convergencewasachievedoneach,butonlyaftermanyiterationsduetotheill- thethreedof,thustherewere201unknowncoecientstosolvefor.iterations tookapproximately7secondseachonansgiworkstationwithanr4000processor. adaptivewaveletmethodwiththeoraclewasthefastestsincethenumberofunknownswassmallinearlyiterations,leadingtoaveryfastapproximationofthenal Thefullwaveletbasisalsocontained67basisfunctionperDOF(11B-splines formulationsovertheb-splinebasis,duetobetterconditionedlinearsystems.the atthetopleveland56waveletsbelow),thusiterationsalsotookapproximatelythe same7seconds.figure34clearlyshowstheimprovedconvergenceratesofthewavelet trajectories,inadditiontothebetterconditioningprovidedbythehierarchicalbasis. Thenalfewiterationsinvolvedmorewaveletsinsertedbytheoracletocompletethe whomakestheshot.thisanimationwascreatedinstages:rstplayerathrowsthe wasachievedinlessthanaminuteofcomputation. (seefigures35,36)wasanimated.thetaskwasa\giveandgo"play.playerapasses theballtoplayerb,thenmovestowardsthebasket.playerbpassesitpacktoa process.notethatineachcase,agoodapproximationtothecompleteanimation balltoalocationsetbytheuser,thenplayerb'sactionsareanimatedtocatchthe ball,thenplayerb'sthrowisanimatedfollowedbyplayeracatchingthisthrowand Ashortsequenceinvolvingtwobasketballplayerswithsixdegreesoffreedomeach
116 CHAPTER5.HIERARCHICALSPACETIMECONTROL cost cost time time B spline Full Wavelet Figure34:ConvergenceofArmandBallexamplefor4dierentstartingtrajectories Therstandfourthexamplesresultedinunderhandthrows,andtherestoverhand. Adaptive Wavelet Timeisinseconds,andthecostisaweightedsumofconstraintviolationsandenergy abovethelocalminimum time time cost cost
117 CHAPTER5.HIERARCHICALSPACETIMECONTROL 104 makingthebasket.eachstageoftheanimationtookbetween10and25iterationsof Figure35:Aplanarthree-linkarmanda6DOFbasketballplayer. approximately6-10secondseach.thelongeriterationtimesareduetothe6dofof eachcreatureleadingtotwicethenumberofunknowns.figure37showsthemotion sequence. 5.6Conclusion ThespacetimeconstraintsystemrstsuggestedbyWitkinandKass[56]foranimating linkedgureshasbeenshowntobeaneectivemeansofgeneratinggoalbasedmotion. Cohenenhancedthisworkbydemonstratinghowtofocustheoptimizationstepon windowsofspacetimetodolocalrenement.thischapterhasextendedthisideato ageneralhierarchicalscheme. three-linkarmandtwosixdof\basketballplayers". waveletbasis.thisresultedinfasteroptimizationiterationsduetolessunknown iterationsarerequiredtosettletoalocalminimum.resultsareshownforaplanar coecientsneededinsmoothregionsofthetrajectory.inaddition,evenwiththe samenumberofcoecients,thesystemsbecomebetterconditionedandthusless TheimprovementliesintherepresentationofthetrajectoriesoftheDOFina θ 1 θ 2 Ball θ 3 z θ2 θ1 φ x Ball θ3
118 CHAPTER5.HIERARCHICALSPACETIMECONTROL 105 Figure36:Scenefromabasketballgame.
119 CHAPTER5.HIERARCHICALSPACETIMECONTROL 106 (1) (2) (3) (4) (5) (6) (7) (8) (9) Figure37:Thetwobasketballplayers (10) (11) (12) (13) (14) (15)
120 Chapter6 ConclusionsandFutureResearch basedanimationsystemstobecomeusefulinpractice. Despitecontinuedresearchonphysicallybasedanimationapproaches,keyframing systemsarestillthepredominanttoolforanimation.thisisduetothecontrolprovidedtotheanimatorandthefastcomputationofinbetweenframes.howtoprovide 6.1Contributions Thisthesishaspresentedtheprogresswehavemadeinthisdirection.Inparticular, controloveradynamicsystemwhileachievingeciencyisessentialforphysically wemadeimprovementstothespacetimeconstraintsystembothsymbolicallyand optimizationsystem.thenotionofallowingtheusertospecifykeyframeswhile andgeneralinterfacewithfastdynamicsandgradientcomputations.thissymbolic methodmakesitpossibletoapplyspacetimeconstraintmethodstocomplexgures. ThekeyframeoptimizationsystemasdescribedinChapter4integratesdynamics intoakeyframesystemtoachievegoodusercontrolwhiletakingadvantageofthe numerically.thesymbolicmethodasdescribedinchapter3providesaconvenient moregeneralspacetimeconstraintsystem.thehierarchicalrenementschemewith lettingthecomputerdecidespeedandtimingisvaluable,andthemethodhasbeen showntobeabletoanimatecomplexhumanguresatnearlyinteractivecomputation speeds.thehierarchicalspacetimeconstraintmethodwithitswaveletrepresentation ofthedoffunctionshasbeenshowntosignicantlyspeedupcomputationsinthe 107
121 CHAPTER6.CONCLUSIONSANDFUTURERESEARCH localdetailsaddedlayerbylayerwherevernecessaryisshowntobeeectivefor generatinghighqualitygoaldirectedmotionoflinkedgures. 108 Onelimitationwithoursystemisthatitisdiculttodealwithcontactsandcollisions duetotheresultingdiscontinuitiesinthetrajectories.contactsandcollisionsare 6.2FutureWork ular,weneedtoprovidemoregraphicallybasedand/orintuitivemeanstogenerate, force.howtoincorporatecontactsandcollisionsintoatrajectorybasedsystemis stillanopenproblem. importantbehaviors,forexample,whenasoccerplayerkicksaball,thereisan impactforceonhim(her)whichresultsinextramotionstorespondtotheimpact describedinchapter3,sothatthesystemiseasiertouseandmoreproductive. modifyandinspecttheexpressionsofconstraintsandobjectiveinthelanguageas Anotherpracticalissuethatneedstobeaddressedistheuserinterface.Inpartic- Ideally,wecouldsomehowmodifytheprevioussolutionwithouthavingtorunthe more,butifthechangeofthebasketpositionisnottoolarge,anaccuratethrow optimizationprocessalloveragain.forexample,considerthebasketballplayer.if wechangethepositionofthebasket,thenthesamethrowwon'tmakethegoalany onemotion.ifwechangetheenvironmentorthegure,thesolutionhastochange. Reusabilityisanotherinterestingproblem.Eachtrajectorycorrespondstojust avoidruningtheoptimizationprocess?onepossibleapproachwouldbetomodifythe trajectoryoftheendpoint(thehand)insuchawaythatthedierenceisminimum (basedonsomesortofmeasurement)andtheballgoesintothebasket.thenwemay tothenewbasketpositionmaybeverysimilarto,thoughnotexactlythesameas, ndthedoftrajectoriessimplyusinginversekinematics. solutiontosavethenumberofiterations.aninterestingquestionis:canwetotally thepreviousone.theprevioussolutioncanbeusedastheinitialguessforthenew provideonewayofgeneratingnewmotions. capture.howtogeneratenewmotionsfromtherecordedmotionisacentralproblem tomakemotioncapturemoreproductive.asolutiontoreusabilityproblemmay Asolutiontothereusabilityproblemwouldalsohaveapplicationsinmotion
122 CHAPTER6.CONCLUSIONSANDFUTURERESEARCH consideranarmthrowingaballintoabasket.inourexperimentssofar,thehand doesnothavengers.ifwewanttoconsiderallthengers,theresultingoptimization Taskhierarchyisanotherpossibledirectiontospeedupcomputations.Againlet's 109 basketballplayermovesignicantlyonlyatthemomentwhentheballleavesthe problemwouldbecomeextremelylarge.however,inreallife,thengersofareal handtoadjustthespeedoftheballsothatitcanmakethegoal.inorderwords,the shoulder,elbowandwristarecontrollingthemotioninalargescale,whilethengers aremakingneradjustments.thereforeitmaybereasonabletocomputetherough motionrstbyonlyconsideringthesignicantjoints(shoulder,elbowandwrist)and nothavingtorequiretheballmakethegoalexactly.theresultingmotion,though notanaccuratethrow,wouldroughlydeterminethestyleofthemotion.thenwe cancomputethetrajectoriesofthoseinsignicantjoints(ngers)sothatthethrow canlimitthetimeintervaltobeasmallneighborhoodofthethrowingmomentto isactuate.sincethengersmovesignicantlyonlyatthemomentofthrowing,we savecomputations.
123 Bibliography [1]AlfredV.Aho,RaviSethi,andJereyD.Ullman.Compilers:Priciples,TechniquesandTools.AddisonWesley,1986. [2]BillArmstrongandMarkGreen.Thedynamicsofarticulatedrigidbodiesfor [4]R.Bartels,J.Beatty,andB.Barsky.AnIntroductiontoSplinesforUsein [3]D.Bara.Analyticalmodelsfordynamicsimulationofnon-penetratingrigid bodies.acmcomputergraphics,23(3):223{232,july1989. ComputerGraphicsSociety,May1986. purposesofanimation.inproceedingsofgraphicsinterface,pages407{415. [5]RichardBartels,JohnBeatty,andBrianBarsky.AnIntroductiontoSplinesfor CA,1990. ComputerGraphicsandGeometricModeling.MorganKaufmann,LosAltos, [7]LynnShapiroBrotmanandArunN.Netravali.Motioninterpolationbyoptimal [6]RonenBarzelandAlanH.Barr.Amodelingsystembasedondynamicconstraints.InProceedingsofSIGGRAPH'88(Atlanta,Georgia,August1{5,1988), pages179{188.acm,august1988. UseinComputerGraphicsandModeling.MorganKaufmann,1987. [8]A.BruderlinandT.Calvert.Goal-directed,dynamicanimationofhumanwalking.ACMComputerGraphics,23(3):233{422,July1989. volume22,pages309{315.acm,august1988. control.inproceedingsofsiggraph'88(atlanta,georgia,august1{5,1988), 110
124 BIBLIOGRAPHY [10]JimX.Chen,NielsdaVitoriaLobo,CharlesE.Hughes,andI.MichaelMoshell. [9]E.Catmull.Theproblemsofcomputer-assistedanimation.InSIGGRAPH, pages348{353, [11]CharlesChuiandEwaldQuak.Waveletsonaboundedinterval.Numerical ofiowa,july MethodsofApproximationTheory,9:53{75,1992. SimulationandInteractioninVirtualEnviroments,pages159{167,University Simulationandsynchronizationofuidsinadis.InTheFirstWorkshopon [12]CharlesK.Chui.AnIntroductiontoWavelets,volume1ofWaveletAnalysis [14]JohnJ.Craig.IntroductiontoRobotics.Addison-Wesley,Reading,MA,1986. [13]MichaelF.Cohen.Interactivespacetimecontrolforanimation.ComputerGraphics,26(2):293{302,July1992. anditsapplications.academicpressinc.,1992. [17]GarciadeJalonJavier.Kinematicanddynamicsimulationofmultibodysystems: [16]I.Daubechies.TenLecturesonWavelets.CBMS-NSFSeriesinAppl.Math., [15]WolfgangDahmenandAngelKunoth.Multilevelpreconditioning.Numerische SIAMpublications,Philadelphia.,1992. thereal-timechallenge.newyork:springer-verlag,1994. Mathematik,63:315{344,1992. [18]L.C.W.DixonandG.P.Szego.TowardsGlobalOptimization.North-Holland, [19]D.N.BurghesandA.M.Downs.ModernIntroductiontoClassicalMechanicsand Amsterdam,1975. [21]R.Fletcher.PracticalMethodsofOptimization,Vol.1and2.JohnWileyand [20]RoyFeatherstone.Robotdynamicsalgorithms.Boston:Kluwer,1987. Control.EllisHorwood,1975. Sons,1980.
125 BIBLIOGRAPHY [22]JamesD.Foley,AndriesvanDam,StevenK.Feiner,andJohnF.Hughes. ComputerGraphics:PrinciplesandPractice.AddisonWesley,Reading,Massachusetts,2edition, [23]DavidForseyandRichardBartels.Hierarchicalb-splinerenement.Computer [24]MichaelGirardandA.A.Macielewski.Computationalmodelingforthecomputer [25]StevenGortlerandMichaelF.Cohen.Variationalmodelingwithwavelets.Tech- Graphics,22(4):205{212,August1988. animationofleggedgures.inproceedingsofsiggraph'85(sanfrancisco, [26]StevenGortler,PeterSchroder,MichaelCohen,andPatHanrahan.Wavelet nicalreportcs-tr ,departmentofcomputerscience,princetonuni- versity,1994. radiosity.incomputergraphics,annualconferenceseries,1993,pages221{ California,July22{26,1985).ACM,July1985. [28]JessicaK.Hodgins,WayneL.Wooten,DavidC.Brogan,andJamesF.O'Brien. [27]JamesHahn.Realisticanimationofrigidbodies.InProceedingsofSIG GRAPH'88(Atlanta,Georgia,August1{5,1988),pages299{308.ACM,August 230.Siggraph,August1993. [29]JohnM.Hollerbach.Arecursivelagrangianformulationofmanipulatordynamics Animatinghumanathletics.InProceedingsofSiggraph,LosAngeles,CA,August [30]PaulM.IsaacsandMichaelF.Cohen.Controllingdynamicsimulationwithkinematicconstraints,behaviorfunctions,andinversedynamics.InProceedingsof andacomparativestudyofdynamicsformulationcomplexity.ieeetransactions July1987. onsystems,man,andcybernetics,10(11):730{736,november1980. SIGGRAPH'87(Anaheim,California,July27{31,1987),pages215{224.ACM,
126 BIBLIOGRAPHY [32]ThomasR.Kane.Dynamics.StanfordUniversity,1972. [31]PaulM.IsaacsandMichaelF.Cohen.Mixedmethodsforkinematicconstraints indynamicgureanimation.thevisualcomputer,4, [33]MichaelKass.Condor:Constraint-baseddataow.InProceedingsofSIG- [35]JohnLasseter.Principlesoftraditionalanimationappliedto3dcomputeranimation.InSIGGRAPH,pages35{44,1987. motionofarticulatedstructures.ieeecomputergraphicsandapplications, [34]JamesU.KoreinandNormanI.Badler.Techniquesforgeneratinggoal-directed 2(6):71{81,November1982. GRAPH'92(Chicago,July26{31,1992),pages321{330.ACM,July1992. [36]PhilipLee,SusannaWei,JianminZhao,andNormanI.Badler.Strengthguided [37]ZichengLiuandMichaelF.Cohen.Decompositionoflinkedguremotion:Diving.InProceedingsof5thEuroGraphicsWorkshoponAnimationandSimulation, basedanimationsystems.inproceedingsof6theurographicsworkshopon (Oslo,Norway,September ). motion.inproceedingsofsiggraph'90(dallas,texas,august6{10,1990), [38]ZichengLiuandMichaelF.Cohen.Anecientsymbolicinterfacetoconstraint pages253{262.acm,august1990. [39]ZichengLiuandMichaelF.Cohen.Keyframemotionopimizationbyrelaxing AnimationandSimulation,(Maastricht,TheNetherlands,September ). Springer-Verlag. [40]ZichengLiu,StevenGortler,andMichaelF.Cohen.Hierarchicalspacetime speedandtiming.inproceedingsof6theurographicsworkshoponanimation Verlag. andsimulation,(maastricht,thenetherlands,september ).springer- control.computergraphics,pages35{42,july1994.
127 BIBLIOGRAPHY [41]GavinS.P.Miller.Themotiondynamicsofsnakesandworms.InProceedings ofsiggraph'88(atlanta,georgia,august1{5,1988),pages169{173.acm, August [43]J.ThomasNgoandJoeMarks.Spacetimeconstraintsrevisited.InComputer [42]BrianMirtichandJohnCanny.Impulse-basedsimulationofrigidbodies.In [44]AlexPentlandandJohnWilliams.Goodvibrations:Modaldynamicsforgraphicsandanimation.InProceedingsofSIGGRAPH'89(Boston,Mass.,July31{ Aug4,1989),pages215{222.ACM,July1989. Graphics,AnnualConferenceSeries,1993,pages343{350.Siggraph,August SymposiumonInteractive3DGraphics,1995. [45]CaryB.Phillips,JianminZhao,andNormanI.Badler.Interactivereal-time [46]GaryB.PhillipsandNormanI.Badler.Interactivebehaviorsforbipedalarticulatedgures.ComputerGraphics,25(4):359{362,July1991ingsofSymposiumonInteractive3DGraphics(Snowbird,Utah,March,1990), volume24,pages245{250.acm,march1990. articulatedguremanipulationusingmultiplekinematicconstraints.inproceed- [47]W.H.PressandB.Flannery.NumericalRecipes:TheArtofScienticComputing.CambridgeUniversityPress,1986. [48]W.H.Press,B.P.Flannery,S.A.Teukolsky,andW.T.Vetterling.Numerical [50]EwaldQuakandNormanWeyrich.Decompositionandreconstructionalgorithms [49]WillaimPress,S.Teukolski,WVetterling,andBFlannery.NumericalRecipies Recipies.CambridgeUniversityPress,1986. forsplinewaveletsonaboundedinterval.technicalreport294,centerfor ApproximationTheory,TexasA&M,1993. inc,theartofscienticcomputing.cambridgeuniversitypress,2edition,
128 BIBLIOGRAPHY [51]MarcH.RaibertandJessicaK.Hodgins.Animationofdynamicleggedlocomotion.siggraph91,4(25):349{358, [52]S.M.RobertsandJ.S.Shipman.Two-PointValueProblems:ShootingMethods. [53]DemetriTerzopoulos.Imageanalysisusingmultigridrelaxationmethods.IEEE [54]MichielvandePanneandEugeneFiume.Sensor-actuatornetworks.InComputer AmericanElsevier,1972. [55]JaneWilhelms.Usingdynamicanalysisforrealisticanimationofarticulated PAMI,8(2):129{139,March1986. [56]AndrewWitkinandMichaelKass.Spacetimeconstraints.ComputerGraphics, Graphics,AnnualConferenceSeries,1993,pages335{342.Siggraph,August [57]JianminZhaoandNormanI.Badler.Realtimeinversekinematicswithjoint bodies.ieeecomputergraphicsandapplications,7(6):12{27,june (4):159{168,August1988. ComputerandInformationScience,UniversityofPennsylvania,1989. limitsandspatialconstraints.technicalreportms-cis-89-09,departmentof
Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.
New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New
fun www.sausalitos.de
O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
Scholarship Help for Technology Students
i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li
DataIntegrationwithXMLandSemanticWeb Technologies
DataIntegrationwithXMLandSemanticWeb Technologies Athesispresented by RubénTous Submittedinpartialfullmentoftherequerimentsfor DoctorateinComputerScienceandDigitalCommunication thedegreeofdoctorofphilosophy
1 Review of Newton Polynomials
cs: introduction to numerical analysis 0/0/0 Lecture 8: Polynomial Interpolation: Using Newton Polynomials and Error Analysis Instructor: Professor Amos Ron Scribes: Giordano Fusco, Mark Cowlishaw, Nathanael
Kinematics & Dynamics
Overview Kinematics & Dynamics Adam Finkelstein Princeton University COS 46, Spring 005 Kinematics Considers only motion Determined by positions, velocities, accelerations Dynamics Considers underlying
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
UNIVERSITY OF WARWICK. Academic Quality and Standards Committee
UNIVERSITY OF WARWICK Academic Quality and Standards Committee There will be a meeting of the Academic Quality and Standards Committee on Monday 7 July 2003 at 2.00pm in the Council Chamber, Senate House.
TITLE 9. HEALTH SERVICES CHAPTER 1. DEPARTMENT OF HEALTH SERVICES ADMINISTRATION ARTICLE 4. CODES AND STANDARDS REFERENCED
TITLE 9. HEALTH SERVICES CHAPTER 1. DEPARTMENT OF HEALTH SERVICES ADMINISTRATION ARTICLE 4. CODES AND STANDARDS REFERENCED R9-1-412. Physical Plant Health and Safety Codes and Standards A. The following
B1 Project Management 100
Assignment of points B1 Project Management 100 Requirements for Design Presentation Meetings and Proposal Submissions for Key to Project Management Design Presentation Meeting and Proposal Submissions
Computer Animation. Lecture 2. Basics of Character Animation
Computer Animation Lecture 2. Basics of Character Animation Taku Komura Overview Character Animation Posture representation Hierarchical structure of the body Joint types Translational, hinge, universal,
Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD)
Simulation of Trajectories and Comparison of Joint Variables for Robotic Manipulator Using Multibody Dynamics (MBD) Jatin Dave Assistant Professor Nirma University Mechanical Engineering Department, Institute
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Form: Parental Consent for Blood Donation
A R C Wt, C 20006 Ptl Ct f B i Ifi T f t y t ll f i y tl t q y t l A R C ly. Pl ll 1-800-RE-CROSS (1-800-733-2767) v. if y v q r t t i I iv t f yr,, t, y v t t: 1. Y y t t l i ly, 2. Y y t t t l i ( k
The Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation
5. Orthogonal matrices
L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal
Multivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
Spin Hall Magnetoresistive Noise
Spin Hall Magnetoresistive Noise Contents 1 Introduction 1 2 Theory 5 3 Experimental Setup 17 4 Angle-Dependent Resistive Noise of YIG Pt Heterostructures 27 5 Summary and Outlook 53 A Data Post-Processing
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Measurement of Power in single and 3-Phase Circuits. by : N.K.Bhati
Measurement of Power in single and 3-Phase Circuits by : N.K.Bhati A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module 1. Power in
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
3. Regression & Exponential Smoothing
3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a
Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
Numerical Methods for Solving Systems of Nonlinear Equations
Numerical Methods for Solving Systems of Nonlinear Equations by Courtney Remani A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 Honour s
Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin
Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible
VEHICLE IDENTIFICATION, SERIAL NUMBER FRAME STAMP AND VEHICLE DATA PLATE LOCATIONS
TAYLOR-DUNN 2114 WEST BALL ROAD ANAHEIM, CA 92804 DOCUMENT #: BUL-08-02-004 DATE: 2/14/2008 REVISION: A VEHICLE IDENTIFICATION, SERIAL NUMBER FRAME STAMP AND VEHICLE DATA PLATE LOCATIONS This document
HIGH SCHOOL: GEOMETRY (Page 1 of 4)
HIGH SCHOOL: GEOMETRY (Page 1 of 4) Geometry is a complete college preparatory course of plane and solid geometry. It is recommended that there be a strand of algebra review woven throughout the course
Issue 1, Volume 1 January 2010. news for the residents of alamo heights SAN ANTONIO STOCK SHOW & RODEO. T h e S a n Antonio Stock Show & Rodeo
Al Hi 09 ER I 1 Vl 1 Jy 2010 i i Al Hi 09'ER SAN ANTONIO STOCK SHOW & RODEO V PRCA L I R O T Y F Fi Cciv Y T S Ai Sc S & R i ill c i ill ly ily i AT&T C i Pi R Cy Acii (PRCA) L I R Y. T S Ai Sc S & R cii
DATING YOUR GUILD 1952-1960
DATING YOUR GUILD 1952-1960 YEAR APPROXIMATE LAST SERIAL NUMBER PRODUCED 1953 1000-1500 1954 1500-2200 1955 2200-3000 1956 3000-4000 1957 4000-5700 1958 5700-8300 1959 12035 1960-1969 This chart displays
AP Calculus BC Exam. The Calculus BC Exam. At a Glance. Section I. SECTION I: Multiple-Choice Questions. Instructions. About Guessing.
The Calculus BC Exam AP Calculus BC Exam SECTION I: Multiple-Choice Questions At a Glance Total Time 1 hour, 45 minutes Number of Questions 45 Percent of Total Grade 50% Writing Instrument Pencil required
Synthesis of Constrained nr Planar Robots to Reach Five Task Positions
Synthesis of Constrained nr Planar Robots to Reach Five Task Positions Gim Song Soh Robotics and Automation Laboratory University of California Irvine, California 9697-3975 Email: [email protected] J. Michael
Adjustable-Rate Mortgages; Single-Family; indexed to the one-year Treasury Constant Maturity; 2 percent
Pool Prefix Glossary Last Revised: July 6, 2015 *Shaded items are adjustable-rate products. 2I Conventional Intermediate-Term, Level-Payment Subordinate Mortgages; Single-Family; maturing or due in 15
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
San$Diego$Imperial$Counties$Region$of$Narcotics$Anonymous$ Western$Service$Learning$Days$$ XXX$Host$Committee!Guidelines$ $$
SanDiegoImperialCountiesRegionofNarcoticsAnonymous WesternServiceLearningDays XXXHostCommitteeGuidelines I. Purpose ThepurposeoftheWesternServiceLearningDays(WSLD)XXXHostCommittee(HostCommittee)isto organize,coordinateandproducethewsldxxxeventwithinthe6weekperiodof3weekspriortotheendof
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
Tape & Reel Packaging For Surface Mount Devices. Date Code Marking:
Tape & Reel Packaging For Surface Mount Devices A utomation of surface-mount assembly by the use of pick-and-place equipment to handle tiny components has been enhanced by evolutionary improvements in
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau
Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction
*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) NATIONAL QUALIFICATIONS 2014 TUESDAY, 6 MAY 1.00 PM 2.30 PM
X00//0 NTIONL QULIFITIONS 0 TUESY, 6 MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (0 marks) Instructions for completion
Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)
Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition
Angles & Arcs Classwork. Geometry Circles ~1~ NJCTL.org. 7. Explain the difference between the radius of a circle and a chord.
Circles Parts of a Circle Classwork Use the diagram of the circle with center A to answer the following: 1. Name the radii 2. Name the chord(s) 3. Name the diameter(s) 4. If AC = 7, what does TC =? 5.
SCO TT G LEA SO N D EM O Z G EB R E-
SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Theory of Sobolev Multipliers
Vladimir G. Maz'ya Tatyana O. Shaposhnikova Theory of Sobolev Multipliers With Applications to Differential and Integral Operators ^ Springer Introduction Part I Description and Properties of Multipliers
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
@PATilKA. ENIITH]\'ONIKO tiepioaiko IYr'fP,,L\Ii\IA I,KAiAOil4I,,N0.\TIO'I'0 OPAKIKO K[N- PO _!,I}IPI,.\ OPAKIKON I\,II.I\F.TQi\
@PATilKA ENIITH]\'ONIKO tiepioaiko IYr'fP,,L\Ii\IA I,KAiAOil4I,,N0.\TIO'I'0 OPAKIKO K[N- PO _!,I}IPI,.\ OPAKIKON I\,II.I\F.TQi\ Bpcpru;rdvo auri rqv Axa6rlpfa A0qvdv Kcr r{v Ercnpic npoq evio;iuoq rnv
Chapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
Lecture Notes for Math250: Ordinary Differential Equations
Lecture Notes for Math250: Ordinary Differential Equations Wen Shen 2011 NB! These notes are used by myself. They are provided to students as a supplement to the textbook. They can not substitute the textbook.
1 Cubic Hermite Spline Interpolation
cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite
ME 115(b): Solution to Homework #1
ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity
SMT 2014 Algebra Test Solutions February 15, 2014
1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the
TEXAS STATE BOARD OF PLUMBING EXAMINERS RULE ADOPTION
TEXAS STATE BOARD OF PLUMBING EXAMINERS RULE ADOPTION TITLE 22 Examining Boards PART 17 Texas State Board of Plumbing Examiners CHAPTER 361 Administration 22 Tex. Admin. Code 361.6 Fees 22 Tex. Admin.
ACCUPLACER Arithmetic & Elementary Algebra Study Guide
ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College
C relative to O being abc,, respectively, then b a c.
2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip [email protected] http://home.kku.ac.th/wattou 2. Vectors A
We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")
OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith
Earthquake Hazard Zones: The relative risk of damage to Canadian buildings
Earthquake Hazard Zones: The relative risk of damage to Canadian buildings by Paul Kovacs Executive Director, Institute for Catastrophic Loss Reduction Adjunct Research Professor, Economics, Univ. of Western
ACTUATOR DESIGN FOR ARC WELDING ROBOT
ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
Scan Conversion of Filled Primitives Rectangles Polygons. Many concepts are easy in continuous space - Difficult in discrete space
[email protected] CSE 480/580 Lecture 7 Slide 1 2D Primitives I Point-plotting (Scan Conversion) Lines Circles Ellipses Scan Conversion of Filled Primitives Rectangles Polygons Clipping In graphics must
RadiativeHeatingandCooling incircumstellarenvelopes Dipl.-Phys.PeterWoitke ausberlin von zurerlangungdesakademischengrades dertechnischenuniversitatberlin VomFachbereich04(Physik) DoktorderNaturwissenschaften(Dr.rer.nat.)
Applied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
"Charting the Course... MOC 20409 B Server Virtualization with Windows Hyper-V and System Center. Course Summary
Description Course Summary This five day course will provide you with the knowledge and skills required to design and implement Microsoft Server solutions using Hyper-V and System. Objectives At the end
APPLICATIONS OF TENSOR ANALYSIS
APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
Applied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: [email protected] National Central University, Taiwan 7.1 DYNAMICAL
Regression Analysis LECTURE 2. The Multiple Regression Model in Matrices Consider the regression equation. (1) y = β 0 + β 1 x 1 + + β k x k + ε,
LECTURE 2 Regression Analysis The Multiple Regression Model in Matrices Consider the regression equation (1) y = β 0 + β 1 x 1 + + β k x k + ε, and imagine that T observations on the variables y, x 1,,x
5-58. The two shafts are made of A-36 steel. Each has a diameter of 1 in., and they are supported by bearings at A,
J. J.'- '-'.1J L.d 1V J L...,V./ 5-58. The two shafts are made of A-36 steel. Each has a diameter of 1 in., and they are supported by bearings at A, L and C, which allow free rotation. If the support at
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
Time domain modeling
Time domain modeling Equationof motion of a WEC Frequency domain: Ok if all effects/forces are linear M+ A ω X && % ω = F% ω K + K X% ω B ω + B X% & ω ( ) H PTO PTO + others Time domain: Must be linear
Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.
MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
Universitat Politècnica de València HERE. TODAY. TOMORROW.
S www.v. l f l l f S h S h F B F v l l h, h B v B l l G P l G l h P G b l x V lh H H S H S G S SS l l l f P S f S f l l h k l w l, F, P, S ll l l h fw S f l l b k w l bl U: US U l S H l vl l B v v f h
INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages
INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages Wolfgang K. Glloi Technical University of Berlin and University of Minnesota Tochnisths BodischBle Dnrmstadt FACHEEKE1CH 1NFORMATIK
Quantum Algorithms. Peter Høyer
Quantum Algorithms Peter Høyer University of Calgary CSSQI 2015 Canadian Summer School on Quantum Information Toronto, August 11, 2015 QUERY MODEL x1 x2 xn x1 0 1 0 0 0 1 0 1 0 0 0 0 xn You can ask questions
Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725
Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
CHAPTER 42A. Case management of certain personal injuries actions. 42A.1. (1) Subject to paragraph (3), this Chapter applies to actions
CHAPTER 42A Case management of certain personal injuries actions Application and interpretation of this Chapter 42A.1. (1) Subject to paragraph (3), this Chapter applies to actions proceeding as ordinary
Periodic wave in spatial domain - length scale is wavelength Given symbol l y
1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015)
THE TRANSPOSING METHOD IN SOLVING LINEAR EQUATIONS (Basic Step to improve math skills of high school students) (by Nghi H. Nguyen Jan 06, 2015) Most of the immigrant students who first began learning Algebra
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Software Monthly Maintenance (Non Accounting Use) Quick Reference Guide
Software Monthly Maintenance (Non Accounting Use) Quick Reference Guide When not using the accounting within the software the system will build up information that will affect the performance and speed
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Managing Successful Projects
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Managing Successful Projects with PRINCE2 Office of Government Commerce
1. Who can use Agent Portal? 2. What is the definition of an active agent? 3. How to access Agent portal? 4. How to login?
1. Who can use Agent Portal? Any active agent who is associated with Future Generali Life Insurance Company Limited can logon to Agent Portal 2. What is the definition of an active agent? An agent, whose
