# Multivariate Statistical Inference and Applications

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto

2 Contents Some Properties of Random Vectors and Matrices Introduction, Univariate and Bivariate Random Variables, Univariate Random Variables, Bivariate Random Variables, Mean Vectors and Covariance Matrices for Random Vectors, Correlation Matrices, Partitioned Mean Vectors and Covariance Matrices, Linear Functions of Random Variables, Sample Means, Variances, and Covariances, Population Means, Variances, and Covariances, Measuring Intercorrelation, Mahalanobis Distance, MissingData, Robust Estimators of fi and 2, 27 The Multivariate Normal Distribution Univariate and Multivariate Normal Density Functions, Univariate Normal, Multivariate Normal, Constant Density Ellipsoids, Generating Multivariate Normal Data, Moments, Properties of Multivariate Normal Random Vectors, Estimation of Parameters in the Multivariate Normal Distribution, 49 v

3 vi CONTENTS Maximum Likelihood Method, PropertiesofyandS, Wishart Distribution, Additional Topics, Hotelling's T 2 -Tests Introduction, Test for HQ: fi = fi 0 with 2 Known, Hotelling's T 2 -test for // 0 : fi = /x 0 with 2 Unknown, Univariate f-test for Ho: ix IM> with a 2 Unknown, Likelihood Ratio Method of Test Construction, One-Sample r 2 -Test, Formal Definition of T 2 and Relationship to F, Effect on 7 2 of Adding a Variable, Propertiesofthe7 2 -Test, Likelihood Ratio Test, Union-Intersection Test, Confidence Intervals and Tests for Linear Functions of fi, Confidence Region for ft, Confidence Interval for a Single Linear Combination a'fi, Simultaneous Confidence Intervals for IJLJ and a'/m, Bonferroni Confidence Intervals for /x, and a'/u, Tests for H 0 : a'/u, = a'jto and H 0 : ju, 7 = /xo ; -, Tests for H 0 : Cp = 0, Tests of H 0 : fx { = ft 2 Assuming 21 = 2 2, Review of Univariate Likelihood Ratio Test for H 0 : ix\ n>2 When a 2 = er 2, Test for H 0 : (JL { = fi 2 When 21 = 2 2, Effect on T 2 of Adding a Variable, Properties of thetwo-sample r 2 -Statistic, Likelihood Ratio and Union-Intersection Tests, Confidence Intervals and Tests for Linear Functions of Two Mean Vectors, Confidence Region for fn x fi, 2, Simultaneous Confidence Intervals for a'ipi ~~ M2) anc^ Mi; - M2;, Bonferroni Confidence Intervals for a'(/*i _ M2) anc * Mi; _ M2;, 94

4 CONTENTS vii Tests for H 0 :a'(fi 1 fi 2 ) = a '^o and H 0j : tnj ~ Mj = 0, Test for H 0 : C(/A, - fi 2 ) = 0, Robustness of the r 2 -test, Robustness to 2, + X 2, Robustness to Nonnormality, Paired Observation Test, Testing H 0 : Mi = M 2 When 21 = X 2, Univariate Case, Multivariate Case, Power and Sample Size, Tests on a Subvector, Two-Sample Case, Step-Down Test, Selectionof Variables, One-Sample Case, Nonnormal Approaches to Hypothesis Testing, Elliptically Contoured Distributions, Nonparametric Tests, Robust Versions of T 2, Application of T 2 In Multivariate Quality Control, Multivariate Analysis of Variance One-Way Classification, Model for One-Way Multivariate Analysis of Variance, Wilks' Likelihood Ratio Test, Roy's Union-Intersection Test, The Pillai and Lawley-Hotelling Test Statistics, Summary of the Four Test Statistics, Effect of an Additional Variable on Wilks' A, Tests on Individual Variables, Power and Robustness Comparisons for the Four MANOVA Test Statistics, Tests for Equality of Covariance Matrices, Power and Sample Size for the Four MANOVA Tests, Contrasts Among Mean Vectors, Univariate Contrasts, Multivariate Contrasts, 145

5 viii CONTENTS 4.6. Two-Way Multivariate Analysis of Variance, Higher Order Models, Unbalanced Data, Introduction, Univariate One-Way Model, Multivariate One-Way Model, Univariate Two-Way Model, Multivariate Two-Way Model, Tests on a Subvector, Testing a Single Subvector, Step-Down Test, Stepwise Selection of Variables, Multivariate Analysis of Covariance, Introduction, Univariate Analysis of Covariance: One-Way Model with One Covariate, Univariate Analysis of Covariance: Two-Way Model with One Covariate, Additional Topics in Univariate Analysis of Covariance, Multivariate Analysis of Covariance, Alternative Approaches to Testing Ho-t*>i ~ J*2 = - Pk> Discriminant Functions for Descriptive Group Separation Introduction, TwoGroups, Several Groups, Discriminant Functions, Assumptions, Standardized Coefficients, Tests of Hypotheses, TwoGroups, Several Groups, Discriminant Analysis for Higher Order Designs, Interpretation of Discriminant Functions, Standardized Coefficients and Partial F-Values, Correlations between Variables and Discriminant Functions, 211

6 CONTENTS ix Other Approaches, Confidence Intervals, Subset Selection, Discriminant Function Approach to Selection, Stepwise Selection, All Possible Subsets, Selection in Higher Order Designs, Bias in Subset Selection, Other Estimators of Discriminant Functions, Ridge Discriminant Analysis and Related Techniques, Robust Discriminant Analysis, Classification of Observations into Groups Introduction, Two Groups, Equal Population Covariance Matrices, Unequal Population Covariance Matrices, Unequal Costs of Misclassification, Posterior Probability Approach, Robustness to Departures from the Assumptions, Robust Procedures, Several Groups, Equal Population Covariance Matrices, Unequal Population Covariance Matrices, Use of Linear Discriminant Functions for Classification, Estimation of Error Rates, Correcting for Bias in the Apparent Error Rate, Partitioning the Sample, Holdout Method, Bootstrap Estimator, Comparison of Error Estimators, Subset Selection, Selection Based on Separation of Groups, Selection Based on Allocation, Selection in the Heteroscedastic Case, Bias in Stepwise Classification Analysis, Logistic and Probit Classification, 254

7 X CONTENTS The Logistic Model for Two Groups with 2, = 2 2 > Comparison of Logistic Classification with Linear Classification Functions, Quadratic Logistic Functions When X i = X2, Logistic Classification for Several Groups, Additional Topics in Logistic Classification, Probit Classification, Additional Topics in Classification, Multivariate Regression Introduction, Multiple Regression: Fixedx's, Least Squares Estimators and Properties, An Estimator for er 2, The Model in Centered Form, Hypothesis Tests and Confidence Intervals, R 2 in Fixed-Jt Regression, Model Validation, Multiple Regression: Random x's, Model for Random x's, Estimation of ßo> ß\, and CT 2, R 2 in Random-x Regression, Tests and Confidence Intervals, Estimation in the Multivariate Multiple Regression Model: Fixedx's, The Multivariate Model, Least Squares Estimator for B, Properties of B, An Estimator for X, Normal Model for the y,'s, The Multivariate Model in Centered Form, Measures of Multivariate Association, Hypothesis Tests in the Multivariate Multiple Regression Model: Fixedx's, Test for Significance of Regression, Test onasubsetof the RowsofB, General Linear Hypotheses CB = O and CBM = O, Tests and Confidence Intervals for a Single ßß and a Bilinear Function a'bb, 297

8 CONTENTS xi Simultaneous Tests and Confidence Intervals for the ß jk 's and Bilinear Functions a'bb, Tests in the Presence of Missing Data, Multivariate Model Validation: Fixedx's, Lack-of-Fit Tests, Residuais, Influence and Outliers, Measurement Errors, Multivariate Regression: Random x's, Multivariate Normal Model for Random x's, Estimationofßo, Bi.andX, Tests and Confidence Intervals in the Multivariate Random-x Case, Additional Topics, Correlated Response Methods, Categorical Data, Subset Selection, Other Topics, Canonical Correlation Introduction, Canonical Correlations and Canonical Variates, Properties of Canonical Correlations and Variates, Properties of Canonical Correlations, Properties of Canonical Variates, Tests of Significance for Canonical Correlations, Tests of Independence of y and x, Test of Dimension of Relationship between the y's and the x's, Validation, Interpretation of Canonical Variates, Standardized Coefficients, Rotation of Canonical Variate Coefficients, Correlations between Variables and Canonical Variates, Redundancy Analysis, Additional Topics, 333

9 xii CONTENTS 9. Principal Component Analysis Introduction, Definition and Properties of Principal Components, Maximum Variance Property, Principal Components as Projections, Properties of Principal Components, Principal Components as a Rotation of Axes, Principal Components from the Correlation Matrix, Methods for Discarding Components, Percent of Variance, Average Eigenvalue, Scree Graph, Significance Tests, Other Methods, Information in the Last Few Principal Components, Interpretation of Principal Components, Special Patterns in S or R, Testing H 0 : X = er 2 [(1 - p)i + pj] and P p = (1 - p)i + pj, Additional Rotation, Correlations between Variables and Principal Components, Relationship Between Principal Components and Regression, Principal Component Regression, Latent Root Regression, Principal Component Analysis with Grouped Data, Additional Topics, Factor Analysis Introduction, Basic Factor Model, Model and Assumptions, Scale Invariance of the Model, Rotation of Factor Loadings in the Model, Estimation of Loadings and Communalities, Principal Component Method, Principal Factor Method, Iterated Principal Factor Method, 384

10 CONTENTS xiii Maximum Likelihood Method, Other Methods, Comparison of Methods, Determining the Number of Factors, m, Rotation of Factor Loadings, Introduction, Orthogonal Rotation, Oblique Rotations, Interpretation of the Factors, Factor Scores, Applicability of the Factor Analysis Model, Factor Analysis and Grouped Data, Additional Topics, 394 Appendix A. Review of Matrix Algebra 399 A.l. Introduction, 399 A.l.l. Basic Definitions, 399 A.1.2. Matrices with Special Patterns, 400 A.2. Properties of Matrix Addition and Multiphcation, 401 A.3. Partitioned Matrices, 404 A.4. Rank of Matrices, 406 A.5. Inverse Matrices, 407 A.6. Positive Definite and Positive Semidefinite Matrices, 408 A.7. Determinants, 409 A.8. Traceofa Matrix, 410 A.9. Orthogonal Vectors and Matrices, 410 A.10. Eigenvalues and Eigenvectors, 411 A. 11. Eigenstructure of Symmetrie and Positive Definite Matrices, 412 A.12. Idempotent Matrices, 414 A.B. Differentiation, 414 Appendix B. Tables 417 Appendix C. Answers and Hints to Selected Problems 449 Appendix D. About the Diskette 505 Bibliography 507 Index 549

### Applied Multivariate Analysis

Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

### Computer-Aided Multivariate Analysis

Computer-Aided Multivariate Analysis FOURTH EDITION Abdelmonem Af if i Virginia A. Clark and Susanne May CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C Contents Preface

### Applied Regression Analysis and Other Multivariable Methods

THIRD EDITION Applied Regression Analysis and Other Multivariable Methods David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina, Chapel Hill Keith E. Muller University of

### Statistics Graduate Courses

Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

### Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

### DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

### Generalized Inverse of Matrices and its Applications

Generalized Inverse of Matrices and its Applications C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute SUJIT KUMAR MITRA, Ph.D. Professor of

### Least Squares Estimation

Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

### CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19

PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations

### INTRODUCTORY STATISTICS

INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

### Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences

Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition Jacob Cohen (deceased) New York University Patricia Cohen New York State Psychiatric Institute and Columbia University

### Multivariate Analysis of Variance (MANOVA)

Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various

### Advanced Linear Modeling

Ronald Christensen Advanced Linear Modeling Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization Second Edition Springer Preface to the Second Edition

### Multivariate Analysis of Variance (MANOVA)

Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction

### C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)}

C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)} 1. EES 800: Econometrics I Simple linear regression and correlation analysis. Specification and estimation of a regression model. Interpretation of regression

### MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

### Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

### Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

### Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis

### 3. The Multivariate Normal Distribution

3. The Multivariate Normal Distribution 3.1 Introduction A generalization of the familiar bell shaped normal density to several dimensions plays a fundamental role in multivariate analysis While real data

### Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England

Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND

### DATA ANALYTICS USING R

DATA ANALYTICS USING R Duration: 90 Hours Intended audience and scope: The course is targeted at fresh engineers, practicing engineers and scientists who are interested in learning and understanding data

### , then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

### Introduction to Principal Components and FactorAnalysis

Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a

### Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Janette Walde janette.walde@uibk.ac.at Department of Statistics University of Innsbruck Outline I Introduction Idea of PCA Principle of the Method Decomposing an Association

### Data analysis process

Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

### MULTIVARIATE DATA ANALYSIS i.-*.'.. ' -4

SEVENTH EDITION MULTIVARIATE DATA ANALYSIS i.-*.'.. ' -4 A Global Perspective Joseph F. Hair, Jr. Kennesaw State University William C. Black Louisiana State University Barry J. Babin University of Southern

### 15.062 Data Mining: Algorithms and Applications Matrix Math Review

.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

### Multivariate normal distribution and testing for means (see MKB Ch 3)

Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 One-sample t-test (univariate).................................................. 3 Two-sample t-test (univariate).................................................

### Chapter 14: Analyzing Relationships Between Variables

Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between

### Multivariate Analysis of Variance (MANOVA): I. Theory

Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

### Handling attrition and non-response in longitudinal data

Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein

### Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### SPSS Multivariable Linear Models and Logistic Regression

1 SPSS Multivariable Linear Models and Logistic Regression Multivariable Models Single continuous outcome (dependent variable), one main exposure (independent) variable, and one or more potential confounders

### Examples on Variable Selection in PCA in Sensory Descriptive and Consumer Data

Examples on Variable Selection in PCA in Sensory Descriptive and Consumer Data Per Lea, Frank Westad, Margrethe Hersleth MATFORSK, Ås, Norway Harald Martens KVL, Copenhagen, Denmark 6 th Sensometrics Meeting

### Univariate and Multivariate Methods PEARSON. Addison Wesley

Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston

### Empirical Model-Building and Response Surfaces

Empirical Model-Building and Response Surfaces GEORGE E. P. BOX NORMAN R. DRAPER Technische Universitat Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK Invortar-Nf.-. Sachgsbiete: Standort: New York John Wiley

### Statistics in Geophysics: Linear Regression II

Statistics in Geophysics: Linear Regression II Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/28 Model definition Suppose we have the following

### Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 4 Haijun Li Math 576: Quantitative Risk Management Week 4 1 / 22 Outline 1 Basics

### INTERPRETING THE REPEATED-MEASURES ANOVA

INTERPRETING THE REPEATED-MEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants

### Random Vectors and the Variance Covariance Matrix

Random Vectors and the Variance Covariance Matrix Definition 1. A random vector X is a vector (X 1, X 2,..., X p ) of jointly distributed random variables. As is customary in linear algebra, we will write

### fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example

### Principal Component Analysis

Principal Component Analysis Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables.

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

### Canonical Correlation Analysis

Canonical Correlation Analysis LEARNING OBJECTIVES Upon completing this chapter, you should be able to do the following: State the similarities and differences between multiple regression, factor analysis,

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### D-optimal plans in observational studies

D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational

### Statistical Analysis with Missing Data

Statistical Analysis with Missing Data Second Edition RODERICK J. A. LITTLE DONALD B. RUBIN WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface PARTI OVERVIEW AND BASIC APPROACHES

### Teaching Multivariate Analysis to Business-Major Students

Teaching Multivariate Analysis to Business-Major Students Wing-Keung Wong and Teck-Wong Soon - Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis

### Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round \$200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

### Factor analysis. Angela Montanari

Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

### Business Analytics. Methods, Models, and Decisions. James R. Evans : University of Cincinnati PEARSON

Business Analytics Methods, Models, and Decisions James R. Evans : University of Cincinnati PEARSON Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### Application of discriminant analysis to predict the class of degree for graduating students in a university system

International Journal of Physical Sciences Vol. 4 (), pp. 06-0, January, 009 Available online at http://www.academicjournals.org/ijps ISSN 99-950 009 Academic Journals Full Length Research Paper Application

### Regression Modeling Strategies

Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions

### Canonical Correlation

Chapter 400 Introduction Canonical correlation analysis is the study of the linear relations between two sets of variables. It is the multivariate extension of correlation analysis. Although we will present

### ANSWERS TO EXERCISES AND REVIEW QUESTIONS

ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS

### T-test & factor analysis

Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue

### Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

### Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

### Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

### Methods for Meta-analysis in Medical Research

Methods for Meta-analysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University

### Chapter 7 Factor Analysis SPSS

Chapter 7 Factor Analysis SPSS Factor analysis attempts to identify underlying variables, or factors, that explain the pattern of correlations within a set of observed variables. Factor analysis is often

### Introduction to Multivariate Models: Modeling Multivariate Outcomes with Mixed Model Repeated Measures Analyses

Introduction to Multivariate Models: Modeling Multivariate Outcomes with Mixed Model Repeated Measures Analyses Applied Multilevel Models for Cross Sectional Data Lecture 11 ICPSR Summer Workshop University

### Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine

2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels

### Statistical Rules of Thumb

Statistical Rules of Thumb Second Edition Gerald van Belle University of Washington Department of Biostatistics and Department of Environmental and Occupational Health Sciences Seattle, WA WILEY AJOHN

### Factor Analysis. Chapter 420. Introduction

Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### ANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject.

Chapter 14 Within-Subjects Designs ANOVA must be modified to take correlated errors into account when multiple measurements are made for each subject. 14.1 Overview of within-subjects designs Any categorical

### Analysis of Microdata

Rainer Winkelmann Stefan Boes Analysis of Microdata With 38 Figures and 41 Tables 4y Springer Contents 1 Introduction 1 1.1 What Are Microdata? 1 1.2 Types of Microdata 4 1.2.1 Qualitative Data 4 1.2.2

### Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

### Multivariate Analysis. Overview

Multivariate Analysis Overview Introduction Multivariate thinking Body of thought processes that illuminate the interrelatedness between and within sets of variables. The essence of multivariate thinking

### Statistical Modeling Using SAS

Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using

### Functional Data Analysis with R and MATLAB

J.O. Ramsay Giles Hooker Spencer Graves Functional Data Analysis with R and MATLAB Springer Contents 2 Introduction to Functional Data Analysis. What Are Functional Data?.. Data on the Growth of Girls..2

### Probability and Statistics

Probability and Statistics Syllabus for the TEMPUS SEE PhD Course (Podgorica, April 4 29, 2011) Franz Kappel 1 Institute for Mathematics and Scientific Computing University of Graz Žaneta Popeska 2 Faculty

### Sections 2.11 and 5.8

Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

### Semester 1 Statistics Short courses

Semester 1 Statistics Short courses Course: STAA0001 Basic Statistics Blackboard Site: STAA0001 Dates: Sat. March 12 th and Sat. April 30 th (9 am 5 pm) Assumed Knowledge: None Course Description Statistical

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### Multivariate analyses

14 Multivariate analyses Learning objectives By the end of this chapter you should be able to: Recognise when it is appropriate to use multivariate analyses (MANOVA) and which test to use (traditional

### ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.

ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor

### Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### Hypothesis Testing in the Classical Regression Model

LECTURE 5 Hypothesis Testing in the Classical Regression Model The Normal Distribution and the Sampling Distributions It is often appropriate to assume that the elements of the disturbance vector ε within

### THE MULTIVARIATE ANALYSIS RESEARCH GROUP. Carles M Cuadras Departament d Estadística Facultat de Biologia Universitat de Barcelona

THE MULTIVARIATE ANALYSIS RESEARCH GROUP Carles M Cuadras Departament d Estadística Facultat de Biologia Universitat de Barcelona The set of statistical methods known as Multivariate Analysis covers a

### A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### SAS Certificate Applied Statistics and SAS Programming

SAS Certificate Applied Statistics and SAS Programming SAS Certificate Applied Statistics and Advanced SAS Programming Brigham Young University Department of Statistics offers an Applied Statistics and