Multivariate Statistical Inference and Applications


 Homer Jenkins
 1 years ago
 Views:
Transcription
1 Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A WileyInterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto
2 Contents Some Properties of Random Vectors and Matrices Introduction, Univariate and Bivariate Random Variables, Univariate Random Variables, Bivariate Random Variables, Mean Vectors and Covariance Matrices for Random Vectors, Correlation Matrices, Partitioned Mean Vectors and Covariance Matrices, Linear Functions of Random Variables, Sample Means, Variances, and Covariances, Population Means, Variances, and Covariances, Measuring Intercorrelation, Mahalanobis Distance, MissingData, Robust Estimators of fi and 2, 27 The Multivariate Normal Distribution Univariate and Multivariate Normal Density Functions, Univariate Normal, Multivariate Normal, Constant Density Ellipsoids, Generating Multivariate Normal Data, Moments, Properties of Multivariate Normal Random Vectors, Estimation of Parameters in the Multivariate Normal Distribution, 49 v
3 vi CONTENTS Maximum Likelihood Method, PropertiesofyandS, Wishart Distribution, Additional Topics, Hotelling's T 2 Tests Introduction, Test for HQ: fi = fi 0 with 2 Known, Hotelling's T 2 test for // 0 : fi = /x 0 with 2 Unknown, Univariate ftest for Ho: ix IM> with a 2 Unknown, Likelihood Ratio Method of Test Construction, OneSample r 2 Test, Formal Definition of T 2 and Relationship to F, Effect on 7 2 of Adding a Variable, Propertiesofthe7 2 Test, Likelihood Ratio Test, UnionIntersection Test, Confidence Intervals and Tests for Linear Functions of fi, Confidence Region for ft, Confidence Interval for a Single Linear Combination a'fi, Simultaneous Confidence Intervals for IJLJ and a'/m, Bonferroni Confidence Intervals for /x, and a'/u, Tests for H 0 : a'/u, = a'jto and H 0 : ju, 7 = /xo ; , Tests for H 0 : Cp = 0, Tests of H 0 : fx { = ft 2 Assuming 21 = 2 2, Review of Univariate Likelihood Ratio Test for H 0 : ix\ n>2 When a 2 = er 2, Test for H 0 : (JL { = fi 2 When 21 = 2 2, Effect on T 2 of Adding a Variable, Properties of thetwosample r 2 Statistic, Likelihood Ratio and UnionIntersection Tests, Confidence Intervals and Tests for Linear Functions of Two Mean Vectors, Confidence Region for fn x fi, 2, Simultaneous Confidence Intervals for a'ipi ~~ M2) anc^ Mi;  M2;, Bonferroni Confidence Intervals for a'(/*i _ M2) anc * Mi; _ M2;, 94
4 CONTENTS vii Tests for H 0 :a'(fi 1 fi 2 ) = a '^o and H 0j : tnj ~ Mj = 0, Test for H 0 : C(/A,  fi 2 ) = 0, Robustness of the r 2 test, Robustness to 2, + X 2, Robustness to Nonnormality, Paired Observation Test, Testing H 0 : Mi = M 2 When 21 = X 2, Univariate Case, Multivariate Case, Power and Sample Size, Tests on a Subvector, TwoSample Case, StepDown Test, Selectionof Variables, OneSample Case, Nonnormal Approaches to Hypothesis Testing, Elliptically Contoured Distributions, Nonparametric Tests, Robust Versions of T 2, Application of T 2 In Multivariate Quality Control, Multivariate Analysis of Variance OneWay Classification, Model for OneWay Multivariate Analysis of Variance, Wilks' Likelihood Ratio Test, Roy's UnionIntersection Test, The Pillai and LawleyHotelling Test Statistics, Summary of the Four Test Statistics, Effect of an Additional Variable on Wilks' A, Tests on Individual Variables, Power and Robustness Comparisons for the Four MANOVA Test Statistics, Tests for Equality of Covariance Matrices, Power and Sample Size for the Four MANOVA Tests, Contrasts Among Mean Vectors, Univariate Contrasts, Multivariate Contrasts, 145
5 viii CONTENTS 4.6. TwoWay Multivariate Analysis of Variance, Higher Order Models, Unbalanced Data, Introduction, Univariate OneWay Model, Multivariate OneWay Model, Univariate TwoWay Model, Multivariate TwoWay Model, Tests on a Subvector, Testing a Single Subvector, StepDown Test, Stepwise Selection of Variables, Multivariate Analysis of Covariance, Introduction, Univariate Analysis of Covariance: OneWay Model with One Covariate, Univariate Analysis of Covariance: TwoWay Model with One Covariate, Additional Topics in Univariate Analysis of Covariance, Multivariate Analysis of Covariance, Alternative Approaches to Testing Hot*>i ~ J*2 =  Pk> Discriminant Functions for Descriptive Group Separation Introduction, TwoGroups, Several Groups, Discriminant Functions, Assumptions, Standardized Coefficients, Tests of Hypotheses, TwoGroups, Several Groups, Discriminant Analysis for Higher Order Designs, Interpretation of Discriminant Functions, Standardized Coefficients and Partial FValues, Correlations between Variables and Discriminant Functions, 211
6 CONTENTS ix Other Approaches, Confidence Intervals, Subset Selection, Discriminant Function Approach to Selection, Stepwise Selection, All Possible Subsets, Selection in Higher Order Designs, Bias in Subset Selection, Other Estimators of Discriminant Functions, Ridge Discriminant Analysis and Related Techniques, Robust Discriminant Analysis, Classification of Observations into Groups Introduction, Two Groups, Equal Population Covariance Matrices, Unequal Population Covariance Matrices, Unequal Costs of Misclassification, Posterior Probability Approach, Robustness to Departures from the Assumptions, Robust Procedures, Several Groups, Equal Population Covariance Matrices, Unequal Population Covariance Matrices, Use of Linear Discriminant Functions for Classification, Estimation of Error Rates, Correcting for Bias in the Apparent Error Rate, Partitioning the Sample, Holdout Method, Bootstrap Estimator, Comparison of Error Estimators, Subset Selection, Selection Based on Separation of Groups, Selection Based on Allocation, Selection in the Heteroscedastic Case, Bias in Stepwise Classification Analysis, Logistic and Probit Classification, 254
7 X CONTENTS The Logistic Model for Two Groups with 2, = 2 2 > Comparison of Logistic Classification with Linear Classification Functions, Quadratic Logistic Functions When X i = X2, Logistic Classification for Several Groups, Additional Topics in Logistic Classification, Probit Classification, Additional Topics in Classification, Multivariate Regression Introduction, Multiple Regression: Fixedx's, Least Squares Estimators and Properties, An Estimator for er 2, The Model in Centered Form, Hypothesis Tests and Confidence Intervals, R 2 in FixedJt Regression, Model Validation, Multiple Regression: Random x's, Model for Random x's, Estimation of ßo> ß\, and CT 2, R 2 in Randomx Regression, Tests and Confidence Intervals, Estimation in the Multivariate Multiple Regression Model: Fixedx's, The Multivariate Model, Least Squares Estimator for B, Properties of B, An Estimator for X, Normal Model for the y,'s, The Multivariate Model in Centered Form, Measures of Multivariate Association, Hypothesis Tests in the Multivariate Multiple Regression Model: Fixedx's, Test for Significance of Regression, Test onasubsetof the RowsofB, General Linear Hypotheses CB = O and CBM = O, Tests and Confidence Intervals for a Single ßß and a Bilinear Function a'bb, 297
8 CONTENTS xi Simultaneous Tests and Confidence Intervals for the ß jk 's and Bilinear Functions a'bb, Tests in the Presence of Missing Data, Multivariate Model Validation: Fixedx's, LackofFit Tests, Residuais, Influence and Outliers, Measurement Errors, Multivariate Regression: Random x's, Multivariate Normal Model for Random x's, Estimationofßo, Bi.andX, Tests and Confidence Intervals in the Multivariate Randomx Case, Additional Topics, Correlated Response Methods, Categorical Data, Subset Selection, Other Topics, Canonical Correlation Introduction, Canonical Correlations and Canonical Variates, Properties of Canonical Correlations and Variates, Properties of Canonical Correlations, Properties of Canonical Variates, Tests of Significance for Canonical Correlations, Tests of Independence of y and x, Test of Dimension of Relationship between the y's and the x's, Validation, Interpretation of Canonical Variates, Standardized Coefficients, Rotation of Canonical Variate Coefficients, Correlations between Variables and Canonical Variates, Redundancy Analysis, Additional Topics, 333
9 xii CONTENTS 9. Principal Component Analysis Introduction, Definition and Properties of Principal Components, Maximum Variance Property, Principal Components as Projections, Properties of Principal Components, Principal Components as a Rotation of Axes, Principal Components from the Correlation Matrix, Methods for Discarding Components, Percent of Variance, Average Eigenvalue, Scree Graph, Significance Tests, Other Methods, Information in the Last Few Principal Components, Interpretation of Principal Components, Special Patterns in S or R, Testing H 0 : X = er 2 [(1  p)i + pj] and P p = (1  p)i + pj, Additional Rotation, Correlations between Variables and Principal Components, Relationship Between Principal Components and Regression, Principal Component Regression, Latent Root Regression, Principal Component Analysis with Grouped Data, Additional Topics, Factor Analysis Introduction, Basic Factor Model, Model and Assumptions, Scale Invariance of the Model, Rotation of Factor Loadings in the Model, Estimation of Loadings and Communalities, Principal Component Method, Principal Factor Method, Iterated Principal Factor Method, 384
10 CONTENTS xiii Maximum Likelihood Method, Other Methods, Comparison of Methods, Determining the Number of Factors, m, Rotation of Factor Loadings, Introduction, Orthogonal Rotation, Oblique Rotations, Interpretation of the Factors, Factor Scores, Applicability of the Factor Analysis Model, Factor Analysis and Grouped Data, Additional Topics, 394 Appendix A. Review of Matrix Algebra 399 A.l. Introduction, 399 A.l.l. Basic Definitions, 399 A.1.2. Matrices with Special Patterns, 400 A.2. Properties of Matrix Addition and Multiphcation, 401 A.3. Partitioned Matrices, 404 A.4. Rank of Matrices, 406 A.5. Inverse Matrices, 407 A.6. Positive Definite and Positive Semidefinite Matrices, 408 A.7. Determinants, 409 A.8. Traceofa Matrix, 410 A.9. Orthogonal Vectors and Matrices, 410 A.10. Eigenvalues and Eigenvectors, 411 A. 11. Eigenstructure of Symmetrie and Positive Definite Matrices, 412 A.12. Idempotent Matrices, 414 A.B. Differentiation, 414 Appendix B. Tables 417 Appendix C. Answers and Hints to Selected Problems 449 Appendix D. About the Diskette 505 Bibliography 507 Index 549
Applied Multivariate Analysis
Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationComputerAided Multivariate Analysis
ComputerAided Multivariate Analysis FOURTH EDITION Abdelmonem Af if i Virginia A. Clark and Susanne May CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C Contents Preface
More informationApplied Regression Analysis and Other Multivariable Methods
THIRD EDITION Applied Regression Analysis and Other Multivariable Methods David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina, Chapel Hill Keith E. Muller University of
More informationStatistics Graduate Courses
Statistics Graduate Courses STAT 7002Topics in StatisticsBiological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
More informationMultivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #47/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
More informationDISCRIMINANT FUNCTION ANALYSIS (DA)
DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant
More informationLeast Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN13: 9780470860809 ISBN10: 0470860804 Editors Brian S Everitt & David
More informationGeneralized Inverse of Matrices and its Applications
Generalized Inverse of Matrices and its Applications C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute SUJIT KUMAR MITRA, Ph.D. Professor of
More informationApplied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition Jacob Cohen (deceased) New York University Patricia Cohen New York State Psychiatric Institute and Columbia University
More informationINTRODUCTORY STATISTICS
INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore
More informationCONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19
PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations
More informationAdvanced Linear Modeling
Ronald Christensen Advanced Linear Modeling Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization Second Edition Springer Preface to the Second Edition
More informationMultivariate Analysis of Variance (MANOVA)
Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various
More informationMultivariate Analysis of Variance (MANOVA)
Multivariate Analysis of Variance (MANOVA) Aaron French, Marcelo Macedo, John Poulsen, Tyler Waterson and Angela Yu Keywords: MANCOVA, special cases, assumptions, further reading, computations Introduction
More informationService courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationDimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
More informationMultivariate Analysis of Ecological Data
Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology
More informationExample: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation:  Feature vector X,  qualitative response Y, taking values in C
More informationStatistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
More informationSTATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 SigmaRestricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
More informationSPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
More informationEconometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England
Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND
More informationData analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
More informationPrincipal Components Analysis (PCA)
Principal Components Analysis (PCA) Janette Walde janette.walde@uibk.ac.at Department of Statistics University of Innsbruck Outline I Introduction Idea of PCA Principle of the Method Decomposing an Association
More informationIntroduction to Principal Components and FactorAnalysis
Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a
More information3. The Multivariate Normal Distribution
3. The Multivariate Normal Distribution 3.1 Introduction A generalization of the familiar bell shaped normal density to several dimensions plays a fundamental role in multivariate analysis While real data
More informationMultivariate normal distribution and testing for means (see MKB Ch 3)
Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 Onesample ttest (univariate).................................................. 3 Twosample ttest (univariate).................................................
More information15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
More informationMultivariate Analysis of Variance (MANOVA): I. Theory
Gregory Carey, 1998 MANOVA: I  1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More informationHandling attrition and nonresponse in longitudinal data
Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 6372 Handling attrition and nonresponse in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein
More informationChapter 14: Analyzing Relationships Between Variables
Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationExamples on Variable Selection in PCA in Sensory Descriptive and Consumer Data
Examples on Variable Selection in PCA in Sensory Descriptive and Consumer Data Per Lea, Frank Westad, Margrethe Hersleth MATFORSK, Ås, Norway Harald Martens KVL, Copenhagen, Denmark 6 th Sensometrics Meeting
More informationEmpirical ModelBuilding and Response Surfaces
Empirical ModelBuilding and Response Surfaces GEORGE E. P. BOX NORMAN R. DRAPER Technische Universitat Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK InvortarNf.. Sachgsbiete: Standort: New York John Wiley
More informationFactor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models
Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis
More informationRandom Vectors and the Variance Covariance Matrix
Random Vectors and the Variance Covariance Matrix Definition 1. A random vector X is a vector (X 1, X 2,..., X p ) of jointly distributed random variables. As is customary in linear algebra, we will write
More informationIntroduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models  part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK2800 Kgs. Lyngby
More informationDoptimal plans in observational studies
Doptimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational
More informationTeaching Multivariate Analysis to BusinessMajor Students
Teaching Multivariate Analysis to BusinessMajor Students WingKeung Wong and TeckWong Soon  Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis
More informationStatistical Analysis with Missing Data
Statistical Analysis with Missing Data Second Edition RODERICK J. A. LITTLE DONALD B. RUBIN WILEY INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface PARTI OVERVIEW AND BASIC APPROACHES
More informationPrincipal Component Analysis
Principal Component Analysis Principle Component Analysis: A statistical technique used to examine the interrelations among a set of variables in order to identify the underlying structure of those variables.
More informationFactor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
More informationBusiness Analytics. Methods, Models, and Decisions. James R. Evans : University of Cincinnati PEARSON
Business Analytics Methods, Models, and Decisions James R. Evans : University of Cincinnati PEARSON Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationReview Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 03 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
More informationApplication of discriminant analysis to predict the class of degree for graduating students in a university system
International Journal of Physical Sciences Vol. 4 (), pp. 060, January, 009 Available online at http://www.academicjournals.org/ijps ISSN 99950 009 Academic Journals Full Length Research Paper Application
More informationCanonical Correlation Analysis
Canonical Correlation Analysis LEARNING OBJECTIVES Upon completing this chapter, you should be able to do the following: State the similarities and differences between multiple regression, factor analysis,
More informationRegression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
More informationCanonical Correlation
Chapter 400 Introduction Canonical correlation analysis is the study of the linear relations between two sets of variables. It is the multivariate extension of correlation analysis. Although we will present
More informationTtest & factor analysis
Parametric tests Ttest & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue
More informationAuxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus
Auxiliary Variables in Mixture Modeling: 3Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives
More informationMethods for Metaanalysis in Medical Research
Methods for Metaanalysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University
More informationStatistical Rules of Thumb
Statistical Rules of Thumb Second Edition Gerald van Belle University of Washington Department of Biostatistics and Department of Environmental and Occupational Health Sciences Seattle, WA WILEY AJOHN
More informationChapter 7 Factor Analysis SPSS
Chapter 7 Factor Analysis SPSS Factor analysis attempts to identify underlying variables, or factors, that explain the pattern of correlations within a set of observed variables. Factor analysis is often
More informationMultiple Regression: What Is It?
Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationMultivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine
2  Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels
More informationFactor Analysis. Chapter 420. Introduction
Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.
More informationMultivariate Analysis. Overview
Multivariate Analysis Overview Introduction Multivariate thinking Body of thought processes that illuminate the interrelatedness between and within sets of variables. The essence of multivariate thinking
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationProbability and Statistics
Probability and Statistics Syllabus for the TEMPUS SEE PhD Course (Podgorica, April 4 29, 2011) Franz Kappel 1 Institute for Mathematics and Scientific Computing University of Graz Žaneta Popeska 2 Faculty
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationAnalysis of Microdata
Rainer Winkelmann Stefan Boes Analysis of Microdata With 38 Figures and 41 Tables 4y Springer Contents 1 Introduction 1 1.1 What Are Microdata? 1 1.2 Types of Microdata 4 1.2.1 Qualitative Data 4 1.2.2
More informationElements of statistics (MATH04871)
Elements of statistics (MATH04871) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis 
More informationMultivariate analyses
14 Multivariate analyses Learning objectives By the end of this chapter you should be able to: Recognise when it is appropriate to use multivariate analyses (MANOVA) and which test to use (traditional
More informationSections 2.11 and 5.8
Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationPartial Least Squares (PLS) Regression.
Partial Least Squares (PLS) Regression. Hervé Abdi 1 The University of Texas at Dallas Introduction Pls regression is a recent technique that generalizes and combines features from principal component
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationA SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZVILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of
More informationTHE MULTIVARIATE ANALYSIS RESEARCH GROUP. Carles M Cuadras Departament d Estadística Facultat de Biologia Universitat de Barcelona
THE MULTIVARIATE ANALYSIS RESEARCH GROUP Carles M Cuadras Departament d Estadística Facultat de Biologia Universitat de Barcelona The set of statistical methods known as Multivariate Analysis covers a
More informationAnalysis of Variance. MINITAB User s Guide 2 31
3 Analysis of Variance Analysis of Variance Overview, 32 OneWay Analysis of Variance, 35 TwoWay Analysis of Variance, 311 Analysis of Means, 313 Overview of Balanced ANOVA and GLM, 318 Balanced
More informationAdvanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationSAS Certificate Applied Statistics and SAS Programming
SAS Certificate Applied Statistics and SAS Programming SAS Certificate Applied Statistics and Advanced SAS Programming Brigham Young University Department of Statistics offers an Applied Statistics and
More informationSTA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
More informationDidacticiel  Études de cas
1 Topic Linear Discriminant Analysis Data Mining Tools Comparison (Tanagra, R, SAS and SPSS). Linear discriminant analysis is a popular method in domains of statistics, machine learning and pattern recognition.
More informationMEU. INSTITUTE OF HEALTH SCIENCES COURSE SYLLABUS. Biostatistics
MEU. INSTITUTE OF HEALTH SCIENCES COURSE SYLLABUS title course code: Program name: Contingency Tables and Log Linear Models Level Biostatistics Hours/week Ther. Recite. Lab. Others Total Master of Sci.
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More information11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression
Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c11 2013/9/9 page 221 letex 221 11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial
More informationChapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
More informationAPPLIED MISSING DATA ANALYSIS
APPLIED MISSING DATA ANALYSIS Craig K. Enders Series Editor's Note by Todd D. little THE GUILFORD PRESS New York London Contents 1 An Introduction to Missing Data 1 1.1 Introduction 1 1.2 Chapter Overview
More informationGraduate Programs in Statistics
Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL
More informationPROBABILITY AND STATISTICS. Ma 527. 1. To teach a knowledge of combinatorial reasoning.
PROBABILITY AND STATISTICS Ma 527 Course Description Prefaced by a study of the foundations of probability and statistics, this course is an extension of the elements of probability and statistics introduced
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationMTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
More informationSTATISTICAL PACKAGE FOR THE SOCIAL SCIENCES
STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES SECOND EDITION NORMAN H. NIE Department of Political Science and National Opinion Research Center University Of Chicago C. HADLAI HULL Computation Center University
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationSome probability and statistics
Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,
More informationUNDERGRADUATE DEGREE DETAILS : BACHELOR OF SCIENCE WITH
QATAR UNIVERSITY COLLEGE OF ARTS & SCIENCES Department of Mathematics, Statistics, & Physics UNDERGRADUATE DEGREE DETAILS : Program Requirements and Descriptions BACHELOR OF SCIENCE WITH A MAJOR IN STATISTICS
More informationOverview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
More information1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F.
Final Exam 1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F. 3. Identify the graphic form and nature of the source
More information1 Introduction. 2 Matrices: Definition. Matrix Algebra. Hervé Abdi Lynne J. Williams
In Neil Salkind (Ed.), Encyclopedia of Research Design. Thousand Oaks, CA: Sage. 00 Matrix Algebra Hervé Abdi Lynne J. Williams Introduction Sylvester developed the modern concept of matrices in the 9th
More informationImputing Values to Missing Data
Imputing Values to Missing Data In federated data, between 30%70% of the data points will have at least one missing attribute  data wastage if we ignore all records with a missing value Remaining data
More information