The Disk Rotation of the Milky Way Galaxy. Kinematics of Galactic Rotation

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Disk Rotation of the Milky Way Galaxy. Kinematics of Galactic Rotation"

Transcription

1 THE DISK ROTATION OF THE MILKY WAY GALAXY 103 The Disk Rotation of the Milky Way Galaxy Vincent Kong George Rainey Physics Physics The rotation of the disk of the Milky Way Galaxy is analyzed. It rotates neither as a solid disk, nor in accordance with individual keplerian orbits. Rather the disk executes a form of differential rotation which suggests that a considerable fraction of its mass resides in the outer portions of the Galaxy. The Milky Way Galaxy is a large disk-shaped system of several hundred billion stars with associated interstellar gas and dust, surrounded by a diffuse spherical halo having a relatively low density of stars. The diameter of the galactic disk is at least 50 kiloparsecs (kpc; a parsec [pc] is the distance at which the radius of the Earth s orbit about the Sun, 1 astronomical unit [A.U.], subtends an angle of 1 second of arc; 1 parsec = 206,265 A.U.) The Sun is located in the galactic disk at a point about 8.5 kiloparsecs from the galactic center, and is moving in a nearly circular orbit at about 220 km/s. Studies of the radial velocities and proper motions of other stars in the galactic disk indicate that they too are moving in nearly circular orbits in the disk (while stars in the galactic halo tend to have highly eccentric orbits). Thus the entire galactic disk seems to be rotating, and it is of interest to examine the nature of this rotation. In this paper we shall consider the observational consequences of galactic rotation, and then present a galactic rotation curve which is a composite of results obtained by various investigators over the past few years. Kinematics of Galactic Rotation In order to model the situation we assume that objects in the galactic disk are moving in perfectly circular orbits about an axis through the galactic center perpendicular to the galactic plane. Let Θ be the circular orbital speed at radial distance R in the galactic plane. Then the angular speed is ω = Θ/R, and for the Sun, denote ω 0 = Θ 0 /. Now if the Galaxy were to rotate as a solid disk, we would have ω = constant, and thus Θ would increase directly with R. On the other hand, for purely keplerian orbits, if we equate the centripetal acceleration to the gravitational acceleration due to a point mass at the galactic center, we find Θ ~ R -1/2, and ω ~ R -3/2. The galactic disk does in fact exhibit differential rotation, but it is not keplerian due to the appreciably extended mass distribution. For the Galaxy, it is desirable to obtain Θ as a function of R, Θ (R), called the rotation curve. Consider a star at distance r from the Sun and at galactic longitude l as shown in Figure 1. (Galactic longitude is measured in the plane of the Galaxy eastward from the galactic center.) Using the auxiliary angle α we find that the observed radial and tangential velocities with respect to the Sun are, respectively, v r = Θ cos α - Θ 0 sin l = Rω cos α - ω 0 sin l (1) = Θ sin α - Θ 0 cos l = Rω sin α - ω 0 cos l. (2) But from Figure 1 we have R cos α = sin l R sin α = cos l - r hence v r = (ω - ω 0 ) sin l (3) = (ω - ω 0 ) cos l - ωr. (4)

2 104 KONG, RAINEY Fall 1999 Sun Θ 0 l r S R α R min α Θ C Figure 1. The Sun is moving at speed Θ 0 in a circular orbit of radius about the galactic center C. Star S at distance r from the sun is moving at speed Θ in a circular orbit of radius R about the galactic center. Equations (3) and (4) are general, assuming only concentric circular motion in the galactic plane, and are called Oort s (general) formulae, after the Dutch astronomer Jan Oort ( ), an early investigator into the problem of galactic rotation. Unfortunately the parameters and Θ 0 (and therefore ω 0 ) are not precisely known, and there are considerable uncertainties in stellar distances, in general. A further complication arises from the fact that interstellar extinction of light due to dust particles in the galactic disk limits our ability to observe to large distances at optical wavelengths. Oort has derived limiting approximations to equations (3) and (4) which are valid only locally. The idea is to obtain a Taylor expansion of the function ω(r) about, viz. ω = ω 0 + (dω/dr) 0 (R - ) +... (5) and to neglect the higher order terms, since (R - ) will be small for nearby stars. Indeed for r << we have - R r cos l, and equation (5) becomes approximately ω - ω 0 -(dw/dr) 0 r cos l. (6)

3 THE DISK ROTATION OF THE MILKY WAY GALAXY 105 Substituting equation (6) into equation (3), we obtain v r - (dω/dr) 0 r sin l cos l = A r sin 2l (7) where the Oort constant A is given by A = -( /2) (dω/dr) 0. Similarly substituting equation (6) into equation (4), we find - (dω/dr) 0 r cos 2 l - ω 0 r where we have neglected terms in r 2. Then using 2 cos 2 l = 1 + cos 2l, this becomes A r cos 2l + B r (8) where the Oort constant B is defined as B = A - ω 0. Note that since dω/dr = d(θ/r)/dr = (1/ R)dΘ/dR - Θ/R 2, we can write the Oort constants as A = (1/2)[Θ 0 / - (dθ/dr) 0 ] (9) B = (-1/2)[Θ 0 / + (dθ/dr) 0 ] (10) with A - B = Θ 0 / and A + B = -(dθ/dr) 0. The values accepted by the International Astronomical Union (IAU) in 1985 for these local rotation constants are: Θ 0 = 220 ± 15 km/s = 8.5 ± 0.5 kpc A = 14.4 ± 1.2 km/s/kpc B = ± 2.8 km/s/kpc. However, Reid (1993) has made a more recent case for a value of = kpc. The local Oort formulae, equations (7) and (8), are double sinusoids. This is, of course, just what one would qualitatively expect as a result of differential galactic rotation. For example, there would be no radial velocities for stars in the directions l = 0 or l = 180, or nearby stars in direction l = 90 or l = 270. Nearby stars in directions l = 45 or l = 225 would have positive radial velocities, while nearby stars in directions l = 135 or l = 315 would have negative radial velocities. Tangential velocities (proper motions) would be positive (i.e. in the direction of increasing galactic longitude) for stars in directions l = 0 or l = 180, but superimposed on this is a negative effect due to the clockwise rotation of the Galaxy as a whole relative to an inertial frame formed by external galaxies; thus the formula for tangential velocities involves two terms, the non-sinusoidal term being negative. For a sample of stars at a common distance r the amplitude of these sinusoidal variations as a function of galactic longitude can be used to estimate the Oort constant A, and the mean offset from = 0 can be used to estimate the Oort constant B. The results are somewhat uncertain due to possible systematic errors in proper motions or in the distance scale.

4 106 KONG, RAINEY Fall 1999 The Galactic Rotation Curve What really needs to be determined, however, is not just the values of the local rotation constants, but the rotation curve Θ(R) for the Galaxy. Because of the difficulty in penetrating the interstellar medium with optical observations, we must rely primarily on radio observation, especially the 21-cm line due to a hyperfine transition in neutral hydrogen. A typical line profile might consist of several peaks due to different clouds with different radial velocities along the same line of sight. For observations in quadrants 0 < l < 90 and 270 < l < 360 there will be some maximum (absolute) value for the radial velocity corresponding to α = 0 and R = R min = sin l. Then from equation (1) we have v r,max = Θ(R min ) - Θ 0 sin l. (11) Assuming that and Θ 0 are known, Θ(R) can be determined from equation (11) for R <. The method does not work well within about 20 of the galactic center because of markedly non-circular motions there. It also does not work well near l = 90 and l = 270, since maximum radial velocities are rather poorly defined there. For R > there will be no maximum radial velocity. Here one must rely on objects in the galactic plane of known distance (such as Cepheid variable stars), since r,, l, and the law of cosines enable R to be determined, hence Θ(R) from equations (1) or (3). Among the more important early investigations of galactic disk rotation are those of Θ(km/s) R (kpc) Figure 2. The rotation curve for the disk of the Milky Way Galaxy. The uncertainty in the rotation speed is of the order of km/s for R < = 8.5 kpc.

5 THE DISK ROTATION OF THE MILKY WAY GALAXY 107 Schmidt (1965) for R > 5 kpc and Simonson and Mader (1973) for R < 5 kpc. A more recent summary is contained in Carroll and Ostlie (1996) and a paper by Clemens (1985). Here we present a smoothed schematic composite of these various results in Figure 2. Note the very rapid increase in rotation speed over the first few hundred parsecs from the galactic center (as for solid body rotation) to a maximum of about 260 km/s, followed by a dip to about 200 km/ s near R = 3 kpc; then the curve rises slightly and generally flattens out to well beyond. Thus the angular speed ω = Θ/R decreases outward (in fact monotonically) for R > 1kpc, resulting in differential rotation. The relatively slow variation in the rotation speed with radial distance has been somewhat surprising to astronomers; for if most of the mass of the Galaxy were centrally concentrated so that orbits beyond were nearly keplerian, we would expect Θ ~ R -1/2. That this is obviously not the case suggests that a considerable fraction of galactic mass exists beyond (although most of the luminosity in the Galaxy is produced by matter at R < ). It is of interest to compare the galactic rotation curve to those of other disk galaxies. Most rotation curves for external spiral galaxies, measured from 21-cm radio observations, show the characteristic strong rise in the innermost region of the disk, after which the curve turns over and remains fairly flat to observational limits. The maximum rotational velocity in most cases is km/s (Saslaw, 1985), which fact is probably a clue to disk galaxy formation.

6 108 KONG, RAINEY Fall 1999 References Carroll, Bradley W. and Ostlie, Dale A. An Introduction to Modern Astrophysics (Reading, MA: Addison-Wesley, 1996) Clemens, D. P. Massachusetts-Stonybrook Galactic Plane Co-Survey - The Galactic Disk Rotation Curve, Astrophysical Journal, 295 (1985): Reid, Mark J., The Distance to the Center of the Galaxy, Annual Review of Astronomy and Astrophysics, 31 (1993): Saslow, William C. Gravitational Physics of Stellar and Galactic Systems (New York: Cambridge University Press, 1985) Schmidt, Maarten. Stars and Stellar Systems, 5 (Galactic Structure): (Chicago: University of Chicago Press, 1965) Simonson, S. C., and Mader, G. L. Motions Near the Galactic Center and the 3-kpc Arm, Astronomy and Astrophysics, 27 (1973):

The Milky Way Galaxy. Our Home Away From Home

The Milky Way Galaxy. Our Home Away From Home The Milky Way Galaxy Our Home Away From Home Lecture 23-1 Galaxies Group of stars are called galaxies Our star, the Sun, belongs to a system called The Milky Way Galaxy The Milky Way can be seen as a band

More information

Measurement of Galactic Rotation Curve

Measurement of Galactic Rotation Curve Measurement of Galactic Rotation Curve Nelson L. Christensen Carleton College Physics and Astronomy Department One North College Street Northfield, MN 55057 nchriste@carleton.edu Measurement of Galactic

More information

Milky Way Galaxy. A. Star counts. B. Core and Arms. C. Galaxy Rotation. Milky Way. A1a. Milky Way 4 A1b. Milky Way: Galactic Equator 5

Milky Way Galaxy. A. Star counts. B. Core and Arms. C. Galaxy Rotation. Milky Way. A1a. Milky Way 4 A1b. Milky Way: Galactic Equator 5 Milky Way Galaxy Milky Way A. Star counts B. Core and Arms C. Galaxy Rotation Dr. Bill Pezzaglia Updated: Nov, Aa. Milky Way 4 Ab. Milky Way: Galactic Equator a. Galileo Galilei (64-64) 6 Ac. 7 Thomas

More information

Measuring the Rotational Speed of Spiral Galaxies and Discovering Dark Matter

Measuring the Rotational Speed of Spiral Galaxies and Discovering Dark Matter Measuring the Rotational Speed of Spiral Galaxies and Discovering Dark Matter Activity UCIObs 9 Grade Level: College Source: Copyright (2009) by Rachel Kuzio de Naray & Tammy Smecker-Hane. Contact tsmecker@uci.edu

More information

PART 3 Galaxies. Stars in the Milky Way

PART 3 Galaxies. Stars in the Milky Way PART 3 Galaxies Stars in the Milky Way A galaxy is a large collection of billions of stars The galaxy in which the Sun is located is called the Milky Way From our vantage point inside the galaxy, the Milky

More information

The Milky Way. The Milky Way. First Studies of the Galaxy. Determining the Structure of the Milky Way. Galactic Plane.

The Milky Way. The Milky Way. First Studies of the Galaxy. Determining the Structure of the Milky Way. Galactic Plane. The Milky Way The Milky Way Almost everything we see in the night sky belongs to the Milky Way. 1 We see most of the Milky Way as a faint band of light across the sky. From outside, our Milky Way might

More information

The Milky Way Galaxy. Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation

The Milky Way Galaxy. Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation The Milky Way Galaxy Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation The Milky Way Almost everything we see in the night

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 3 Extrasolar planets 1 Detecting extrasolar planets Most models of star formation tell us that the formation of planets is a common process. We expect most stars to have planets orbiting

More information

Understanding the Rotation of the Milky Way Using Radio Telescope Observations1

Understanding the Rotation of the Milky Way Using Radio Telescope Observations1 Understanding the Rotation of the Milky Way Using Radio Telescope Observations1 Alexander L. Rudolph Professor of Physics and Astronomy, Cal Poly Pomona Professeur Invité, Université Pierre et Marie Curie

More information

Ay 20 - Fall Lecture 16. Our Galaxy, The Milky Way

Ay 20 - Fall Lecture 16. Our Galaxy, The Milky Way Ay 20 - Fall 2004 - Lecture 16 Our Galaxy, The Milky Way Our Galaxy - The Milky Way Overall structure and major components The concept of stellar populations Stellar kinematics Galactic rotation and the

More information

The formation of the galaxy is believed to be similar to the formation of the solar system.

The formation of the galaxy is believed to be similar to the formation of the solar system. The formation of the galaxy is believed to be similar to the formation of the solar system. All the gas & dust collapsed into a disk. During the time that stars were being formed, our galaxy didn t have

More information

Lecture Outlines. Chapter 23. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 7th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Early Computers 23.3 Galactic

More information

Learning Objectives. at the center of our Galaxy...why were they wrong? are globular clusters? Cepheid Variable stars?

Learning Objectives. at the center of our Galaxy...why were they wrong? are globular clusters? Cepheid Variable stars? Our Milky Way Learning Objectives! What is the Milky Way? The Herschels thought we were at the center of our Galaxy...why were they wrong?! How did Shapley prove we aren t at the center? What are globular

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars.

Spectroscopy, the Doppler Shift and Masses of Binary Stars. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its

More information

2. Milky Way Structure of the Milky Way: a brief history

2. Milky Way Structure of the Milky Way: a brief history 1 2. Milky Way We know a great deal, perhaps more than any other galaxy, about the Milky Way (MW) due to our proximity. However, our inside position also hampers our understanding of the Milky Way. Fore

More information

The Milky Way Galaxy. This is NOT the Milky Way galaxy! It s a similar one: NGC 4414.

The Milky Way Galaxy. This is NOT the Milky Way galaxy! It s a similar one: NGC 4414. The Milky Way Galaxy This is NOT the Milky Way galaxy! It s a similar one: NGC 4414. 1 The Milky Way Galaxy 2 Interactive version 3 Take a Giant Step Outside the Milky Way Artist's Conception Example (not

More information

Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical

Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical and radio telescopes - get an estimate of how much

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) Notes on Ch. 23 and 24. The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) in class, but look it over in order to just get the most basic point I might put a question

More information

Circular Motion. Physics 1425 Lecture 18. Michael Fowler, UVa

Circular Motion. Physics 1425 Lecture 18. Michael Fowler, UVa Circular Motion Physics 1425 Lecture 18 Michael Fowler, UVa How Far is it Around a Circle? A regular hexagon (6 sides) can be made by putting together 6 equilateral triangles (all sides equal). The radius

More information

The Milky Way Galaxy Chapter 15

The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Chapter 15 Topics to be covered: 1. Contents of our Galaxy: Interstellar Medium(ISM) and Stars. Nebulae 2. Distribution of galactic clusters and center of our Galaxy. 3. Structure

More information

A new formula for the rotation velocity and density distribution of a galaxy

A new formula for the rotation velocity and density distribution of a galaxy IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 44-51 A new formula for the rotation velocity and density distribution of a galaxy Tony Barrera, Bo

More information

Rotational Motion. Description of the motion. is the relation between ω and the speed at which the body travels along the circular path.

Rotational Motion. Description of the motion. is the relation between ω and the speed at which the body travels along the circular path. Rotational Motion We are now going to study one of the most common types of motion, that of a body constrained to move on a circular path. Description of the motion Let s first consider only the description

More information

Theories of Spiral Structure

Theories of Spiral Structure Chapter 15 Theories of Spiral Structure That rotating disk galaxies should exhibit spiral structure is not surprising, but the nature of the spiral patterns is not completely understood probably because

More information

Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy

Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy Competency Goals This activity addresses the following competency goals Middle Grades 6 8: Grade 6 1.01 Identify and create questions and hypotheses

More information

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Circular Motion Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30 km/s Mars: 24 km/s Jupiter: 13 km/s Neptune: 5 km/s

More information

Our Galaxy, the Milky Way

Our Galaxy, the Milky Way Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes

More information

The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

More information

Dark Matter in the Milky Way - how to find it using Gaia and other surveys. Paul McMillan

Dark Matter in the Milky Way - how to find it using Gaia and other surveys. Paul McMillan Dark Matter in the Milky Way - how to find it using Gaia and other surveys Paul McMillan Surveys For All, 1st February 2016 Why do we care? On the biggest scales, the ΛCDM model works Why do we care? On

More information

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 23 The Milky Way MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In structure, our Milky Way is most similar to

More information

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 23 The Milky Way MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In structure, our Milky Way is most similar to

More information

Patterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System

Patterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System ASTR 105 The Solar System 1. Orderly motions 2.Two kinds of planets 3.Two kinds of small bodies 4.Exceptions to the rules Today: Group Lab at the end of class Next THURSDAY 03/10: First Group Project Orderly

More information

Math Review: Circular Motion 8.01

Math Review: Circular Motion 8.01 Math Review: Circular Motion 8.01 Position and Displacement r ( t) : position vector of an object moving in a circular orbit of radius R Δr ( t) : change in position between time t and time t+δt Position

More information

Milky Way morphology: early research. The Milky Way at far-ir wavelengths. Milky Way morphology: early research

Milky Way morphology: early research. The Milky Way at far-ir wavelengths. Milky Way morphology: early research The Milky Way at far-ir wavelengths Milky Way morphology: early research >1610: Galileo Galilei discovered the Milky Way to be a vast collection of stars Mid 1700s: Milky Way is a stellar disk in which

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle

More information

PS 224, Fall 2014 HW 4

PS 224, Fall 2014 HW 4 1. True or False? Explain in one or two short sentences. (2x10 points) a. The fact that we have not yet discovered an Earth-size extrasolar planet in an Earth-like orbit tells us that such planets must

More information

Principles of Astrophysics and Cosmology

Principles of Astrophysics and Cosmology Principles of Astrophysics and Cosmology Welcome Back to PHYS 3368 Welcome Back to PHYS 3368 Ejnar Hertzsprung October 1873 - October 1967 Henry Russell October 1877 - February 1957 Announcements - Office

More information

Lecture 14. More on rotation. Rotational Kinematics. Rolling Motion. Torque. Cutnell+Johnson: , 9.1. More on rotation

Lecture 14. More on rotation. Rotational Kinematics. Rolling Motion. Torque. Cutnell+Johnson: , 9.1. More on rotation Lecture 14 More on rotation Rotational Kinematics Rolling Motion Torque Cutnell+Johnson: 8.1-8.6, 9.1 More on rotation We ve done a little on rotation, discussing objects moving in a circle at constant

More information

Chapter 16 Two Dimensional Rotational Kinematics

Chapter 16 Two Dimensional Rotational Kinematics Chapter 16 Two Dimensional Rotational Kinematics 16.1 Introduction... 1 16. Fixed Axis Rotation: Rotational Kinematics... 1 16..1 Fixed Axis Rotation... 1 16.. Angular Velocity and Angular Acceleration...

More information

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES SCIENCE 0 DISTANCES IN ASTRONOMY LECTURE NOTES Distances in the Solar System Distance to Venus can be obtained using radar ranging Send signal, determine how long it takes to return Radio waves move at

More information

15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System 15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

More information

Giant Molecular Clouds

Giant Molecular Clouds Giant Molecular Clouds http://www.astro.ncu.edu.tw/irlab/projects/project.htm Galactic Open Clusters Galactic Structure GMCs The Solar System and its Place in the Galaxy In Encyclopedia of the Solar System

More information

Rotational Dynamics. Luis Anchordoqui

Rotational Dynamics. Luis Anchordoqui Rotational Dynamics Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation ( O ). The radius of the circle is r. All points on a straight line

More information

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

More information

The Size & Shape of the Galaxy

The Size & Shape of the Galaxy name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

More information

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions 1a) Table 1 gives the spectral class and luminosity class of each of the 20 stars. The luminosity class of a star can (at least in principle)

More information

Lesson 5 Rotational and Projectile Motion

Lesson 5 Rotational and Projectile Motion Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular

More information

Investigating the Effects of Milky Way Globular Clusters. Galactocentric Distances on Their Rotational Velocities. about the Galactic Center

Investigating the Effects of Milky Way Globular Clusters. Galactocentric Distances on Their Rotational Velocities. about the Galactic Center Investigating the Effects of Milky Way Globular Clusters Galactocentric Distances on Their Rotational Velocities about the Galactic Center Special Thanks to Ms. Wadkins for advising and reassuring, Mr.

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe. Chapter 23 Review Clickers

The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe. Chapter 23 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Doppler shifts can be measured with a) visible light. b) radio waves. c) microwaves. d) all

More information

Rotational Kinematics and Dynamics

Rotational Kinematics and Dynamics Rotational Kinematics and Dynamics Name : Date : Level : Physics I Teacher : Kim Angular Displacement, Velocity, and Acceleration Review - A rigid object rotating about a fixed axis through O perpendicular

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration

9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Ch 9 Rotation 9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Q: What is angular velocity? Angular speed? What symbols are used to denote each? What units are used? Q: What is linear

More information

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1 The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

More information

Lecture 6: distribution of stars in. elliptical galaxies

Lecture 6: distribution of stars in. elliptical galaxies Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex

More information

19. Our Galaxy The Milky Way Revealed. Our goals for learning: Regions of the Milky Way Galaxy. Regions of the Milky Way Galaxy

19. Our Galaxy The Milky Way Revealed. Our goals for learning: Regions of the Milky Way Galaxy. Regions of the Milky Way Galaxy 19. Our Galaxy The infinitude of creation is great enough to make a world, or a Milky Way of worlds, look in comparison with it what a flower or an insect does in comparison with the Earth. 19.1 The Milky

More information

Astrophysics with the Computer: Finding the Gravitational Potential of a Galaxy

Astrophysics with the Computer: Finding the Gravitational Potential of a Galaxy Astrophysics with the Computer: Finding the Gravitational Potential of a Galaxy Joachim Köppen Kiel/Strasbourg 2006/07 1 Astrophysics The movement of stars within a galaxy is governed by the gravitational

More information

RIGID BODY MOTION: TRANSLATION & ROTATION (Sections ) Today s Objectives :

RIGID BODY MOTION: TRANSLATION & ROTATION (Sections ) Today s Objectives : RIGID BODY MOTION: TRANSLATION & ROTATION (Sections 16.1-16.3) Today s Objectives : Students will be able to analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed

More information

Circular Motion. We will deal with this in more detail in the Chapter on rotation!

Circular Motion. We will deal with this in more detail in the Chapter on rotation! Circular Motion I. Circular Motion and Polar Coordinates A. Consider the motion of ball on a circle from point A to point B as shown below. We could describe the path of the ball in Cartesian coordinates

More information

Physics 100A Homework 9 Chapter 10 (part 1)

Physics 100A Homework 9 Chapter 10 (part 1) Physics 1A Homework 9 Chapter 1 (part 1) 1.1) The following angles are given in degrees. Convert them to radians. 1. Picture the Problem: This is a units conversion problem. π radians Strategy: Multiply

More information

Chapter 5: Circular Motion

Chapter 5: Circular Motion Page 1 Chapter 5: Circular Motion Rotating Objects: Wheels, moon, earth, CDs, DVDs etc. Rigid bodies. Description of circular motion. Angular Position, Angular Displacement θ r s Angle (in radians) θ =

More information

Galactic Rotation. B&T fig 1.3

Galactic Rotation. B&T fig 1.3 1 See SG 2.3, BM ch 3 B&T ch 2.6,2.7 and ch 6 Coordinate system: define velocity vector by π,θ,z π radial velocity wrt galactic center θ motion tangential to GC with positive values in direct of galactic

More information

ASTRONOMY 113 EXAM #3: Covering Chapters Time: 3:00-4:15pm VERSION C (KEY)

ASTRONOMY 113 EXAM #3: Covering Chapters Time: 3:00-4:15pm VERSION C (KEY) ASTRONOMY 113 EXAM #3: Covering Chapters 26-28 Time: 3:00-4:15pm VERSION C (KEY) Please write your GMU ID, Which test version you got (if not there will not be any way that I will be able to guess) Warning:

More information

Exemplar Problems Physics

Exemplar Problems Physics Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Rotational Mechanics - 1

Rotational Mechanics - 1 Rotational Mechanics - 1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360

More information

Physics 11 Fall 2012 Practice Problems 6 - Solutions

Physics 11 Fall 2012 Practice Problems 6 - Solutions Physics 11 Fall 01 Practice Problems 6 - s 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on

More information

Lecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson:

Lecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson: Lecture 15 Torque Center of Gravity Rotational Equilibrium Cutnell+Johnson: 9.1-9.3 Last time we saw that describing circular motion and linear motion is very similar. For linear motion, we have position

More information

Milky Way Galaxy Determining the size/extent counting stars (doesn t work) Variable Stars Red Giants/Supergiants Instability Strip Hydrostatic

Milky Way Galaxy Determining the size/extent counting stars (doesn t work) Variable Stars Red Giants/Supergiants Instability Strip Hydrostatic Milky Way Galaxy Determining the size/extent counting stars (doesn t work) Variable Stars Red Giants/Supergiants Instability Strip Hydrostatic Equilibrium Cepheids characteristics Type I, II differences

More information

Populations and Components of the Milky Way

Populations and Components of the Milky Way Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

More information

Chapter 5. Determining Masses of Astronomical Objects

Chapter 5. Determining Masses of Astronomical Objects Chapter 5. Determining Masses of Astronomical Objects One of the most fundamental and important properties of an object is its mass. On Earth we can easily weigh objects, essentially measuring how much

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Lecture 26: The Realm of the Nebulae: The Milky Way and Andromeda Readings: Sections 25-1, 26-1, and 26-2

Lecture 26: The Realm of the Nebulae: The Milky Way and Andromeda Readings: Sections 25-1, 26-1, and 26-2 Lecture 26: The Realm of the Nebulae: The Milky Way and Andromeda Readings: Sections 25-1, 26-1, and 26-2 Key Ideas: The Milky Way is our Galaxy We see it as a diffuse band of light crossing the sky Milky

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Physics 130 Astronomy Exam #1 July 19, 2004

Physics 130 Astronomy Exam #1 July 19, 2004 Physics 130 Astronomy Exam #1 July 19, 2004 Name Multiple Choice: 1. A scientist observes a new phenomenon that disagrees with his explanation or hypothesis. Following the scientific methods, he should

More information

Study Guide. Beginning Astronomy

Study Guide. Beginning Astronomy Study Guide Beginning Astronomy You must know these things: Earth's diameter is about 8000 miles Moon's distance is about 60 Earth radii (240,000 miles) Average distance of Earth to Sun is about 93 million

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences.

i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. i>clicker Questions The fifth planet from the sun, the sixth planet and the seventh planet

More information

Chapter 6 Circular Motion

Chapter 6 Circular Motion Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

More information

1. Gravitational forces and potentials (BT 2-2.1) Intermezzo: divergence and divergence theorem (BT: B.3) 2. Potential for spherical systems (BT 2.

1. Gravitational forces and potentials (BT 2-2.1) Intermezzo: divergence and divergence theorem (BT: B.3) 2. Potential for spherical systems (BT 2. Overview 1. Gravitational forces and potentials (BT 2-2.1) Intermezzo: divergence and divergence theorem (BT: B.3) Poisson equation Gauss s theorem Potential energy 2. Potential for spherical systems (BT

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product 1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

The Sun and the Solar System

The Sun and the Solar System ASTR 371, Fall 2016 Lecture 1 The Sun and the Solar System Introduction and Overview Homework Due September 7, Wed. FK Chap 1, Questions 3, 16, 24, 38 A1: (a) use data of the diameter and average distance

More information

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A 1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser

More information

y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)

y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement) 5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If

More information

Lesson 04: Newton s laws of motion

Lesson 04: Newton s laws of motion www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Physics 9 Fall 2009 Homework 7 - Solutions

Physics 9 Fall 2009 Homework 7 - Solutions Physics 9 Fall 009 Homework 7 - s 1. Chapter 33 - Exercise 10. At what distance on the axis of a current loop is the magnetic field half the strength of the field at the center of the loop? Give your answer

More information

Angular Velocity. Midterm on Thursday at 7:30pm! Old exams available on website. Chapters 6 9 are covered. Go to same room as last time.

Angular Velocity. Midterm on Thursday at 7:30pm! Old exams available on website. Chapters 6 9 are covered. Go to same room as last time. Angular Velocity Announcements: Midterm on Thursday at 7:30pm! Old exams available on website. Chapters 6 9 are covered. Go to same room as last time. You are allowed one calculator and one doublesided

More information