# Math 1011 Homework Set 2

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Math 1011 Homework Set 2 Due February 12, Suppose we have two lists: (i) 1, 3, 5, 7, 9, 11; and (ii) 1001, 1003, 1005, 1007, 1009, (a) Find the average and standard deviation for each of the lists. (b) From your result in (a), can you find any property of the average and the standard deviation? (Hint: what is the relation between (i) and (ii)?) (a) For list (i), the average is ( )/6 = 6. The list of deviations will be -5, -3, -1, 1, 3, 5. Then the SD is ( 5)2 + ( 3) 2 + ( 1) 2 + (1) 2 + (3) 2 + (5) 2 35 = 6 3 = For list (ii), the average is ( )/6 = The list of deviations will be -5, -3, -1, 1, 3, 5. Then the SD is again ( 5)2 + ( 3) 2 + ( 1) 2 + (1) 2 + (3) 2 + (5) 2 6 = 35 3 = (b) This shows the property of change of scale: by adding a constant to each entry of the list, the average will be added by the same constant, but the SD remains the same. 2. Suppose we have two lists: (i) 1, 2, 3, 4, 5, 6, 7; and (ii) 3, 6, 9, 12, 15, 18, 21. (a) Find the average and standard deviation for each of the lists. (b) From your result in (a), can you find any property of the average and the standard deviation? (Hint: what is the relation between (i) and (ii)?) (a) For list (i), the average is ( )/7 = 4. The list of deviations will be -3, -2, -1, 0, 1, 2, 3. Then the SD is ( 3)2 + ( 2) 2 + ( 1) 2 + (0) 2 + (1) 2 + (2) 2 + (3) 2 For list (ii), the average is 7 ( )/7 = 12. = 2. 1

2 The list of deviations will be -9, -6, -3, 0, 3, 6, 9. Then the SD is ( 9)2 + ( 6) 2 + ( 3) 2 + (0) 2 + (3) 2 + (6) 2 + (9) 2 7 (b) This shows the property of change of scale: by multiplying a positive constant to each entry of the list, the average will be multiplied by the same constant, and so is the SD. = (a) Find the average and SD of the list: 41, 48, 50, 50, 54, 57. (b) Which numbers on the list are within 0.5 SDs of average? within 1.5 SDs of average? (a) The average is ( )/6 = 50. So the list of deviations is -9, -2, 0, 0, 4, 7. The SD is ( 9)2 + ( 2) 2 + (0) 2 + (0) 2 + (4) 2 + (7) 2 6 = 5. (b) 48, 50, 50 are within 0.5 SDs of average, i.e. in the range from 47.5 to , 50, 50, 54, 57 are within 1.5 SDs of average, i.e. in range from 42.5 to A study on college students found that the men had an average weight of about 66 kg and an SD of about 9 kg. The women had an average weight of about 55 kg and an SD of 9 kg. (a) Find the averages and SDs, in pounds for both men and women (1 kg = 2.2 lb). (b) Just roughly, what percentage of the men weighed between 57 kg and 75 kg? (c) If you took the men and women together, would the SD of their weights be smaller than 9 kg, just about 9 kg, or bigger than 9 kg? Why? (Hint: recall that the standard deviation indicates how the data spread around the average.) (a) Average weight of men = pounds, SD = pounds. Average weight of women = pounds, SD 20 pounds. (b) 68%: the range is average ± 1 SD. (c) Bigger than 9 kg : if you take the men and the women together, the spread in weights goes up. 2

3 5. An investigator has a computer file showing family incomes for 1,000 subjects in a certain study. These range from \$5,800 a year to \$98,600 a year. By accident, the highest income in the file gets changed to \$986,000. (a) Does this affect the average? If so, by how much? (b) Does this affect the median? If so, by how much? (Hint: think about whether the highest income will affect the percentage to the right of the median or not.) (a) Yes: the average goes up by (\$986, 000 \$98, 600)/1000 = \$ (b) No: one advantage of the median is that it is not thrown off by outliers. 6. Many observers think there is a permanent underclass in American society most of those in poverty typically remain poor from year to year. Over the period , the percentage of the American population in poverty each year has been remarkably stable, at 12% or so. Income figures for each year were taken from the March Current Population Survey of that year; the cutoff for poverty was based on official government definitions. To what extent do these data support the theory of the permanent underclass? Discuss briefly. (Hint: The study draws conclusions about the effects of year, this is similar to the effects of age in the example talked in class.) The data are cross sectional not longitudinal, so the data only provide weak support for the theory. (Longitudinal data show that most spells of poverty are short.) 7. The following list of test scores has an average of 50 and an SD of 10: (a) Use the normal approximation to estimate the number of scores within 1.25 SDs of the average. (b) How many scores really were within 1.25 SDs of the average? (a) In standard units, it is between and So from the normal table, under the normal curve, the area is about 79%. The total number of the entries of the list is 25. So the approximation is about 25 79% 20. (b) Within 1.25 SDs means between 37.5 and 62.5, by counting the numbers, we see there are 18 scores. 3

4 8. The table below shows the distribution of adults by the last digit of their age, as reported in the Census of 1880 and the Census of You might expect each of the ten possible digits to turn up for 10% of the people, but this is not the case. For example, in 1880, 16.8% of all persons reported an age ending in 0 like 30 or 40 or 50. In 1970, this percentage was only 10.6%. (a) Draw histograms for these two distributions. (Note: you may use the convention for selecting the class intervals when the variable is discrete.) (b) In 1880, there was a strong preference for the digits 0 and 5. How can this be explained? (Hint: in the old days, do people know their ages accurately?) (c) In 1970, the preference was much weaker. How can this be explained? Digit Source: United States Census. (a) See the graphs at the end. (2 points: each histogram worth 1 point.) (b) In 1880, people did not know their ages at all accurately, and rounded off. (c) In 1970, people knew when they were born. 9. In a survey carried out at the University of California, Berkeley, a sample of students were interviewed and asked what their grade-point average was. A sketched histogram of the results is shown on the next page. (GPA ranges from 0 to 4, and 2 is a bare pass.) (a) True or false: more students reported a GPA in the range 2.0 to 2.1 than in the range 1.5 to 1.6. (b) True or false: more students reported a GPA in the range 2.0 to 2.1 than in the range 2.5 to 2.6. (c) What accounts for the spike at 2? (Hint: recall the example educational level we discussed in class, think of the property of the peaks.) (a) True. (b) True. (c) People with failing GPAs may round them up ; and 2 is such an important unmber for GPAs that people with GPAs just above 2 may round them down (1 point). 4

5 10. The histogram on the next page represents the birth weight of babies in some hospital. Suppose we know 30 babies weighed over 4.5 kg. And babies weighing under 2 kg are taken to the Special Care Baby Unit. (Notice that the vertical scale is not percentage per kg, that is, the vertical scale is not the density scale.) (a) What is total number of babies being weighted? (Hint: In this case, the area of the blocks represent the frequency of the corresponding class intervals, i.e. the number of babies with the weight in the interval. To compute the total number of the babies, find out the total area of the blocks. Note that we have already known one of the area of the blocks. By comparing the scale of the blocks, you may figure out the area of the rest of the blocks.) (b) How many babies are taken to the Special Care Baby Unit? (a) By counting the squares with edge length 0.5, there are 6 such squares in the block for babies weighted over 4.5 kg, while there are 30 such squares in total. So the percentage of babies weighted over 4.5 kg is 6/30 = 20%. Since we know that there are 30 babies weighted over 4.5 kg, so the total number of babies is 30/20% = 150. (b) Again by counting the squares with edge length 0.5, there are 4 such squares in the block for babies weighted under 2 kg. So the number of babies weighted under 2 kg (thus taken to the Special Care Baby Unit) is 150 4/30 = 20. The total points are 25. 5

6 The histograms for problem 8 part (a): You can either draw the two histograms together, or draw them separately. You don t need to point out the units on the vertical scale. You don t need to indicate the heights either. All you need to do for the vertical axis scale is to sketch the heights just like the graph above.

### X - Xbar : ( 41-50) (48-50) (50-50) (50-50) (54-50) (57-50) Deviations: (note that sum = 0) Squared :

Review Exercises Average and Standard Deviation Chapter 4, FPP, p. 74-76 Dr. McGahagan Problem 1. Basic calculations. Find the mean, median, and SD of the list x = (50 41 48 54 57 50) Mean = (sum x) /

### Continuous Random Variables Random variables whose values can be any number within a specified interval.

Section 10.4 Continuous Random Variables and the Normal Distribution Terms Continuous Random Variables Random variables whose values can be any number within a specified interval. Examples include: fuel

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

### LAMC Math 137 Test 1 Module 1-2 Yun 10/1/2014

LAMC Math 137 Test 1 Module 1-2 Yun 10/1/2014 Last name First name You may use a calculator but not a cellphone, tablet or an ipod. Please clearly mark your choices on multiple choice questions and box

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

### Regression. In this class we will:

AMS 5 REGRESSION Regression The idea behind the calculation of the coefficient of correlation is that the scatter plot of the data corresponds to a cloud that follows a straight line. This idea can be

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### Unit 16 Normal Distributions

Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions

### STP 226 Example EXAM #1 (from chapters 1-3, 5 and 6)

STP 226 Example EXAM #1 (from chapters 1-3, 5 and 6) Instructor: ELA JACKIEWICZ Student's name (PRINT): Class time: Honor Statement: I have neither given nor received information regarding this exam, and

### GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

### RESIDUAL = ACTUAL PREDICTED The following questions refer to this data set:

REGRESSION DIAGNOSTICS After fitting a regression line it is important to do some diagnostic checks to verify that regression fit was OK One aspect of diagnostic checking is to find the rms error This

### Statistics Review Solutions

Statistics Review Solutions 1. Katrina must take five exams in a math class. If her scores on the first four exams are 71, 69, 85, and 83, what score does she need on the fifth exam for her overall mean

### Continuing, we get (note that unlike the text suggestion, I end the final interval with 95, not 85.

Chapter 3 -- Review Exercises Statistics 1040 -- Dr. McGahagan Problem 1. Histogram of male heights. Shaded area shows percentage of men between 66 and 72 inches in height; this translates as "66 inches

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### AP Statistics Solutions to Packet 2

AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that

### Chapter 6. The Standard Deviation as a Ruler and the Normal Model. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Copyright 2012, 2008, 2005 Pearson Education, Inc. The Standard Deviation as a Ruler The trick in comparing very different-looking values

### Statistics 100 Midterm Practice Problems

STATISTICS 100 MIDTERM PRACTICE PROBLEMS PAGE 1 OF 8 Statistics 100 Midterm Practice Problems 1. (26 points total) Suppose that in 2004, the verbal portion of the Scholastic Aptitude Test (SAT) had a mean

### Unit 8: Normal Calculations

Unit 8: Normal Calculations Summary of Video In this video, we continue the discussion of normal curves that was begun in Unit 7. Recall that a normal curve is bell-shaped and completely characterized

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### Shape of Data Distributions

Lesson 13 Main Idea Describe a data distribution by its center, spread, and overall shape. Relate the choice of center and spread to the shape of the distribution. New Vocabulary distribution symmetric

### MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

### First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### Final Review Sheet. Mod 2: Distributions for Quantitative Data

Things to Remember from this Module: Final Review Sheet Mod : Distributions for Quantitative Data How to calculate and write sentences to explain the Mean, Median, Mode, IQR, Range, Standard Deviation,

### AP Statistics Chapter 1 Test - Multiple Choice

AP Statistics Chapter 1 Test - Multiple Choice Name: 1. The following bar graph gives the percent of owners of three brands of trucks who are satisfied with their truck. From this graph, we may conclude

### Scatterplots. Section 3.1 Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Scatterplots and Correlation

Section 3.1 Scatterplots & Correlation Scatterplots A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal

### Find the median temperature. A) 33 F B) 59 F C) 51 F D) 67 F Answer: B

Review for TEST 2 STA 2023 FALL 2013 Name Find the mean of the data summarized in the given frequency distribution. 1) A company had 80 employees whose salaries are summarized in the frequency distribution

### Interpreting Data in Normal Distributions

Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,

### (i) I count the number of words on a page. On seven pages the word count is 100, 200, 500, 600, 800, 1300, 1600.

STAT301 Solutions 2 (1a) (i) I count the number of words on a page. On seven pages the word count is 100, 200, 500, 600, 800, 1300, 1600. What is the mean and standard deviation for the above data set?

### Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

### GCSE Statistics Revision notes

GCSE Statistics Revision notes Collecting data Sample This is when data is collected from part of the population. There are different methods for sampling Random sampling, Stratified sampling, Systematic

### Chapter 6 Random Variables

Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

### Chapter 5: The normal approximation for data

Chapter 5: The normal approximation for data Context................................................................... 2 Normal curve 3 Normal curve.............................................................

### Math Chapter 3 review

Math 116 - Chapter 3 review Name Find the mean for the given sample data. Unless otherwise specified, round your answer to one more decimal place than that used for the observations. 1) Bill kept track

### Chapter 2. The Normal Distribution

Chapter 2 The Normal Distribution Lesson 2-1 Density Curve Review Graph the data Calculate a numerical summary of the data Describe the shape, center, spread and outliers of the data Histogram with Curve

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

### Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

### Homework 3. Part 1. Name: Score: / null

Name: Score: / Homework 3 Part 1 null 1 For the following sample of scores, the standard deviation is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 2 2 For any set of data, the sum of the deviation scores

### c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.

MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

### Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student

### Chapter 3: Describing Relationships

Chapter 3: Describing Relationships The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 3 2 Describing Relationships 3.1 Scatterplots and Correlation 3.2 Learning Targets After

### Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will get observations

Applications 1. a. Median height is 15.7 cm. Order the 1 heights from shortest to tallest. Since 1 is even, average the two middle numbers, 15.6 cm and 15.8 cm. b. Median stride distance is 124.8 cm. Order

### find confidence interval for a population mean when the population standard deviation is KNOWN Understand the new distribution the t-distribution

Section 8.3 1 Estimating a Population Mean Topics find confidence interval for a population mean when the population standard deviation is KNOWN find confidence interval for a population mean when the

### Rescaling and shifting

Rescaling and shifting A fancy way of changing one variable to another Main concepts involve: Adding or subtracting a number (shifting) Multiplying or dividing by a number (rescaling) Where have you seen

### Valuation, v, of painting ( ) Frequency Frequency density. 0 v < v < v < v <

Q1. 100 experts value a painting. The grouped frequency distribution shows information about the valuations and the frequency density of some of the groups. Valuation, v, of painting ( ) Frequency Frequency

### Several scatterplots are given with calculated correlations. Which is which? 4) 1) 2) 3) 4) a) , b) , c) 0.002, d) 0.

AP Statistics Review Chapters 7-8 Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Suppose you were to collect data for the

### Descriptive statistics; Correlation and regression

Descriptive statistics; and regression Patrick Breheny September 16 Patrick Breheny STA 580: Biostatistics I 1/59 Tables and figures Descriptive statistics Histograms Numerical summaries Percentiles Human

### Visual Display of Data in Stata

Lab 2 Visual Display of Data in Stata In this lab we will try to understand data not only through numerical summaries, but also through graphical summaries. The data set consists of a number of variables

### Probability Models for Continuous Random Variables

Density Probability Models for Continuous Random Variables At right you see a histogram of female length of life. (Births and deaths are recorded to the nearest minute. The data are essentially continuous.)

### AP * Statistics Review. Descriptive Statistics

AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread

### The Normal Distribution

Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

### Chapter 7 What to do when you have the data

Chapter 7 What to do when you have the data We saw in the previous chapters how to collect data. We will spend the rest of this course looking at how to analyse the data that we have collected. Stem and

### Multiple Choice Questions Descriptive Statistics - Summary Statistics

Multiple Choice Questions Descriptive Statistics - Summary Statistics 1. Last year a small statistical consulting company paid each of its five statistical clerks \$22,000, two statistical analysts \$50,000

### CC Investigation 5: Histograms and Box Plots

Content Standards 6.SP.4, 6.SP.5.c CC Investigation 5: Histograms and Box Plots At a Glance PACING 3 days Mathematical Goals DOMAIN: Statistics and Probability Display numerical data in histograms and

### Math Chapter 2 review

Math 116 - Chapter 2 review Name Provide an appropriate response. 1) Suppose that a data set has a minimum value of 28 and a max of 73 and that you want 5 classes. Explain how to find the class width for

### Presentation of data

2 Presentation of data Using various types of graph and chart to illustrate data visually In this chapter we are going to investigate some basic elements of data presentation. We shall look at ways in

### Math 21A Brian Osserman Practice Exam 1 Solutions

Math 2A Brian Osserman Practice Exam Solutions These solutions are intended to indicate roughly how much you would be expected to write. Comments in [square brackets] are additional and would not be required.

### Confidence Intervals about a Population Mean

Confidence Intervals about a Population Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Motivation Goal: to estimate a population mean µ based on data collected

### Practice Questions Chapter 4 & 5

Practice Questions Chapter 4 & 5 Use the following to answer questions 1-3: Ignoring twins and other multiple births, assume babies born at a hospital are independent events with the probability that a

### 3.4 The Normal Distribution

3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

### Histograms and density curves

Histograms and density curves What s in our toolkit so far? Plot the data: histogram (or stemplot) Look for the overall pattern and identify deviations and outliers Numerical summary to briefly describe

### Mind on Statistics. Chapter 2

Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table

### Statistics GCSE Higher Revision Sheet

Statistics GCSE Higher Revision Sheet This document attempts to sum up the contents of the Higher Tier Statistics GCSE. There is one exam, two hours long. A calculator is allowed. It is worth 75% of the

### Chapter 2: Looking at Data Relationships (Part 1)

Chapter 2: Looking at Data Relationships (Part 1) Dr. Nahid Sultana Chapter 2: Looking at Data Relationships 2.1: Scatterplots 2.2: Correlation 2.3: Least-Squares Regression 2.5: Data Analysis for Two-Way

### STATISTICS 151 SECTION 1 FINAL EXAM MAY

STATISTICS 151 SECTION 1 FINAL EXAM MAY 2 2009 This is an open book exam. Course text, personal notes and calculator are permitted. You have 3 hours to complete the test. Personal computers and cellphones

### Homework 8 Solutions

Homework 8 Solutions Chapter 5D Review Questions. 6. What is an exponential scale? When is an exponential scale useful? An exponential scale is one in which each unit corresponds to a power of. In general,

### CHAPTER 6: Z-SCORES. ounces of water in a bottle. A normal distribution has a mean of 61 and a standard deviation of 15. What is the median?

CHAPTER 6: Z-SCORES Exercise 1. A bottle of water contains 12.05 fluid ounces with a standard deviation of 0.01 ounces. Define the random variable X in words. X =. ounces of water in a bottle Exercise

### MEASURES OF DISPERSION

MEASURES OF DISPERSION Measures of Dispersion While measures of central tendency indicate what value of a variable is (in one sense or other) average or central or typical in a set of data, measures of

### This HW reviews the normal distribution, confidence intervals and the central limit theorem.

Homework 3 Solution This HW reviews the normal distribution, confidence intervals and the central limit theorem. (1) Suppose that X is a normally distributed random variable where X N(75, 3 2 ) (mean 75

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

### STAT 155 Introductory Statistics. Lecture 5: Density Curves and Normal Distributions (I)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 5: Density Curves and Normal Distributions (I) 9/12/06 Lecture 5 1 A problem about Standard Deviation A variable

### 1) What is the probability that the random variable has a value greater than 2? A) 0.750 B) 0.625 C) 0.875 D) 0.700

Practice for Chapter 6 & 7 Math 227 This is merely an aid to help you study. The actual exam is not multiple choice nor is it limited to these types of questions. Using the following uniform density curve,

### The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

### Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

### Monte Carlo Method: Probability

John (ARC/ICAM) Virginia Tech... Math/CS 4414: The Monte Carlo Method: PROBABILITY http://people.sc.fsu.edu/ jburkardt/presentations/ monte carlo probability.pdf... ARC: Advanced Research Computing ICAM:

### 1) What is the probability that the random variable has a value greater than 2? 1) A) B) C) D) 0.750

ch6apractest Using the following uniform density curve, answer the question. 1) What is the probability that the random variable has a value greater than 2? 1) A) 0.625 B) 0.875 C) 0.700 D) 0.750 2) What

### Sample Exam #1 Elementary Statistics

Sample Exam #1 Elementary Statistics Instructions. No books, notes, or calculators are allowed. 1. Some variables that were recorded while studying diets of sharks are given below. Which of the variables

### Desciptive Statistics Qualitative data Quantitative data Graphical methods Numerical methods

Desciptive Statistics Qualitative data Quantitative data Graphical methods Numerical methods Qualitative data Data are classified in categories Non numerical (although may be numerically codified) Elements

### Probability. Distribution. Outline

7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

### the number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?

Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### College of the Canyons A. Morrow Math 140 Exam 3

College of the Canyons Name: A. Morrow Math 140 Exam 3 Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. 1 point each part unless

### Packet: Lines (Part 1) Standards covered:

Packet: Lines (Part 1) Standards covered: *(2)MA.912.A.3.8 Graph a line given any of the following information: a table of values, the x and y- intercepts, two points, the slope and a point, the equation

### 7 CONTINUOUS PROBABILITY DISTRIBUTIONS

7 CONTINUOUS PROBABILITY DISTRIBUTIONS Chapter 7 Continuous Probability Distributions Objectives After studying this chapter you should understand the use of continuous probability distributions and the

### Lesson 18 Student Outcomes Lesson Notes

Lesson 18 Analyzing Residuals Student Outcomes Students use a graphing calculator to construct the residual plot for a given data set. Students use a residual plot as an indication of whether or not the

### Lab #4 - Population Age Structure Activity. Introduction and Background Material

Lab #4 - Population Age Structure Activity Lab adapted from: UCCP: AP/Environmental Science Virtual Labs http://www.ucopenaccess.org/course/view.php?id=13 1 And from http://www.k12science.org/curriculum/popgrowthproj/index.html

### Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

### STA201 Intermediate Statistics Lecture Notes. Luc Hens

STA201 Intermediate Statistics Lecture Notes Luc Hens 15 January 2016 ii How to use these lecture notes These lecture notes start by reviewing the material from STA101 (most of it covered in Freedman et

### Dividing Polynomials VOCABULARY

- Dividing Polynomials TEKS FOCUS TEKS ()(C) Determine the quotient of a polynomial of degree three and degree four when divided by a polynomial of degree one and of degree two. TEKS ()(A) Apply mathematics

### Key Concept. Density Curve

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)