21.1 Coulomb s Law - Electric Charge - Conductors and Insulators - Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "21.1 Coulomb s Law - Electric Charge - Conductors and Insulators - Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved"

Transcription

1 INTRODUCTION We will understand how electric and magnetic fields affect charged particles Lorentz Force Law: we will learn to describe how electric and magnetic fields are produced by charged particles Four fundamental equations of electromagnetism Maxwell Equations 1 Chapter 21 Coulomb s Law - Electric Charge - Conductors and Insulators - Coulomb s law 21.2 Charge is quantized 21.3* Charge is conserved 2 1

2 Classified by electrical sign: positive charge and negative charge An object with equal amounts of the two kinds of charge is electrically neutral (no net charge), whereas one with an imbalance is electrically charged. Ways of charging: friction, conduction, induction Charging object by friction: charge a glass rod by rubbing one end with silk - charge a plastic rod by rubbing one end with wool - + Charges with the same electrical sign repel each other. Charges with the opposite electrical sign attract each other. 3 Classify materials according to the ability of charge to move: - Conductors: materials in which a significant number of charged particles are free to move - Insulators: materials in which charged particles are not free to move - Semiconductors: materials (like Si, Ge) whose conductivity can be (usefully) controlled - Superconductors: materials which offer no resistance at all to the movement of charged particles The properties of conductors & Insulators are due to the structure and electrical nature of atoms Matter consists of. - electrons : - protons: - neutrons: -e +e 0 elementary charge, e = C Electrons and protons are the basic charges in nature. Net charge for an object: 4 2

3 An object said positive charged: doesn t mean that it gains proton, but just loses electrons! An atom is missing (gaining) an electron is called a positive (negative) ion Explanation for an insulating rod charged by rubbing: - Ionization: The process of removing an electron from the electron cloud of an atom - Force of friction can break molecular bonds - Molecular ions can be created, when one of bonds in large molecule is broken - Tiny amount of charge are transferred from one to the other. 5 Metals are conductors. It can be charged by conduction or induction Charging by Conduction: Conduction just means that the two objects will come into actual physical contact with each other (this is why it is sometimes called charging by contact ). - In an isolated conductor, any excess charge is located on the surface of the conductor (so that net force on any of it is zero)! Charge induced by Induction: induced charges in a conductor without physical contact with an charged object - Copper rod is still neutral - Evidence of mobility of charge in conductor: Induced charge How conduction can eliminate excess charge on an objector? - also called: Ground the object, discharge the object - by setting up a pathway of conductors between an objector and the Earth s surface - Earth s surface is a huge conductor 6 3

4 Coulomb s Law: Electrostatic force: SI Unit of charge: C (Chapter 26) Permittivity constant: Constant: ( Comparison with: Newton s equation for gravitational force: ) Shell theorems: A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell s charge were concentrated at its center. If a charged particle is located inside a shell of uniform charge, there is no net electrostatic force on the particle from the shell. Electrostatic force: Vector ( including direction and magnitude) - Charges with the same (opposite) electrical sign repel (attract) each other. 7 Electrostatic force: Vector (direction and magnitude) - Charges with the same (opposite) electrical sign repel (attract) each other. A couple of questions: How do we express a vector? magnitude and direction How do we find net electrostatic force if there are several point charges? How do we express a vector? Unit vector: i, j, k ; corresponding to positive x, y, z directions Direction Unit Vector Force + x direction - x direction + y direction - y direction + z direction - z direction 8 4

5 What about arbitrary vector? Electrostatic force can be expressed as (method1: magnitude-angle notation): F: magnitude y Fsinθ θ F Fcosθ x θ : Angle relative to positive x axis (along counter-clockwise direction) For example: if the force is along negative y axis, then θ = 270, or -90. Electrostatic force can be written as (method 2: unit-vector notation): 9 Net force (Principle of superposition) on particle1 from n charged particles (2, 3, 4,.n) is given by: (Eq. 21-7) We can express the net force in unit notation: We can find the magnitude and angle of the net force: Magnitude Angle 10 5

6 -- sample problems Sample Problem (p616): (a) Fig. 21-7a show two positively charged particles fixed in place on an x axis. The charges are q 1 = Candq 2 = C, and the particle separation is R = m. What are the magnitude and direction of the electrostatic force F 12 on particle 1 from particle 2? (b) Fig. 21-7c is identical to Fig.21-7a except that particle 3 now lies on the x axis between particles 1 and 2. Particle 3 has charge q 3 = C and is at a distance 3R 4from particle 1. What is the net electrostatic force F 1, net on particle 1 due to particles 2 and 3? (c) Fig. 21-7e is identical to Fig.21-8a except that particle 4 is now included. It has charge q 4 = C, is at a distance 3R 4 from particle 1, and lies on a line that makes an angle θ = 60 with the x axis. What is the net electrostatic force F 1, net on particle 1 due to particles 2 and 4? sample problems Given: q 1 = C, q 2 = C, q 3 = q 4 = C, θ = 60 (a) (b) (c) 12 6

7 -- sample problems Sample Problems (p618): Fig. 21-9a show two particles fixed in place: a particle of charge q 1 =+8q at the origin and a particle of q 2 =-2q at x = L. At what point (other than infinitely far away) can a proton be placed so that it is in equilibrium (the net force on it is zero)? Is that equilibrium stable or unstable? sample problems Sample Problem (p619): In Fig.21-9a, two identical,electrically isolated conducting spheres A and B are separated by a (center-to-center) distance a that is large compared to the spheres. Sphere A has a positive charge of +Q, and sphere B is electrically neutral. Initially, there is no electrostatic force between the spheres (assume that there is no induced charge on the spheres because of their large separation.) (a) Suppose the spheres are connected for a moment by a conducting wire. The wire is thin enough so that any net charge on it is negligible. What is the electrostatic force between the spheres after the wire is removed? (b) Next, suppose sphere A is grounded momentarily, and then the ground connection is removed. What now is the electrostatic force between the spheres? 14 7

8 21.2 Charge is Quantized Any positive or negative charge q can be written as: Elementary charge: e Particle: electrons protons neutrons Symbol: e or e- p n Charge: -e +e 0 15 Problems: 21-38: Fig shows four identical conducting spheres that are actually well separated from one another. Sphere W (with an initial charge of zero) is touched to sphere A and then they are separated. Next, sphere W is touched to sphere B (with an initial charge of 32 e) and then they are separated. Finally, sphere W is touched to sphere C (with an initial charge of +48e), and then they are separated. The final charge on sphere W is +18e. What was the initial charge on sphere A? 16 8

9 Problems: 21-12: Two particles are fixed on an x axis. Particle 1 of charge 40 μc is located at x = -2.0 cm; particle 2 of charge Q is located at x = 3.0 cm. Particle 3 of charge magnitude 20 μc is released from rest on the y axis at y = 2.0 cm. What is the value of Q if the initial acceleration of particle 3 is in the positive direction of (a) the x axis and (b) the y axis? 17 9

Slide 1 / 33. Electric Charge and Electric Field

Slide 1 / 33. Electric Charge and Electric Field Slide 1 / 33 Electric Charge and Electric Field Slide 2 / 33 Electric Charge When you rub a rod with a piece of fur both objects become charged and you can pick up small pieces of paper. This natural phenomenon

More information

Chapter 21: Electric Charge and Electric Field

Chapter 21: Electric Charge and Electric Field Chapter 21: Electric Charge and Electric Field The nature of electric charge Understanding conservation of electric charge. How objects become electrically charged. Coulomb s law to calculate the electric

More information

CHAPTER 21: ELECTRIC CHARGE AND ELECTRIC FIELD

CHAPTER 21: ELECTRIC CHARGE AND ELECTRIC FIELD CHAPTER 21: ELECTRIC CHARGE AND ELECTRIC FIELD As you may already know, according to our present understanding of the universe, there are four fundamental interactions, or forces: gravitation, electromagnetism,

More information

Chapter 18 Electric Forces and Electric Fields. Key Concepts:

Chapter 18 Electric Forces and Electric Fields. Key Concepts: Chapter 18 Lectures Monday, January 25, 2010 7:33 AM Chapter 18 Electric Forces and Electric Fields Key Concepts: electric charge principle of conservation of charge charge polarization, both permanent

More information

As.rFall 12 PHY 122 Homework Solutions #1

As.rFall 12 PHY 122 Homework Solutions #1 As.rFall 12 PHY 122 Homework Solutions #1 Chapter 21 Question 4 A positively charged rod is brought close to a neutral piece of paper, which it attracts. Draw a diagram showing the separation of charge

More information

Electric Forces and Fields. Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles

Electric Forces and Fields. Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles Electric Forces and Fields Charge Coulomb's Law Electric Fields Conductors & Insulators Parallel plates Dipoles 1 Friction causes these effects Pollen sticks to bees Dust sticks to TV Static cling of clothes

More information

Clayton College & State University Department of Natural Sciences September 2, Physics 1112 Quiz 1. Name SOLUTION

Clayton College & State University Department of Natural Sciences September 2, Physics 1112 Quiz 1. Name SOLUTION Clayton College & State University September 2, 2004 Name SOLUTION 1. Three non-conducting balls supported by insulating threads hang from a support. We know that ball X is positively charged. When ball

More information

physics 112N electric charges, forces and fields

physics 112N electric charges, forces and fields physics 112N electric charges, forces and fields static electricity like charges repel, unlike charges attract physics 112N 2 atomic origin of charge physics 112N 3 conductors and insulators materials

More information

Chapter 21 Electric Charge and the Electric Field

Chapter 21 Electric Charge and the Electric Field Chapter 21 Electric Charge and the Electric Field 1 Electric Charge Electrostatics is the study of charges when they are stationery. Figure 1: This is Fig. 21.1 and it shows how negatively charged objects

More information

3. As shown in the diagram below, a charged rod is held near, but not touching, a neutral electroscope.

3. As shown in the diagram below, a charged rod is held near, but not touching, a neutral electroscope. 1. As a positively charged rod is brought near to but not allowed to touch the knob of an uncharged electroscope, the leaves will diverge because negative charges are transferred from the electroscope

More information

Properties of Objects. Quantization of Charge. Conservation of Charge. Conductors, Insulators and Semiconductors. How to Put Charge on an Object

Properties of Objects. Quantization of Charge. Conservation of Charge. Conductors, Insulators and Semiconductors. How to Put Charge on an Object Properties of Objects Fundamental Particles Atoms and Ions Quantization of Conservation of Conductors, Insulators and Semiconductors Polarization How to Put on an Object 1 Physical Properties That which

More information

1 of 8 2/25/2010 5:32 PM

1 of 8 2/25/2010 5:32 PM Chapter 26 Homework Due: 8:00am on Monday, February 22, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View] Charging a Conducting

More information

Welcome to Phys 208! Welcome to Phys 208! Meet the lecturers. Meet your Disc/Lab instructors. Homework. Discussions and Labs

Welcome to Phys 208! Welcome to Phys 208! Meet the lecturers. Meet your Disc/Lab instructors. Homework. Discussions and Labs Welcome to Phys 208! Duration: 5 Sep-Dec 15 15 Weeks Lectures: Tu, Th 12:05-12:55 pm Honor lectures: Fri 12:05-12:55 Room: 2103 Chamberlin Visit the Web site: http://uw.physics.wisc.edu/~rzchowski/phy208/

More information

PHYSICS 212 ELECTRICAL ENERGY AND CAPACITANCE WORKBOOK ANSWERS

PHYSICS 212 ELECTRICAL ENERGY AND CAPACITANCE WORKBOOK ANSWERS PHYSICS 212 CHAPTER 16 ELECTRICAL ENERGY AND CAPACITANCE WORKBOOK ANSWERS STUDENT S FULL NAME (By placing your name above and submitting this for credit you are affirming this to be predominantly your

More information

Electricity. Electrostatics. Charge vs Charged. + / - terminology

Electricity. Electrostatics. Charge vs Charged. + / - terminology Electricity Electrostatics Charge vs Charged + / - terminology 1 Charge Facts 1.) Charge 2.) 1 C of charge. 3.) You can convert # of electrons into charge and vice versa 4.) Opposites Attract Like charges

More information

Laboratory 1 ELECTROSTATICS. The objective of this lab is to gain an understanding of how objects become

Laboratory 1 ELECTROSTATICS. The objective of this lab is to gain an understanding of how objects become 1 Laboratory 1 ELECTROSTATICS Objective: The objective of this lab is to gain an understanding of how objects become electrically charged and how electrical charge is transferred from one object to another.

More information

Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

More information

Ch 20: Electric Charge and Electric Fields

Ch 20: Electric Charge and Electric Fields Ch 20: Electric Charge and Electric Fields Electric Charge Experiments involving the rubbing of plastic, glass and wood rods with wool, silk, and other materials cause the material to inherit a property

More information

If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between

If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between the balls is given by : = X = 2 ( ) 1 Two pith balls each

More information

ELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects

ELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : , 1 E L E C T R O S TAT I C S 1. Define lines of forces and write down its properties. Draw the lines of force to represent (i) uniform electric field (ii) positive charge (iii) negative charge (iv) two

More information

2. In Newton s universal law of gravitation the masses are assumed to be. B. masses of planets. D. spherical masses.

2. In Newton s universal law of gravitation the masses are assumed to be. B. masses of planets. D. spherical masses. Practice Test: 41 marks (55 minutes) Additional Problem: 19 marks (7 minutes) 1. A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude

More information

ELECTRIC CHARGE, FORCE AND FIELD (Young & Freedman Chap. 22) (Ohanian, Chaps. 22, 23) Brief review of electric charge and force

ELECTRIC CHARGE, FORCE AND FIELD (Young & Freedman Chap. 22) (Ohanian, Chaps. 22, 23) Brief review of electric charge and force EM 005 Handout : Electric Charge, orce and ield 1 ELECTRIC CHARGE, ORCE AND IELD (Young & reedman Chap. ) (Ohanian, Chaps., 3) Brief review of electric charge and force Recall: Atoms are composed of NEUTRONS,

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

Introduction to Chemistry and Physics

Introduction to Chemistry and Physics Introduction to Chemistry and Physics UNIT I: Introduction to the Physical Sciences The student will demonstrate the ability to explore and apply the processes of science. a. Describe and apply the steps

More information

Electricity Review-Sheet

Electricity Review-Sheet Name: ate: 1. The unit of electrical charge in the MKS system is the. volt. ampere. coulomb. mho 2. Which sketch best represents the charge distribution around a neutral electroscope when a positively

More information

Electrostatics. Ans.The particles 1 and 2 are negatively charged and particle 3 is positively charged.

Electrostatics. Ans.The particles 1 and 2 are negatively charged and particle 3 is positively charged. Electrostatics [ Two marks each] Q1.An electric dipole with dipole moment 4 10 9 C m is aligned at 30 with the direction of a uniform electric field of magnitude 5 10 4 N C 1. Calculate the net force and

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Atomic Theory Atomic Theory Page It is our intention here to handle atomic theory in a very light manner. Some knowledge is required in order to understand the characteristics of

More information

Coulomb's Law. Two like charges of 1 Coulomb placed 1 meter apart repel each other with a force of 9 x 10 9 Newtons

Coulomb's Law. Two like charges of 1 Coulomb placed 1 meter apart repel each other with a force of 9 x 10 9 Newtons Electricity Electricity is a force much like gravity but many times more powerful. Unlike gravity, electrical forces can be attractive or repulsive. Gravity has only one type of mass. Electricity has two

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Chapter 18. Electric Forces and Electric Fields

Chapter 18. Electric Forces and Electric Fields My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields

More information

Electric charges. Observations. Observations. Welcome to PY106. Setting the Channel Number for Your Clicker. Electric Charge

Electric charges. Observations. Observations. Welcome to PY106. Setting the Channel Number for Your Clicker. Electric Charge Welcome to PY106 -The syllabus is your guide to this course. It contains information about the discussions, labs., the class, lab. and exam. schedules and grading scheme, etc. - Discussion sessions begin

More information

SQA Advanced Higher Physics Unit 2: Electrical Phenomena

SQA Advanced Higher Physics Unit 2: Electrical Phenomena SCHOLAR Study Guide SQA Advanced Higher Physics Unit 2: Electrical Phenomena Andrew Tookey Heriot-Watt University Campbell White Tynecastle High School Heriot-Watt University Edinburgh EH14 4AS, United

More information

Version 001 Electrostatics I tubman (12125) 1

Version 001 Electrostatics I tubman (12125) 1 Version 001 Electrostatics I tubman (115) 1 This print-out should have 13 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP EM 1993 MC 55

More information

Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field Bởi: OpenStaxCollege What is the mechanism by which one magnet exerts a force on another? The answer is related to the fact that all

More information

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both

More information

Chapter 20 - Solutions

Chapter 20 - Solutions Chapter 20 - Solutions Electric Fields and Forces Description: Electric forces and electric fields. Learning Goal: To understand Coulomb's law, electric fields, and the connection between the electric

More information

Gravitational Fields: Review

Gravitational Fields: Review Electric Fields Review of gravitational fields Electric field vector Electric fields for various charge configurations Field strengths for point charges and uniform fields Work done by fields & change

More information

Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction

Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction Positive and negative electric charge, electroscope, phenomenon of electrical induction Print Your Name Print Your Partners' Names Instructions January 16, 2015 Before the lab, read all sections of the

More information

Chapter 16 Electric Forces and Fields

Chapter 16 Electric Forces and Fields Chapter 16 Electric Forces and Fields 2. How many electrons does it take to make one coulomb of negative charge? A. 1.00 10 9 B. 6.25 10 18 C. 6.02 10 23 D. 1.66 10 18 E. 2.24 10 4 10. Two equal point

More information

4. The units of the electric field are: A. N C 2 B. C/N C. N D. N/C E. C/m 2 ans: D

4. The units of the electric field are: A. N C 2 B. C/N C. N D. N/C E. C/m 2 ans: D Chapter 22: ELECTRIC FIELDS 1 An electric field is most directly related to: A the momentum of a test charge B the kinetic energy of a test charge C the potential energy of a test charge D the force acting

More information

MOVING CHARGES AND MAGNETISM

MOVING CHARGES AND MAGNETISM MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores

More information

SPH4U Gravitational, Electrical and Magnetic Fields Lesson 1 Newtonian Gravitation Page 1 of 4

SPH4U Gravitational, Electrical and Magnetic Fields Lesson 1 Newtonian Gravitation Page 1 of 4 NEWTONIAN GRAVITATION Universal Law of Gravitation There is a gravitational force of attraction between any two objects. If the objects have masses m 1 and m 2 and their centres are separated by a distance

More information

Worked Examples from Introductory Physics Vol. IV: Electric Fields. David Murdock Tenn. Tech. Univ.

Worked Examples from Introductory Physics Vol. IV: Electric Fields. David Murdock Tenn. Tech. Univ. Worked Examples from Introductory Physics Vol. IV: Electric Fields David Murdock Tenn. Tech. Univ. September 11, 2005 2 Contents To the Student. Yeah, You. i 1 Electric Charge; Coulomb s Law 1 1.1 The

More information

Dipoles. Note: Definition of a couple - Two equal and opposite parallel forces (not collinear) acting upon a body.

Dipoles. Note: Definition of a couple - Two equal and opposite parallel forces (not collinear) acting upon a body. Dipoles Definition A dipole is normally considered as a combination of equal point electric charges, of opposite signs, separated by a small distance. Dipole moment The dipole moment, measured in coulomb

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

Electrical discharge in air e.g. lightning

Electrical discharge in air e.g. lightning Static Electricity electron transfer causes static electricity results from an imbalance of charges can occur by induction, friction, and contact You need to describe the direction of motion of charges

More information

Coulomb s Law. F = k q 1q 2. k = x 10 9 N m 2 /C 2

Coulomb s Law. F = k q 1q 2. k = x 10 9 N m 2 /C 2 Electricity Electricityisaforcemuchlikegravitybutmillionsoftimemorepowerful. Unlike gravity, electricity can be attractive and repulsive. There are two types of electric charge which are labeled positive

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Physics 2212 GH Quiz #4 Solutions Spring 2015

Physics 2212 GH Quiz #4 Solutions Spring 2015 Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s

More information

Chapter 17 Study Questions Name: Class:

Chapter 17 Study Questions Name: Class: Chapter 17 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. If two charges repel each other, the two charges

More information

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,

More information

Chapter 21. The magnitude of the force of attraction is given by Coulomb s law where we have taken the absolute value of the force and the charges.

Chapter 21. The magnitude of the force of attraction is given by Coulomb s law where we have taken the absolute value of the force and the charges. Chapter 1 1.1 What must the distance between point charge 6 10 6 C and point charge q 47 10 6 C for the electrostatic force between them to be 5.70N? The magnitude of the force of attraction is given by

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Fill in the table with the Electrometer values (include the polarity +/-) for each rod vs. cloth pair. Use (+/-) MAX when necessary.

Fill in the table with the Electrometer values (include the polarity +/-) for each rod vs. cloth pair. Use (+/-) MAX when necessary. Electrostatics PES 216 Report Name: Lab Station: Objective (up to you this time) The purpose of this lab was to investigate the nature of electric charge: how different materials obtain different charges,

More information

CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1

CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 Hermann Härtel Guest scientist at Institute for Theoretical Physics and Astrophysics University Kiel ABSTRACT Surface charges are present,

More information

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics. 20.2 Separation of Electric Charge by Rubbing

Chapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics. 20.2 Separation of Electric Charge by Rubbing I wish to give an account of some investigations which have led to the conclusion that the carriers of negative electricity are bodies, which I have called corpuscles, having a mass very much smaller than

More information

Two kinds of electrical charges

Two kinds of electrical charges ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

More information

Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field OpenStax-CNX module: m42372 1 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Chapter 14 Magnets and Electromagnetism

Chapter 14 Magnets and Electromagnetism Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

Electrostatics-E Field

Electrostatics-E Field 1. Which diagram represents the electric field lines between two small electrically charged spheres? 2. Which graph best represents the relationship between the magnitude of the electric field strength,

More information

Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism 1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

More information

1 of 7 4/13/2010 8:05 PM

1 of 7 4/13/2010 8:05 PM Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field

More information

AP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.

AP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3. Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = -4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?

More information

PHYS 1444 Section 003. Lecture #6. Chapter 21. Chapter 22 Gauss s Law. Electric Dipoles. Electric Flux. Thursday, Sept. 8, 2011 Dr.

PHYS 1444 Section 003. Lecture #6. Chapter 21. Chapter 22 Gauss s Law. Electric Dipoles. Electric Flux. Thursday, Sept. 8, 2011 Dr. PHYS 1444 Section 003 Chapter 21 Lecture #6 Dr. Jaehoon Electric Dipoles Chapter 22 Gauss s Law Electric Flux 1 Quiz #2 Thursday, Sept. 15 Beginning of the class Announcements Covers: CH21.1 through what

More information

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy . The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

More information

Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

More information

Fall 12 PHY 122 Homework Solutions #4

Fall 12 PHY 122 Homework Solutions #4 Fall 12 PHY 122 Homework Solutions #4 Chapter 23 Problem 45 Calculate the electric potential due to a tiny dipole whose dipole moment is 4.8 x 10-30 C.m at a point 4.1 x 10-9 m away if this point is (a)

More information

How can one explain and predict interactions between objects and within systems of objects?

How can one explain and predict interactions between objects and within systems of objects? Core Idea PS2 Motion and Stability: Forces and Interactions How can one explain and predict interactions between objects and within systems of objects? interaction (between any two objects) o gravity o

More information

Review Assessment: q01

Review Assessment: q01 COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 2ND SEM. QUIZZES > REVIEW ASSESSMENT: Q01 Review Assessment: q01 Name: Status : Score: Instructions: q01 Completed 41 out of 100 points Question 1 0 of 10

More information

Lab 1 Electrostatics and Coulomb s Law

Lab 1 Electrostatics and Coulomb s Law Lab 1 Electrostatics and oulomb s Law Physics 6 Lab What You Need To Know: The Physics From lecture you should know there are types of charge, positive and negative. The elementary particle with one unit

More information

2. A 200-N/C electric field is in the positive x direction. The force on an electron in this field is:

2. A 200-N/C electric field is in the positive x direction. The force on an electron in this field is: University Physics (Prof. David Flory) Chapt_23 Sunday, February 03, 2008 Page 1 Name: Date: 1. The dipole moment of an electric dipole in a 300-N/C electric field is initially perpendicular to the field,

More information

Capacitance and Dielectrics

Capacitance and Dielectrics Capacitance and Dielectrics George Gamow was a famous nuclear physicist and cosmologist who once wrote an entertaining and humorous series of books for the layman in which many of the mysteries of modern

More information

Chapter 24. Capacitance and Dielectrics Lecture 2. Dr. Armen Kocharian

Chapter 24. Capacitance and Dielectrics Lecture 2. Dr. Armen Kocharian Chapter 24 Capacitance and Dielectrics Lecture 2 Dr. Armen Kocharian Some Uses of Capacitors Defibrillators When fibrillation occurs, the heart produces a rapid, irregular pattern of beats A fast discharge

More information

20 Static Electricity

20 Static Electricity CHAPTER 0 Static Electricity Section Review 0. Electric Charge pages 54 545 page 545. Charged Objects After a comb is rubbed on a wool sweater, it is able to pick up small pieces of paper. Why does the

More information

Consider a plate of finite width carrying an excess positive charge. In isolation, the charge will migrate to both surfaces.

Consider a plate of finite width carrying an excess positive charge. In isolation, the charge will migrate to both surfaces. 3 Conductors 3.1 Electric field and electric potential in the cavity of a conductor Conductors (eg metals) are materials in which charges move freely, whereas insulators (eg glass, rubber, wood) are materials

More information

Solution. Problem. Solution. Problem. Solution

Solution. Problem. Solution. Problem. Solution 4. A 2-g ping-pong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

More information

THE MAGNETIC FIELD. 9. Magnetism 1

THE MAGNETIC FIELD. 9. Magnetism 1 THE MAGNETIC FIELD Magnets always have two poles: north and south Opposite poles attract, like poles repel If a bar magnet is suspended from a string so that it is free to rotate in the horizontal plane,

More information

Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

More information

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? 4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

More information

Chapter 02. Voltage and Current

Chapter 02. Voltage and Current Chapter 02 Voltage and Current Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning C-C Tsai Atom Atomic Theory Review Contains a nucleus of protons and neutrons Nucleus is surrounded

More information

Static Electricity Page 1. Static Electricity. Introduction: Structure of Atoms 2 Sample Curriculum, Materials Needed

Static Electricity Page 1. Static Electricity. Introduction: Structure of Atoms 2 Sample Curriculum, Materials Needed Static Electricity Page 1 Static Electricity Introduction: Structure of Atoms 2 Sample Curriculum, Materials Needed Experiment #1: Creating Static Charges 3 Experiment #2: Like Charges Repel and Unlike

More information

(b) Draw the direction of for the (b) Draw the the direction of for the

(b) Draw the direction of for the (b) Draw the the direction of for the 2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

More information

LECTURE 3 DIPOLES & ELECTRIC FIELD FOR CONTINUOUS CHARGE DISTRIBUTION

LECTURE 3 DIPOLES & ELECTRIC FIELD FOR CONTINUOUS CHARGE DISTRIBUTION LECTURE 3 DIPOLES & ELECTRIC FIELD FOR CONTINUOUS CHARGE DISTRIBUTION Lecture 3 2 Reading chapter 21-6 to 22-1. Dipoles Coulomb s law for continuous charge distributions Electric dipoles 3 An electric

More information

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS.

CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. CHAPTER 17 NOTES FOR EIGHTH GRADE PHYSICAL SCIENCE ALL MATTER IS COMPOSED OF VERY SMALL PARTICLES CALLED ATOMS. THE LAW OF ELECTRIC CHARGES STAES THAT LIKE CHARGES REPEL AND OPPOSITE CHARGES ATTRACT. BECAUSE

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67

More information

1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

More information

Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering. Part A

Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering. Part A Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 1. Four particles follow the paths shown in Fig. 32-33 below as they pass through the magnetic field there. What can one conclude

More information

Physics 1302W Introductory Physics for Science and Engineering II Clem Pryke, Associate Professor. Lecture 4 Electric Fields & Electric Dipoles

Physics 1302W Introductory Physics for Science and Engineering II Clem Pryke, Associate Professor. Lecture 4 Electric Fields & Electric Dipoles Physics 1302W Introductory Physics for Science and Engineering II Clem Pryke, Associate Professor Lecture 4 Electric Fields & Electric Dipoles What to do this week Go to your lab session as scheduled first

More information

Coulomb's law. 9,0 109 N m2 C 2 in free space.

Coulomb's law. 9,0 109 N m2 C 2 in free space. Coulomb's law Like charges repel each other while unlike charges attract each other. If the charges are at rest then the force between them is known as the electrostatic force. The electrostatic force

More information

Objectives for the standardized exam

Objectives for the standardized exam III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

More information

Lesson 12: Magnetic Forces and Circular Motion!

Lesson 12: Magnetic Forces and Circular Motion! Lesson 12: Magnetic Forces and Circular Motion If a magnet is placed in a magnetic field, it will experience a force. Types of magnets: Direction of the force on a permanent magnet: Direction of the force

More information

4/16/ Bertrand

4/16/ Bertrand Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 10-19 Coulombs. Charge distribution

More information