Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24


 Kelley Kelly
 3 years ago
 Views:
Transcription
1 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4
2 The Electric Field Replaces actionatadistance Instead of Q 1 exerting a force directly on Q at a distance, we say: Q 1 creates a field exerts a force on Q. and then the field NOTE: Since force is a vector then the electric field must be a vector field! E F qe
3 Does the field really exist? It exists due to the finite speed of light (maximum speed of signal propagation) Electric charges in isolating shells Isolation removed (door open) Force is exerted after the source charge is isolated Interaction by the field rather than by charge
4 Field E is defined as the force that would be felt by a unit positive test charge E F / q 0 SI units for the electric field: newtons per coulomb.
5 Electric Field Lines We visualize the field by drawing field lines. These are defined by three properties: Lines point in the same direction as the field. Density of lines gives the magnitude of the field. Lines begin on + charges; end on charges.
6 Electric field created by a negatively charged metal sphere
7
8
9 Coulomb s Law for the Field Coulomb s law for the force on q due to Q: F k qq r rˆ qe Coulomb s law for the field E due to Q: E k Q r rˆ
10 Example 1 What is the electric field strength at a distance of 10 cm from a charge of μc? E kq r ( )( 10 (10 10 ) 6 ) N / C So a onecoulomb charge placed there would feel a force of 180,000 newtons.
11 Q.1 A point charge Q is far from all other charges. At a distance of m from Q, the electric field is 0 N/C. What is the electric field at a distance of 4m from Q? 1. 5 N/C. 10 N/C 3. 0 N/C N/C N/C
12 Adding fields Principle of superposition Electric fields due to different sources combine vector addition to form the one true total field. Q 1 Q 3 Q E 3 E E 1 E E E E E 1 3
13 Example 1. Find the electric field on the x axis. y Q Q x E y 0 d E x E 1 E kq x ( kq x d). Where will the field be zero? x d x x. 4d
14 The shell theorems for E In Chapter 13 we had the shell theorems for gravity In Chapter 1 (p. 567) the shell theorems for electrostatics were stated. In Chapter 3 (p. 618) they will be proven. But we can easily understand them now from our knowledge of electric field lines.
15 The shell theorems for gravity Given a uniform spherical shell of mass: (1) The field outside is the same as if all the mass were concentrated at the center. () The field inside the shell is zero. (These theorems for gravity are given in Chapter 14.) (Newton s headache!)
16 Prove true also for electric field Use our knowledge of electric field lines to draw the field due to a spherical shell of charge: There is no other way to draw lines which satisfy all 3 properties of electric field lines, and are also spherically symmetric. Notice that both shell theorems are obviously satisfied.
17 Fields at r are the same! r r Q spread over shell point Q at center PROOF: (1) Spherical symmetry () Fields far away must be equal
18 Useful result for spherical r symmetry Field outside a sphere of total charge Q is radially outward with magnitude E kq r
19 Q. A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell s charge were Concentrated at the center.. Concentrated at the point closest to the particle. 3. Concentrated at the point opposite the particle. 4. Zero.
20 Electric Dipole The combination of two charges of equal but opposite sign is called a dipole. If the charges +q and q are separated by a distance d, then the dipole moment p is defined as a vector pointing from q to +q of magnitude p = qd. q p q
21 Electric Field Due to a Dipole
22 Torque on a Dipole in a Field d F ( sin ) qe d sin pe p E sin
23 Chapters, 3: The Electric Field NOTE! If you have urgent questions, please send me e mail with Your name Section At
24 Review: Electric Fields Definition of electric field: F = qe SI unit: newton per coulomb (N/C) Coulomb s Law for a point charge Q: F = kqq/r OR E = kq/r Principle of superposition (vector addition): E net E E E 1 3
25 Electric Field Lines We visualize the field by drawing field lines. These are defined by three properties: Lines point in the same direction as the field. Density of lines gives the magnitude of the field. Lines begin on + charges; end on charges. From these properties it is easy to see that Field lines never cross
26 Coulomb s Law for the Field Coulomb s law for the force on q due to Q: F k qq r rˆ qe Coulomb s law for the field E due to Q: E k Q r rˆ
27 Example Three point charges are placed on the y axis as shown. Find the electric field at point P on the x axis. E 1 kq b E E 1 E E 3 E x E E 3 Q k a b ( E E3) x E cos Eb / a b E ( E b E E 3/ E3) x E1 4kQb /( a b ) kq / E 3 1 E3 E y 0
28 Q.1 What is the SI unit for the electric field? 1. Newtons. Coulombs 3. Newtons per Coulomb 4. Newtons per meter 5. Coulombs per meter
29 Q.1 What is the SI unit for the electric field? Field is force per unit charge: 1. Newtons. Coulombs 3. Newtons per Coulomb 4. Newtons per meter 5. Coulombs per meter F qe
30 Three charges (one + and two ) are placed on the x and y axes as shown. What is the approximate direction of the electric field at the origin? Will it be pointing toward point 1,, 3, or 4? E Q. q 1 3 +q q 4
31 Q. 1. (1). () 3. (3) 4. (4) q 1 3 +q q 4
32 Q. Three charges (one + and two ) are placed on the x and y axes as shown. What is the approximate direction of the electric field at the origin? Will it be pointing toward point 1,, 3, or 4? Solution. Imagine a positive test charge placed at the origin. It will be atracted to the q charges and repelled by the +q charge. 3 +q q E 1 q 4
33 Linear charge distribution Linear charge density = charge per unit length If a rod of length.5 m has a uniform linear charge density λ = 3 C/m, then the total charge on the rod is (.5 m) (3 C/m) = 7.5 C. If a rod of length L carries a nonuniform linear charge density λ(x), then adding up all the charge produces an integral: b Q ( x) dq a b a dx
34 Example: Ch. Prob. 3 Find the electric field at point P. Let q / L. Then dq dr dr, de r k dq r dr k r dq E de k a a L al dr 1 k k r r a 1 a a 1 L
35 Suppose density is not uniform Still true that dq dr, dr de dq k r r dr k r dq al dr E de k ( r) r a
36 Field of a charged ring Uniform linear charge density so dq = λds and de = kdq/r By symmetry, E x =E y =0 and so E = E z = sum of all de z, and dez = cos θ de. E k cos dq k cos r Q r
37 Charged ring continued E k cos dq k cos r Q r But cos z / r so E kqz r 3 ( z kqz R ) 3/
38 Charged ring result E k cos dq Q k cos r r kqz 3 r kqz ) ( z R 3/ NOTE: This is a good example of a special result, which is the answer to an example problem, not a fundamental principle to be memorized. It is the process we are supposed to be learning, not the result!
39 NOTE This result for the field on the axis of a charged ring can be derived more easily in Chapter 4 using the idea of electric potential.
40 Electric Dipole The combination of two charges of equal but opposite sign is called a dipole. If the charges +q and q are separated by a distance d, then the dipole moment p is defined as a vector pointing from q to +q of magnitude p = qd. q p q
41 Electric Field Due to a Dipole
42 Torque on a Dipole in a Field d F ( sin ) qe d sin pe p E sin
43 Gauss s Law Gauss s Law is the first of the four Maxwell Equations which summarize all of electromagnetic theory. Gauss s Law gives us an alternative to Coulomb s Law for calculating the electric field due to a given distribution of charges.
44 Gauss s Law: The General Idea The net number of electric field lines which leave any volume of space is proportional to the net electric charge in that volume. E lines leaving V volume V E lines entering V
45 Flux The flux Φ of the field E through the surface S is defined as E da S The meaning of flux is just the number of field lines passing through the surface.
46 Best Statement of Gauss s Law The outward flux of the electric field through any closed surface equals the net enclosed charge divided by ε 0.
47 Gauss s Law: The Equation S E da Q / enc 0 S is any closed surface. Q enc is the net charge enclosed within S. da is an element of area on the surface of S. da is in the direction of the outward normal SI units
48 Chapters, 3: The Electric Field Previous Homework: Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4, 34
Chapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohiostate.edu/~humanic/  Chapter 18 Electric Forces and Electric Fields
More informationChapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationCHAPTER 24 GAUSS S LAW
CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 440 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 440 4. From the direction of the lines of force (away from positive and toward
More informationExam 1 Practice Problems Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical
More informationElectromagnetism  Lecture 2. Electric Fields
Electromagnetism  Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric
More informationPhysics 202, Lecture 3. The Electric Field
Physics 202, Lecture 3 Today s Topics Electric Field Quick Review Motion of Charged Particles in an Electric Field Gauss s Law (Ch. 24, Serway) Conductors in Electrostatic Equilibrium (Ch. 24) Homework
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More informationVector surface area Differentials in an OCS
Calculus and Coordinate systems EE 311  Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationSolution. Problem. Solution. Problem. Solution
4. A 2g pingpong ball rubbed against a wool jacket acquires a net positive charge of 1 µc. Estimate the fraction of the ball s electrons that have been removed. If half the ball s mass is protons, their
More information( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q =  4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
More informationPhysics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings
1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library
More informationCHAPTER 26 ELECTROSTATIC ENERGY AND CAPACITORS
CHAPTER 6 ELECTROSTATIC ENERGY AND CAPACITORS. Three point charges, each of +q, are moved from infinity to the vertices of an equilateral triangle of side l. How much work is required? The sentence preceding
More informationThe Electric Field. Electric Charge, Electric Field and a Goofy Analogy
. The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it
More informationarxiv:1111.4354v2 [physics.accph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.accph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
More informationHW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely
More information6 J  vector electric current density (A/m2 )
Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J  vector electric current density (A/m2 ) M  vector magnetic current density (V/m 2 ) Some problems
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationElectrostatic Fields: Coulomb s Law & the Electric Field Intensity
Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University
More informationChapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces  Magnetism  Magnetic Field  Magnetic Field Lines and Magnetic Flux  Motion of Charged Particles in a Magnetic Field  Applications of Motion of Charged
More informationAs customary, choice (a) is the correct answer in all the following problems.
PHY2049 Summer 2012 Instructor: Francisco Rojas Exam 1 As customary, choice (a) is the correct answer in all the following problems. Problem 1 A uniformly charge (thin) nonconucting ro is locate on the
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationExercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F
Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The
More informationNotes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
More informationConceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
More informationForces between charges
Forces between charges Two small objects each with a net charge of Q (where Q is a positive number) exert a force of magnitude F on each other. We replace one of the objects with another whose net charge
More informationChapter 7: Polarization
Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces
More informationChapter 20 Electrostatics and Coulomb s Law 20.1 Introduction electrostatics. 20.2 Separation of Electric Charge by Rubbing
I wish to give an account of some investigations which have led to the conclusion that the carriers of negative electricity are bodies, which I have called corpuscles, having a mass very much smaller than
More informationElasticity Theory Basics
G22.3033002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
More informationFaraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...1010.1.1 Magnetic Flux...103 10.1. Lenz s Law...105 10. Motional EMF...107 10.3 Induced Electric Field...1010 10.4 Generators...101
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationGauss Formulation of the gravitational forces
Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative
More informationThe Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
More informationThe purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 171 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
More informationCLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 1: Mechanics
CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 1: Mechanics MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use nonprogrammable calculators. 3. You may
More informationLecture 5. Electric Flux and Flux Density, Gauss Law in Integral Form
Lecture 5 Electric Flux and Flux ensity, Gauss Law in Integral Form ections: 3.1, 3., 3.3 Homework: ee homework file LECTURE 5 slide 1 Faraday s Experiment (1837), Flux charge transfer from inner to outer
More informationELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationExam 2 Practice Problems Part 1 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z
More informationProblem 1 (25 points)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular
More informationMagnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More informationv w is orthogonal to both v and w. the three vectors v, w and v w form a righthanded set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationm i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
More informationPhysics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
More informationChapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.
Chapter 23 Electric Potential 231 Electrostatic Potential Energy and Potential Difference The electrostatic force is conservative potential energy can be defined. Change in electric potential energy is
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationChapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
More information1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?
CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 33, with
More informationChapter 21. Magnetic Forces and Magnetic Fields
Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.
More informationMagnetostatics (Free Space With Currents & Conductors)
Magnetostatics (Free Space With Currents & Conductors) Suggested Reading  Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary
More informationCharges, voltage and current
Charges, voltage and current Lecture 2 1 Atoms and electrons Atoms are built up from Positively charged nucleus Negatively charged electrons orbiting in shells (or more accurately clouds or orbitals) 
More informationChapter 19: Magnetic Forces and Fields
Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires
More informationMagnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets
More informationQuiz: Work and Energy
Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with
More informationVersion 001 Electrostatics I tubman (12125) 1
Version 001 Electrostatics I tubman (115) 1 This printout should have 13 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. AP EM 1993 MC 55
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationFields. 1.1 Action at a Distance versus Field Theory
Chapter 1 Fields 1.1 Action at a Distance versus Field Theory...11. Scalar Fields...13 Example 1.1: HalfFrozen /HalfBaked Planet...15 1..1 Representations of a Scalar Field...15 1.3 Vector Fields...17
More informationOrbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
More informationPhysics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope
Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets
More informationMagnetic Field of a Circular Coil Lab 12
HB 112607 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationMath 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
More informationChapter 22 Magnetism
22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field
More information( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
More informationExam 2 Practice Problems Part 2 Solutions
Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially
More informationCLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism
CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use nonprogrammable calculators.
More information1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D
Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationElectric Field Examples. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 6B lectric Field amples For ampus Learning Assistance Services at USB 7. Two point charges are located on the ais as follows: charge q +4 n at position 0.m and charge q +5 n at position 0.3m.
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationD Alembert s principle and applications
Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in
More informationLab 4: Magnetic Force on Electrons
Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is
More informationMagnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
More informationF B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.
PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet
More informationCBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
More informationELECTROSTATICS I ELECTRIC FIELD AND SCALAR POTENTIAL
Chapter ELECTROSTATICS I ELECTRIC FIELD AND SCALAR POTENTIAL. Introduction Atoms and molecules under normal circumstances contain eual number of protons and electrons to maintain macroscopic charge neutrality.
More informationChapter 1 Units, Physical Quantities, and Vectors
Chapter 1 Units, Physical Quantities, and Vectors 1 The Nature of Physics Physics is an experimental science. Physicists make observations of physical phenomena. They try to find patterns and principles
More informationElectromagnetism Extra Study Questions Short Answer
Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of
More informationRepresenting Vector Fields Using Field Line Diagrams
Minds On Physics Activity FFá2 5 Representing Vector Fields Using Field Line Diagrams Purpose and Expected Outcome One way of representing vector fields is using arrows to indicate the strength and direction
More informationState of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
More informationLet s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
More informationAmpere s magnetic circuital law: a simple and rigorous twostep proof
Ampere s magnetic circuital law: a simple and rigorous twostep proof K. C. Rajaraman Department of Electrical and Communication Engineering, Institut Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationForce on a square loop of current in a uniform Bfield.
Force on a square loop of current in a uniform Bfield. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
More informationCHARGED PARTICLES & MAGNETIC FIELDS  WebAssign
Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS  WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields
More information11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline
More informationMATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
More informationElectric Fields in Dielectrics
Electric Fields in Dielectrics Any kind of matter is full of positive and negative electric charges. In a dielectric, these charges cannot move separately from each other through any macroscopic distance,
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationphysics 112N magnetic fields and forces
physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro magnetism! is there a connection between electricity
More information