# Mathematics Chapter 8 and 10 Test Summary 10M2

Save this PDF as:

Size: px
Start display at page:

Download "Mathematics Chapter 8 and 10 Test Summary 10M2"

## Transcription

2 In general, if the coefficient of x 2 is positive, the parabola is concave up, and if the coefficient of x 2 is negative, the parabola is concave down. The effect of the constant term The effect of the constant term c on the graph of y = ±x 2 + c is to move the parabola up or down. y = x 2 y = x 2 4 The effect of the coefficient of x 2 For the graph of y = ax 2 the size of a (the coefficient of x 2 ) determines whether the parabola is wide or narrow. y = 1 10 x2 y = x 2 As the size of a increases, the graph of the parabola becomes narrower and as the size of a decreases, the graph of the parabola widens. Page 2

3 The parabola y = (x k) 2 The effect of the constant k on the graph of y = (x k) 2 is to move the parabola to the right if k is positive and to the left if k is negative. y = x 2 y = (x 3) 2 The graph of y = a(x k) 2 + h The graph of the equation y = a(x k) 2 + h is a parabola with vertex (k, h). If a > 0 the parabola is concave up, and if a < 0 the curve is concave down. y = a(x k) 2 + h, a > 0 (k, h) x = k The equation of the axis of symmetry is x = k and the minimum or maximum value of y is h. Page 3

4 The general form of the quadratic relationship The equation y = a(x k) 2 + h is sometimes called the vertex form of the quadratic relationship of parabola. This equation can be expanded and simplified to give the general form of the quadratic relationship. The general form of the quadratic relationship is y = ax 2 + bx + c where a, b and c are real numbers and a! 0. The graph of this relationship is a parabola. The axis of symmetry of a parabola If the equation of a parabola is in the general form y = ax 2 + bx + c, the equation of its axis of symmetry is x = b 2a. a > 0 The minimum or maximum value os found by substituting x = b in the equation of the 2a parabola. x = b Solving quadratic equations The general form of a quadratic relationship of a parabola is y = ax 2 + bx + c. The intersection of a parabola and a straight line The number of solutions to a quadratic equation is the same as the number of points of intersection between the corresponding parabola and straight line. Example: To solve x 2 6x + 5 = 0, we can rewrite the equation as x 2 = 6x 5 and then draw the graphs of y = x 2 and y = 6x 5. The intersection of a parabola and the x-axis The number of real solutions to a quadratic equation is the same as the number of intercepts the corresponding parabola has with the x-axis. Page 4

5 Solving quadratic equations by factorising When solving quadratic equations by factorising, the following property is used: If pq = 0 where p and q are any real numbers, then p = 0 or q = 0 or p = q = 0. Solving quadratic equations by factorising involves three steps: 1. Arrange the quadratic equation in the form ax 2 + bx + c = Factorise (into a product of two terms). 3. Use the property that if pq = 0, then p = 0 or q = 0. Solving quadratic equations by completing the square Quadratic equations can be solved by using the method called completing the square. (This method can also be used to find the vertex or turning point of a parabola.) The method of completing the square depends on the following results for perfect squares: (x + a) 2 = x 2 + 2ax + a 2 (x a) 2 = x 2 2ax + a 2 Example: Solve x 2 + 6x Move the constant term to the right-hand side. â x 2 + 6x = 7 2. Divide by the coefficient of x 2. x 2 + 6x = 7 3. Halve the coefficient of x, square it and then add the square to both sides. x 2 + 6x = â x 2 + 6x + 9 = 2 4. Express the LHS as a perfect square. (x + 3) 2 = 2 5. Solve the resulting equation. x + 3 = ± 2 (taking the square root of both sides) x = 3 ± 2 â x = or x = 3 2 â x 1.59 or x 4.41 (expressing the answer correct to 2 decimal places) Example: Find the coordinates of the vertex of the parabola with equation y = 2x 2 + 4x 7 using the method of completing the square. y = 2x 2 + 4x 7 = 2 x 2 + 2x 7 2 = 2 (x 2 + 2x + 1) = 2 (x + 1) Page 5

6 = 2(x + 1) 2 2 % 9 2 â y = 2(x + 1) 2 9 â Coordinates of the vertex are ( 1, 9). Solving quadratic equations by using the quadratic formula The quadratic formula for ax 2 + bx + c = 0 is: x = b ± b2 4ac 2a Page 6

7 Graphs The world is always changing and we are constantly trying to find models that will describe the change. One way of describing this change is by using graphs. A mathematical model is a device (such as a formula) that describes, in mathematical terms, some natural phenomenon. This model is then used to produce information about that phenomenon. Some of the many areas in which modelling is applied include traffic flow, the flow of money in the economy, the effectiveness of medical treatments, space travel, electrical networks and weather forecasting. Modelling: A way of describing change We can use mathematical models to describe change. When we try to apply mathematics to the real world, we often produce a mathematical description of some kind to help solve practical problems. This technique is called mathematical modelling. This mathematical description may be a formula that expresses the relationship between two variables, or it may be a graph which illustrates (or approximates) the relationship. The model can be a: Formula Table of values Graph Variables When using graphs to show how two quantities are related, the quantities are referred to as variables because they change or vary. Speed graphs Speed graphs are line graphs that show how speed and time are related. Features of speed graphs: If the line in the graph is horizontal, the speed is constant. If the line rises with time, speed is increasing. If the line falls with time, speed is decreasing. The straight line The general form of a linear equation is ax + by + c = 0, where a, b and c are integers. The gradient intercept form of a linear equation is y = mx + b where m is the gradient and b is the y-intercept. The graph of a linear equation is a straight line. Page 7

8 Lines of best fit Graphs are often drawn using the results from practical situations and experiments. The line that best describes the results is called the line of best fit. The parabola The general form of the equation of a parabola is y = ax 2 + bx + c where a, b and c are real numbers and a! 0. The equation of the parabola may also be expressed in the form y = a(x k) 2 + h where (k, h) is the vertex of the parabola. y = ax 2 + bx + c y = ax 2 + bx + c a > 0 a < 0 Exponential graphs The general exponential equation is: y = a x where a > 0. x is called the exponent (power) of a in the expression a x. Features of exponential graphs: The y-intercept is 1 since a 0 = 1. As x approaches a large negative number, a x approaches zero. This means the graph of y = a x approaches the x-axis as x approaches a large nagative number. We usually write: As x t, a x t 0. As x approaches a large positive number, a x becomes very large. This is written: As x t, a x t. Graphically, this means the graph of y = a x increases very rapidly. In the graph y = a x + k, k moves the graph up if positive and the graph down if it negative. In the graph y = b % a x, where b > 0, the y-intercept of the graph y = b % a x is b; also the graph increases more rapidly if b > 1 and less rapidly if 0 < b < 1. Page 8

9 The reflection of y = a x in the y-axis is y = a x. The reflection of y = a x in the x-axis is y = a x. When y = a (x b), For b > 0, the exponential graph slides b units to the right along x-axis. For b < 0, the exponential graph slides b units to the left. Asymptotes A line that a graph approaches but never touches is called an asymptote. Hyperbola If y varies inversely with x, y } 1 x â y = k, where k is called the constant of variation. x This equation may also be written as xy = k. The graph of the equation y = k x is called a hyperbola. The general equation for the graph of a hyperbola is: y = k x, k! 0. Features of the hyperbola: The graph of y = k is discontinuous at x = 0. x The graph has 2 parts or branches. The graph as two axes of symmetry. Their equations are y = x and y = x. The graph has 2 asymptotes, which are the x-axis and the y-axis. The equation may also be written as xy = k, k! 0. In y = 1 x + 1, the + 1 moves y = 1 1 unit up the y axis. x 1 In y = x 1, y = 1 is moved 1 unit to the right along the y-axis. x Page 9

10 Equation of the circle The equation of the circle, centre (p, q) radius r is: (x p) 2 + (y q) 2 = r 2 The equation of a circle, centre (0, 0) and radius r units, is: x 2 + y 2 = r 2 The graph of y = r 2 x 2 is a semicircle above the x-axis. The graph of y = r 2 x 2 is a semicircle below the x-axis. Page 10

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Graphing Quadratic Functions

Graphing Quadratic Functions In our consideration of polynomial functions, we first studied linear functions. Now we will consider polynomial functions of order or degree (i.e., the highest power of x

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### ) represents the original function, will a, r 1

Transformations of Quadratic Functions Focus on Content: Download Problem Sets Problem Set #1 1. In the graph below, the quadratic function displayed on the right has been reflected over the y-axis producing

### CH 9. Quadratic Equations and Functions

9.1: Graph 9.2: Graph 9.3: Solve Quadratic Equations by Graphing 9.4: Use Square Roots to Solve Quadratic Equations 9.5: Solve Quadratic Equations by Completing the Square 9.6: Solve Quadratic Equations

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### 7. The solutions of a quadratic equation are called roots. SOLUTION: The solutions of a quadratic equation are called roots. The statement is true.

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The axis of symmetry of a quadratic function can be found by using the equation x =. The

### 3.1. Quadratic Equations and Models. Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models

3.1 Quadratic Equations and Models Quadratic Equations Graphing Techniques Completing the Square The Vertex Formula Quadratic Models 3.1-1 Polynomial Function A polynomial function of degree n, where n

### Pre-Calculus III Linear Functions and Quadratic Functions

Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

### Quadratic Functions and Models

Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write

### N.CN.7, A.CED.1, 2, 3, N.Q.2, A.SSE.1,

Learning Targets: I can solve interpret key features of quadratic functions from different form. I can choose a method to solve, and then, solve a quadratic equation and explain my reasoning. #1 4 For

### Objective 1: Identify the characteristics of a quadratic function from its graph

Section 8.2 Quadratic Functions and Their Graphs Definition Quadratic Function A quadratic function is a second-degree polynomial function of the form, where a, b, and c are real numbers and. Every quadratic

### Key Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)

Outcome R3 Quadratic Functions McGraw-Hill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Pre-Calculus 20 Chapter 3 Notes

Section 3.1 Quadratic Functions in Vertex Form Pre-Calculus 20 Chapter 3 Notes Using a table of values, graph y = x 2 y x y=x 2-2 4-2 4 x Using a table of values, graph y = -1x 2 (or y = -x 2 ) y x y=-x

### Quadratic Function Parabola Shape

Axis of Symmetry MA 158100 Lesson 8 Notes Summer 016 Definition: A quadratic function is of the form f(x) = y = ax + bx + c; where a, b, and c are real numbers and a 0. This form of the quadratic function

### CCSS: N.CN.7: Solve quadratic equations with real coefficients that have complex solutions

4.5 Completing The Square 1) Solve quadratic equations using the square root property 2) Generate perfect square trinomials by completing the square 3) Solve quadratic equations by completing the square

9.11 Quadratics - Graphs of Quadratics Objective: Graph quadratic equations using the vertex, x-intercepts, and y-intercept. Just as we drew pictures of the solutions for lines or linear equations, we

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

2.1 QUADRATIC FUNCTIONS AND MODELS Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results

### f is a parabola whose vertex is the point (h,k). The parabola is symmetric with

Math 1014: Precalculus with Transcendentals Ch. 3: Polynomials and Rational Functions Sec. 3.1 Quadratic Functions I. Quadratic Functions A. Definition 1. A quadratic function is a function of the form

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Lesson 36 MA 152, Section 3.1

Lesson 36 MA 5, Section 3. I Quadratic Functions A quadratic function of the form y = f ( x) = ax + bx + c, where a, b, and c are real numbers (general form) has the shape of a parabola when graphed. The

### Graphing Quadratics using Transformations 5-1

Graphing Quadratics using Transformations 5-1 5-1 Using Transformations to Graph Quadratic Functions Warm Up For each translation of the point ( 2, 5), give the coordinates of the translated point. 1.

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### 5.4 The Quadratic Formula

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### This is Conic Sections, chapter 8 from the book Advanced Algebra (index.html) (v. 1.0).

This is Conic Sections, chapter 8 from the book Advanced Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/)

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Test Bank Exercises in. 7. Find the intercepts, the vertical asymptote, and the slant asymptote of the graph of

Test Bank Exercises in CHAPTER 5 Exercise Set 5.1 1. Find the intercepts, the vertical asymptote, and the horizontal asymptote of the graph of 2x 1 x 1. 2. Find the intercepts, the vertical asymptote,

### The Quadratic Formula

Definition of the Quadratic Formula The Quadratic Formula uses the a, b and c from numbers; they are the "numerical coefficients"., where a, b and c are just The Quadratic Formula is: For ax 2 + bx + c

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### 5-1. Lesson Objective. Lesson Presentation Lesson Review

5-1 Using Transformations to Graph Quadratic Functions Lesson Objective Transform quadratic functions. Describe the effects of changes in the coefficients of y = a(x h) 2 + k. Lesson Presentation Lesson

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Section 2.3. Learning Objectives. Graphing Quadratic Functions

Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### Rockhurst High School Algebra 1 Topics

Rockhurst High School Algebra 1 Topics Chapter 1- Pre-Algebra Skills Simplify a numerical expression using PEMDAS. Substitute whole numbers into an algebraic expression and evaluate that expression. Substitute

### with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Chapter R - Basic Algebra Operations (69 topics, due on 05/01/12)

Course Name: College Algebra 001 Course Code: R3RK6-CTKHJ ALEKS Course: College Algebra with Trigonometry Instructor: Prof. Bozyk Course Dates: Begin: 01/17/2012 End: 05/04/2012 Course Content: 288 topics

### TEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations.

Objectives Define, identify, and graph quadratic functions. Identify and use maximums and minimums of quadratic functions to solve problems. Vocabulary axis of symmetry standard form minimum value maximum

### The Parabola and the Circle

The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola - A parabola is the set of all points (h, k) that are equidistant from

### 9.1 Solving Quadratic Equations by Finding Square Roots Objectives 1. Evaluate and approximate square roots.

9.1 Solving Quadratic Equations by Finding Square Roots 1. Evaluate and approximate square roots. 2. Solve a quadratic equation by finding square roots. Key Terms Square Root Radicand Perfect Squares Irrational

### Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under

Title: Graphing Quadratic Equations in Standard Form Class: Math 100 or 107 Author: Sharareh Masooman Instructions to tutor: Read instructions under Activity and follow all steps for each problem exactly

### This is Solving Equations and Inequalities, chapter 6 from the book Advanced Algebra (index.html) (v. 1.0).

This is Solving Equations and Inequalities, chapter 6 from the book Advanced Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Text: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)

Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,

### Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following:

Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots Name Period Objective 1: Understanding Square roots Defining a SQUARE ROOT: Square roots are like a division problem but both factors must

### MINI LESSON. Lesson 5b Solving Quadratic Equations

MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.

### + k, and follows all the same rules for determining. y x 4. = + c. ( ) 2

The Quadratic Function The quadratic function is another parent function. The equation for the quadratic function is and its graph is a bowl-shaped curve called a parabola. The point ( 0,0) is called the

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Precalculus Workshop - Functions

Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.

### This is Solving Quadratic Equations and Graphing Parabolas, chapter 9 from the book Beginning Algebra (index.html) (v. 1.0).

This is Solving Quadratic Equations and Graphing Parabolas, chapter 9 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### The graphs of quadratic functions are so popular that they were given their own name. They are called parabolas.

DETAILED SOLUTIONS AND CONCEPTS - QUADRATIC FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick Chapter 3 Test Review

Math 2: Algebra 2, Geometry and Statistics Ms. Sheppard-Brick 617.596.4133 http://lps.lexingtonma.org/page/2434 Name: Date: Students Will Be Able To: Chapter 3 Test Review Use the quadratic formula to

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Equations of Lines Derivations

Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

### Rationale/Lesson Abstract: Students will be able to solve a Linear- Quadratic System algebraically and graphically.

Grade Level/Course: Algebra 1 Lesson/Unit Plan Name: Linear- Quadratic Systems Rationale/Lesson Abstract: Students will be able to solve a Linear- Quadratic System algebraically and graphically. Timeframe:

### Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an

### What's Going On? Quiz Tomorrow. What's My Vertex? Find my Vertex! What's my y Intercept?

What's Going On? Quiz Tomorrow What's My Vertex? Find my Vertex! What's my y Intercept? Learning Goal I will understand how to find the zeros or x intercepts of a quadratic equation. 1 What's my Vertex?

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Assessment Schedule 2013

NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### The data is more curved than linear, but not so much that linear regression is not an option. The line of best fit for linear regression is

CHAPTER 5 Nonlinear Models 1. Quadratic Function Models Consider the following table of the number of Americans that are over 100 in various years. Year Number (in 1000 s) 1994 50 1996 56 1998 65 2000

### A Study Guide for. Students PREPARING FOR GRADE. Nova Scotia Examinations in Mathematics

A Study Guide for Students PREPARING FOR 12 GRADE Nova Scotia Examinations in Mathematics A Study Guide for Students PREPARING FOR 12 GRADE Nova Scotia Examinations in Mathematics For more information,

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### EL-9650/9600c/9450/9400 Handbook Vol. 1

Graphing Calculator EL-9650/9600c/9450/9400 Handbook Vol. Algebra EL-9650 EL-9450 Contents. Linear Equations - Slope and Intercept of Linear Equations -2 Parallel and Perpendicular Lines 2. Quadratic Equations

1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### What students need to know for... ALGEBRA II

What students need to know for... ALGEBRA II 2015-2016 NAME Students expecting to take Algebra II at Cambridge Rindge & Latin School should demonstrate the ability to... General: o Keep an organized notebook

### MATHS WORKSHOPS. Functions. Business School

MATHS WORKSHOPS Functions Business School Outline Overview of Functions Quadratic Functions Exponential and Logarithmic Functions Summary and Conclusion Outline Overview of Functions Quadratic Functions

### Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks

### (c) What values are the input of the function? (in other words, which axis?) A: The x, or horizontal access are the input values, or the domain.

Calculus Placement Exam Material For each function, graph the function by hand using point plotting. You must use a minimum of five points for each function. Plug in 0, positive and negative x-values for

### Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x

Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical

### Linear Equations Review

Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

### The domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or {y y 8}.

Use a table of values to graph each equation. State the domain and range. 1. y = 2x 2 + 4x 6 x y = 2x 2 + 4x 6 (x, y) 3 y = 2( 3) 2 + 4( 3) 6 = 0 ( 3,0) 2 y = 2( 2) 2 + 4( 2) 6 = ( 2, 6) 6 1 y = 2( 1)

### 1.2. Mathematical Models: A Catalog of Essential Functions

1.2. Mathematical Models: A Catalog of Essential Functions Mathematical model A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon

### 2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style

The straight line 2.7 Introduction Probably the most important function and graph that you will use are those associated with the straight line. A large number of relationships between engineering variables

### 4-7 Transformations of Quadratic Graphs. Write each function in vertex form. SOLUTION: ANSWER: y = (x + 3) SOLUTION: ANSWER: y = 2(x 2) 2 + 3

1. Write each function in vertex form. 4. MULTIPLE CHOICE Which function is shown in the graph? y = (x + 3) 2 7 2. A y = (x + 3) 2 + 6 B y = (x 3) 2 6 C y = 2(x + 3) 2 + 6 D y = 2(x 3) 2 6 From the figure,

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### 10.1 Notes-Graphing Quadratics

Name: Period: 10.1 Notes-Graphing Quadratics Section 1: Identifying the vertex (minimum/maximum), the axis of symmetry, and the roots (zeros): State the maximum or minimum point (vertex), the axis of symmetry,

### Week 1: Functions and Equations

Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

### Math Review Large Print (18 point) Edition Chapter 2: Algebra

GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter : Algebra Copyright 010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### TEKS 2A.7.B Quadratic and square root functions: investigate the effects of changes in a, h, and k on the graphs of y = a (x - h) 2 + k.

x -2-1 0 1 2 5-1 Using Transformations to Graph Quadratic Functions TEKS 2A.7.B Quadratic and square root functions: investigate the effects of changes in a, h, and k on the graphs of y = a (x - h) 2 +

### Quadratic Functions. Teachers Teaching with Technology. Scotland T 3. Symmetry of Graphs. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Quadratic Functions Symmetry of Graphs Teachers Teaching with Technology (Scotland) QUADRATIC FUNCTION Aim To

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize