# In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form)."

## Transcription

1

6 Lesson How can I find the product? Introduction to Factoring Quadratics Lesson Objective: Students will review how to build rectangles with tiles and will learn shortcuts for finding the dimensions of a completed generic rectangle. Students will discover that the products of the terms in each diagonal of a generic rectangle are equal. Length of Activity: One day (approximately 50 minutes) Core Problems: Problems 8-1 through 8-5 Ways of Thinking: Materials: Suggested Lesson Activity: Reversing thinking, generalizing, justifying Algebra tiles Note: When algebra tiles is listed anywhere as a necessary material, please be prepared with: Algebra tiles, enough for each student or pair of students Cornerpiece, one per student or pair of students Overhead algebra tiles and cornerpiece for teacher use General Team Roles transparency (optional) Note: The General Team Roles transparency is the Lesson Resource Page ( General Team Roles ). It is listed as an optional resource throughout many lessons in the rest of the text. When you see General Team Roles transparency listed, it is always the Lesson Resource Page that is being referred to. Have a student volunteer read the lesson introduction. Then have teams start problem 8-1 as a warm-up. This problem asks students to review what they learned in Chapter 5. After about five minutes, move teams on to problem 8-2, which asks students to factor expressions using algebra tiles to investigate whether a sum can always be written as a product. This will help students recognize that not all expressions are factorable. Also, the act of building composite rectangles with algebra tiles will strengthen students understanding of the factoring process that will be introduced in Lesson Specifically, students will need to understand the options for splitting the x-tiles between the two corners of the rectangle. To ensure that there is enough time for problems 8-4 and 8-5, stop teams after 20 minutes. Then teams should move on to problem 8-3, which has students focus on finding the dimensions of a completed generic rectangle. As you circulate, emphasize that students should look for special strategies to find the dimensions. After 10 minutes, pull the class together and ask students to share any shortcuts they discovered. Students may notice that each 608 Algebra Connections

7 dimension is the greatest common factor (GCF) of its corresponding row or column, demonstrated in the diagram at right. Note that this is true when the quadratic expression does not have a common factor. Students will examine what happens when a quadratic has a common factor in Lesson As teams finish, have them post solutions on the board for others to check. Leave the solutions on the board so that they can be used during closure. Color-coding work can help some students keep track of the different parts of the quadratic. For example, writing all x 2 -terms in blue, all x-terms in red, and all constants in green (in both the expression and in the generic rectangle) can help students see how the parts in the generic rectangle relate to the expression. See the example at right. Finally, problem 8-4 asks students to recognize that the product of the terms of a generic rectangle s diagonal equals the product of the terms in the other diagonal. This is an important pattern that will later help students develop an algorithm for factoring quadratics without algebra tiles. blue +1 3x 2x 5 6x 2 2x +5 6x 2 +17x + 5 6x 2 red 2x 5 15x 15x green Closure: (10 minutes) Team Roles: Either individually or as a class, have students respond to problem 8-5, which asks them to write a description of the diagonals pattern introduced in problem 8-4. Be sure that all students not only recognize the pattern, but also test the pattern on the other generic rectangles in problem 8-3. A Math Notes box proving that the pattern always works is not offered until Lesson so that students will not have the pattern in front of them while they try to discover it on their own. However, once students have found the pattern, there is no harm in proving this pattern for closure. If you have not changed your teams or roles recently, you may want to start this chapter with a new seating chart. Remind team members of their roles using the General Team Roles transparency from Chapter 7. Emphasize the need for Facilitators to keep teams together in problem 8-2. Some good phrases for Facilitators to use are, Did everyone get? and Are we all ready to move on? Resource Managers will not only need to get the algebra tiles for the team, but they will also be responsible for making sure the tiles are returned in complete sets. Homework: Problems 8-6 through 8-11 Chapter 8: Quadratics 609

8 8.1.1 How can I find the product? Introduction to Factoring Quadratics Student pages for this lesson are In Chapter 5 you learned how to multiply algebraic expressions using algebra tiles and generic rectangles. This section will focus on reversing this process: How can you find a product when given a sum? 8-1. Review what you know about products and sums below. a. Write the area of the rectangle at right as a product and as a sum. Remember that the product represents the area found by multiplying the length by the width, while the sum is the result of adding the areas inside the rectangle. [ (x + 4)(y + x + 2) = xy + x 2 + 6x + 4 y + 8 ] x y x b. Use a generic rectangle to multiply (6x!1)(3x + 2). Write your solution as a sum. [ 18x 2 + 9x! 2 ] 8-2. The process of changing a sum to a product is called factoring. Can every expression be factored? That is, does every sum have a product that can be represented with tiles? Investigate this question by building rectangles with algebra tiles for the following expressions. For each one, write the area as a sum and as a product. If you cannot build a rectangle, be prepared to convince the class that no rectangle exists (and thus the expression cannot be factored). [ a: (2x + 3)(x + 2), b: (2x + 1)(3x + 2), c: no solution, d: (2x + y)(y + 3) ; Conclusion: Not every expression can be factored. ] a. 2x 2 + 7x + 6 b. 6x 2 + 7x + 2 c. x 2 + 4x +1 d. 2xy + 6x + y 2 + 3y 610 Algebra Connections

9 8-3. Work with your team to find the sum and the product for the following generic rectangles. Are there any special strategies you discovered that can help you determine the dimensions of the rectangle? Be sure to share these strategies with your teammates. [ a: (3x +1)(2x + 5) = 6x x + 5, b: (5x! 2)(y + 3) = 5xy +15x! 2y! 6, c: (4x! 3)(3x + 4) = 12x 2 + 7x! 12 ] a. b. c. 2x 5!2y!6!9 x!12 6x 2 15x 5xy 15x 12x 2 16x 8-4. While working on problem 8-3, Casey noticed a pattern with the diagonals of each generic rectangle. However, just before she shared her pattern with the rest of her team, she was called out of class! The drawing on her paper looked like the diagram below. Can you figure out what the two diagonals have in common? [ The product of each diagonal is equal: 6x 2! 5 = 30x 2 and 2x!15x = 30x 2. ] 2x 5 6x 2 15x 8-5. Does Casey s pattern always work? Verify that her pattern works for all of the 2-by-2 generic rectangles in problem 8-3. Then describe Casey s pattern for the diagonals of a 2-by-2 generic rectangle in your Learning Log. Be sure to include an example. Title this entry Diagonals of a Generic Rectangle and include today s date. [ Diagonals: part (a) are both 30x 2, part (b) are both!30xy, part (c) are both!144x 2. Students should state that this pattern always works and describe the pattern in their own words. Typical response: The product of one diagonal always equals the product of the other diagonal. ] Chapter 8: Quadratics 611

10 ETHODS AND MEANINGS MATH NOTES New Vocabulary to Describe Algebraic Expressions Since algebraic expressions come in many different forms, there are special words used to help describe these expressions. For example, if the expression can be written in the form ax 2 + bx + c and if a is not 0, it is called a quadratic expression. Study the examples of quadratic expressions below. Examples of quadratic expressions: x 2! 15x m 2! 25 12! 3k 2 + 5k The way an expression is written can also be named. When an expression is written in product form, it is described as being factored. When factored, each of the expressions being multiplied is called a factor. For example, the factored form of x 2! 15x + 26 is (x!13)(x! 2), so x!13 and x! 2 are each factors of the original expression. Finally, the number of terms in an expression can help you name the expression to others. If the expression has one term, it is called a monomial, while an expression with two terms is called a binomial. If the expression has three terms, it is called a trinomial. Study the examples below. Examples of monomials: 15xy 2 and!2m Examples of binomials: 16m 2! 25 and 7h h Examples of trinomials: 12! 3k 2 + 5k and x 2! 15x Write the area of the rectangle at right as a sum and as a product. [ (2x! 3)(x + 2y! 4) = 2x 2 + 4xy! 11x! 6y + 12 ]!3x!6y 2x 2 4xy 12!8x 612 Algebra Connections

11 8-7. Multiply the expressions below using a generic rectangle. Then verify Casey s pattern (that the product of one diagonal equals the product of the other diagonal). [ a: 12x x! 5, b: 4x 2! 28x + 49 ] a. (4x!1)(3x + 5) b. (2x! 7) Remember that a Diamond Problem is a pattern for which the product of two numbers is placed on top, while the sum of the same two numbers is placed on bottom. (This pattern is demonstrated in the diamond at right.) Copy and complete each Diamond Problem below. [ Find solutions in the diamonds below. ] x xy x+y y a. b. c. d e. f. 6x 2 2x 3x 5x!7x 2 7x x 6x 8-9. For each line below, name the slope and y-intercept. [ a: m = 2, (0,!! 1 2) ; b: m =!3, (0,!!7) ; c: m =! 2 3, (0,!8) ; d: m = 0, (0,!!2) ] a. y =!1+4 x 2 b. 3x + y =!7 c. y =!2 3 x + 8 d. y =! On graph paper, graph y = x 2! 2x! 8. a. Name the y-intercept. What is the connection between the y-intercept and the rule y = x 2! 2x! 8? [ (0, 8); It is the constant in the equation. ] b. Name the x-intercepts. [ ( 2, 0) and (4, 0); Students may notice that the product of the x-intercepts equals the constant term. ] c. Find the lowest point of the graph, the vertex. [ (1, 9); Its x-coordinate is midway between the x-intercepts. ] Calculate the value of each expression below. [ a:!1, b:! 7.24, c:! " 4.24 ] a. 5! 36 b c.!2! 5 Chapter 8: Quadratics 613

12 Lesson Is there a shortcut? Factoring with Generic Rectangles Lesson Objective: Students will develop an algorithm to factor quadratic expressions without algebra tiles. Length of Activity: One day (approximately 50 minutes) Core Problems: Ways of Thinking: Materials: Suggested Lesson Activity: Problems 8-12 through 8-15 (parts (a) and (b)) Making connections, generalizing Algebra tiles Introduce today s lesson and use problem 8-12 as a quick warm-up for students to review what they learned in Lesson Although problem 8-13 is written so that students can investigate factoring in teams, it is recommended that it instead be used as an outline for a whole-class discussion. For part (a), have students build a composite rectangle with tiles in order to factor (as shown in the diagram at right). Then, as a class, figure out how to split the 10 x-terms in the generic rectangle for part (b). At this point, expect students to guess and check how to place the x-terms into the rectangle so that it is factorable. For example, they may first try to split the 10 x-terms by placing 5x into each corner. However, when finding the dimensions, they will quickly learn that there are no dimensions that, when multiplied, will create that generic rectangle. Let students struggle for a bit, as this will help them appreciate the use of the Diamond 8 Problems later. Have overhead 3x algebra tiles ready to demonstrate 2 all of the different combinations for 10x and to verify the solution. At this point we expect that students will be glad to find a shortcut that will help them decide how to split the x-term in the generic rectangle. Part (c) hints that Casey s pattern can help factor another trinomial, 2x 2 + 7x + 6. Specifically, we know that the product of the two missing terms equals the product of the terms on the other diagonal (6 and 2x 2 ), based on the pattern introduced in problem 8-4. Also, the number of x-tiles that are placed in opposite corners of a generic rectangle must add up to the total number of x-tiles in the original expression (which, in this case, is 7x).? 2x 2 6? x x x 614 Algebra Connections

13 Part (d) of problem 8-13 points out that since students know the sum and product of the two missing terms, they can create and solve a Diamond Problem (see diagram at right) to find the missing terms in the generic rectangle. Once the generic rectangle is complete, students can find common factors in rows and columns to find the dimensions of the generic rectangle. To recap, this four-step process will help students factor all factorable quadratic expressions: 1. Place the x 2 -terms and constant terms of the quadratic expression in opposite corners of the generic rectangle. Determine the sum and product of the two remaining corners: The sum is simply the x-term of the quadratic expression, while the product is equal to the product of the x 2 -terms and constant terms. 2. Place this sum and product into a Diamond Problem and solve. 3. Place the solutions from the Diamond Problem into the generic rectangle and find the dimensions of the generic rectangle. 4. Write the answer as a product. product 12x 2 Problem 8-14 offers teams a chance to recap the factoring process. Then students practice using this factoring method in problem Note that part (d) of problem 8-15 is not factorable. 7x sum Closure: (5 minutes) Pull the class together and point out that students have accomplished an important goal: They have developed an algorithm to factor quadratics without algebra tiles. Have a few student volunteers recap the factoring process. Ask questions that help students justify statements, such as, Why do you multiply the x 2 -term with the units term and place that at the top of the Diamond Problem? Homework: Problems 8-16 through Is there a shortcut? Factoring with Generic Rectangles Student pages for this lesson are Since mathematics is often described as the study of patterns, it is not surprising that generic rectangles have many patterns. You saw one important pattern in Lesson (Casey s pattern from problem 8-4). Today you will continue to use patterns while you develop a method to factor trinomial expressions. Chapter 8: Quadratics 615

14 8-12. Examine the generic rectangle shown at right. a. Review what you learned in Lesson by writing the area of the rectangle at right as a sum and as a product. [ (5x! 2)(2x! 7) = 10x 2! 39x + 14 ]!35x 14 10x 2! 4x b. Does this generic rectangle fit Casey s pattern for diagonals? Demonstrate that the product of each diagonal is equal. [!35x "! 4x = 10x 2 "14 = 140x 2 ] FACTORING QUADRATICS To develop a method for factoring without algebra tiles, first study how to factor with algebra tiles, and then look for connections within a generic rectangle. a. Using algebra tiles, factor 2x 2 + 5x + 3 ; that is, use the tiles to build a rectangle, and then write its area as a product. [ (2x + 3)(x +1) ] b. To factor with tiles (like you did in part (a)), you need to determine how the tiles need to be arranged to form a rectangle. Using a generic rectangle to factor requires a different process. Miguel wants to use a generic rectangle to factor 3x x + 8. He knows that 3x 2 and 8 go into the rectangle in the locations shown at right. Finish the rectangle by deciding how to place the ten x-terms. Then write the area as a product. [ One corner should contain 4x, while the other should contain 6x ; (3x + 4)(x + 2). ] 3x 2 8 c. Kelly wants to find a shortcut to factor 2x 2 + 7x + 6. She knows that 2x 2 and 6 go into the rectangle in the locations shown at right. She also remembers Casey s pattern for diagonals. Without actually factoring yet, what do you know about the missing two parts of the generic rectangle? [ Their sum is 7x, and their product is 12x 2. ] d. To complete Kelly s generic rectangle, you need two x-terms that have a sum of 7x and a product of 12x 2. Create and solve a Diamond Problem that represents this situation. [ The product 12x 2 should be placed at the top of the diamond problem, 7x at the bottom, and terms 3x and 4x should be in the middle. ]? 6 2x 2? product sum e. Use your results from the Diamond Problem to complete the generic rectangle for 2x 2 + 7x + 6, and then write the area as a product of factors. [ (2x + 3)(x + 2) ] 616 Algebra Connections

15 8-14. Factoring with a generic rectangle is especially convenient when algebra tiles are not available or when the number of necessary tiles becomes too large to manage. Using a Diamond Problem helps avoid guessing and checking, which can at times be challenging. Use the process from problem 8-13 to factor 6x x The questions below will guide your process. a. When given a trinomial, such as 6x x + 12, what two parts of a generic rectangle can you quickly complete? [ One corner contains 6x 2, and the opposite corner contains 12. ] b. How can you set up a Diamond Problem to help factor a trinomial such as 6x x + 12? What goes on the top? What goes on the bottom? [ The product of the x 2 and units terms (in this case, 72x 2 ) goes on top, while the x-term (17x ) goes on bottom. ] c. Solve the Diamond Problem for 6x x + 12 and complete its generic rectangle. d. Write the area of the rectangle as a product. [ (2x + 3)(3x + 4) ] product sum Use the process you developed in problem 8-13 to factor the following quadratics, if possible. If a quadratic cannot be factored, justify your conclusion. [ a: (x + 3)(x + 6), b: (4x! 3)(x + 5), c: (2x! 3)(2x! 1), d: not factorable because there are no integers that multiply to get!9x 2 (the diagonal of the generic rectangle) and add to get 5x. ] a. x 2 + 9x +18 b. 4x 2 +17x!15 c. 4x 2!8x + 3 d. 3x 2 + 5x!3 MATH NOTES ETHODS AND MEANINGS Diagonals of Generic Rectangles Why does Casey s pattern from problem 8-4 work? That is, why does the product of the d ad bd terms in one diagonal of a 2-by-2 generic rectangle always equal the c ac bc product of the terms in the other diagonal? a b Examine the generic rectangle at right for (a + b)(c + d). Notice Product = abcd Product = abcd that each of the resulting diagonals have a product of abcd. Thus, the product of the terms in the diagonals are equal. Chapter 8: Quadratics 617

16 8-16. Use the process you developed in problem 8-13 to factor the following quadratics, if possible. [ a: (x! 6)(x + 2), b: (2x + 1) 2, c: (x! 5)(2x +1), d: (x + 4)(3x! 2) ] a. x 2! 4x!12 b. 4x 2 + 4x +1 c. 2x 2! 9x! 5 d. 3x 2 +10x! For each rule represented below, state the x- and y-intercepts, if possible. [ a: x-intercepts ( 1, 0) and (3, 0), y-intercept: (0, 3); b: x-intercept (2, 0), no y-intercept; c: x-intercepts ( 3, 0), ( 1, 0), and (1, 0), y-intercept (0, 2); d: x-intercept (8, 0), y-intercept (0, 20) ] a. b. c. d. 5x! 2y = 40 x y Graph y = x 2! 9 on graph paper. a. Name the y-intercept. What is the connection between the y-intercept and the rule y = x 2! 9? [ (0, 9); It is the constant in the equation. ] b. Name the x-intercepts. What is the connection between the x-intercepts and the rule y = x 2! 9? [ (3, 0) and ( 3, 0); Students may notice that the product of the x-intercepts equals the constant term. ] Find the point of intersection for each system. [ a: (6, 9), b: (0, 2) ] a. y = 2x! 3 x + y =15 b. 3x = y! 2 6x = 4! 2y 618 Algebra Connections

20 8-25. The multiplication table below has factors along the top row and left column. Their product is where the row and column intersect. With your team, complete the table with all of the factors and products. Multiply x! 2 2x + 1 x + 7 x 2 + 5x! 14 2x x + 7 3x + 1 3x 2! 5x! 2 6x 2 + 5x In your Learning Log, explain how to factor a quadratic expression. Be sure to offer examples to demonstrate your understanding. Include an explanation of how to deal with special cases, such as when a term is missing or when the terms are not in standard order. Title this entry Factoring Quadratics and include today s date. ETHODS AND MEANINGS MATH NOTES Standard Form of a Quadratic A quadratic expression in the form ax 2 + bx + c is said to be in standard form. Notice that the terms are in order from greatest exponent to least. Examples of quadratic expressions in standard form: 3m 2 + m!1, x 2! 9, and 3x 2 + 5x. Notice that in the second example, b = 0, while in the third example, c = The perimeter of a triangle is 51 cm. The longest side is twice the length of the shortest side. The third side is 3 cm longer than the shortest side. How long is each side? Write an equation that represents the problem and then solve it. [ s + 2s + s + 3 = 51 ; 12, 24, and 15 cm ] 622 Algebra Connections

21 8-28. Remember that a square is a rectangle with four equal sides. a. If a square has an area of 81 square units, how long is each side? [ 9 units ] b. Find the length of the side of a square with area 225 square units. [ 15 units ] c. Find the length of the side of a square with area 10 square units. [ 10 units ] d. Find the area of a square with side 11 units. [ 121 square units ] Factor the following quadratics, if possible. [ a: (k! 2)(k! 10), b: (2x + 7)(3x! 2), c: (x! 4) 2, d: (3m + 1)(3m!1) ] a. k 2!12k + 20 b. 6x 2 +17x!14 c. x 2! 8x +16 d. 9m 2! Examine the two equations below. Where do they intersect? [ (2, 5) ] y = 4x! 3 y = 9x! Find the equation of a line perpendicular to the one graphed at right that passes through the point (6, 2). [ y =!x + 8 ] Solve each equation below for x. Check each solution. [ a: 5, b: 6, c: 5 or 6, d:! 1 4, e: 8, f:! 1 4 or 8 ] a. 2x!10 = 0 b. x + 6 = 0 c. (2x!10)(x + 6) = 0 d. 4x +1 = 0 e. x! 8 = 0 f. (4 x +1)(x! 8) = 0 Chapter 8: Quadratics 623

23 Closure: (10 minutes) During the introduction of the lesson, students were told that while 12 can be rewritten as 3 4, as 2 6, as 1 12, or as 2 2 3, only is considered to be factored completely, since the factors are prime and cannot be factored themselves. For closure, connect this with the two solutions found for part (d) of problem 8-33: (3n + 3)(n + 2) and (n +1)(3n + 6). Neither of these expressions is completely factored, because each contains a binomial that can be factored further. It is also a good idea to point out that each of the answers for part (d) of problem 8-33 can be factored again to find the most factored form. For example, if 3n + 3 from (3n + 3)(n + 2) is factored, the end result is 3(n + 1)(n + 2). Likewise, if 3n + 6 from (n +1)(3n + 6) is factored, the result is the same. Although factoring out a common factor first often makes factoring easier by lowering the coefficients of the expression, it does not need to happen first. If students forget to factor out a common factor first, they can always factor it out later. Homework: Problems 8-37 through Can it still be factored? Factoring Completely Student pages for this lesson are There are many ways to write the number 12 as a product of factors. For example, 12 can be rewritten as 3 4, as 2 6, as 1 12, or as While each of these products is accurate, only is considered to be factored completely, since the factors are prime and cannot be factored themselves. During this lesson you will learn more about what it means for a quadratic expression to be factored completely Review what you have learned by factoring the following expressions, if possible. [ a: (3x! 2) 2, b: (9m + 1)(9m! 1), c: (x! 4)(x! 7), d: Students will probably get one of two possible answers: (3n + 3)(n + 2) or (n + 1)(3n + 6). ] a. 9x 2! 12x + 4 b. 81m 2! 1 c x 2! 11x d. 3n 2 + 9n + 6 Chapter 8: Quadratics 625

24 8-34. Compare your solutions for problem 8-33 with the rest of your class. a. Is there more than one factored form of 3n 2 + 9n + 6? Why or why not? [ Yes, because there are two different arrangements of tiles that build a rectangle. ] b. Why does 3n 2 + 9n + 6 have more than one factored form while the other quadratics in problem 8-33 only have one possible answer? Look for clues in the original expression ( 3n 2 + 9n + 6 ) and in the different factored forms. [ Because there is a common factor of 3 in each of the terms of the original expression and in one of the two binomials in either of the two partially factored forms. ] c. Without factoring, predict which quadratic expressions below may have more than one factored form. Be prepared to defend your choice to the rest of the class. [ (i) and (iii) both have common factors, so they could have more than one factored form. ] i. 12t 2! 10t + 2 ii. 5 p 2! 23p! 10 iii. 10x x! 15 iv. 3k 2 + 7k! FACTORING COMPLETELY In part (c) of problem 8-34, you should have noticed that each term in 12t 2! 10t + 2 is divisible by 2. That is, it has a common factor of 2. a. What is the common factor for 10x x! 15? [ 5 ] b. For an expression to be completely factored, each factor must have all common factors separated out. Sometimes it is easiest to do this first. Since 5 is a common factor of 10x x! 15, you can factor 10x x! 15 using a special generic rectangle, which is shown below. Find the length of this generic rectangle and write its area as a product of its length and width. [ 5(2x 2 + 5x! 3) ] 5 10x x! 15 c. Can the result be factored even more? That is, can either factor from the result from part (b) above also be factored? Factor any possible expressions and write your solution as a product of all three factors. [ Yes; 2x 2 + 5x! 3 can be factored as (2x!1)(x + 3). Therefore, the final factored form of 10x x! 15 is 5(2x! 1)(x + 3). ] 626 Algebra Connections

25 8-36. Factor each of the following expressions as completely as possible. [ a: 5(x + 4)(x!1), b: 3x(x + 3)(x! 5), c: 2(x + 5)(x! 5), d: y(x! 5)(x + 2) ] a. 5x 2 +15x! 20 b. 3x 3! 6x 2! 45x c. 2x 2! 50 d. x 2 y! 3xy!10y ETHODS AND MEANINGS MATH NOTES Review the process of factoring quadratics developed in problem 8-13 and outlined below. This example demonstrates how to factor 3x 2 +10x Place the x 2 - and constant terms of the quadratic expression in opposite corners of the generic rectangle. Determine the sum and product of the two remaining corners: The sum is simply the x-term of the quadratic expression, while the product is equal to the product of the x 2 - and constant terms. 2. Place this sum and product into a Diamond Problem and solve it. Factoring Quadratic Expressions 3x 2 6x 24x 2 10x 8 4x 3. Place the solutions from the Diamond Problem into the generic rectangle and find the dimensions of the generic rectangle. 4. Write your answer as a product: (3x + 4)(x + 2). 2 x 6x 3x 2 3x 8 4x Factor the quadratic expressions below. If the quadratic is not factorable, explain why not. [ a: (2x + 5)(x!1), b: (x! 3)(x + 2), c: (3x +1)(x + 4), d: It is not factorable because no integers have a product of 14 and a sum of 5. ] a. 2x 2 + 3x! 5 b. x 2! x! 6 c. 3x 2 +13x + 4 d. 2x 2 + 5x + 7 Chapter 8: Quadratics 627

26 8-38. A line has intercepts (4, 0) and (0, 3). Find the equation of the line. [ y = 3 4 x! 3 ] As Jhalil and Joman practice for the SAT, their scores on practice tests rise. Jhalil s current score is 850, and it is rising by 10 points per week. On the other hand, Joman s current score is 570 and is growing by 50 points per week. a. When will Joman s score catch up to Jhalil s? [ in 7 weeks ] b. If the SAT test is in 12 weeks, who will score highest? [ Joman will score more with 1170 points, while Jhalil will have 970. ] Mary says that you can find an x-intercept by substituting 0 for x, while Michelle says that you need to substitute 0 for y. a. Who, if anyone, is correct and why? [ Michelle is correct. One way to view this is graphically: The x-intercept always has a y-coordinate of 0 because it lies on the x-axis. ] b. Use the correct approach to find the x-intercept of! 4x + 5y = 16. [ ( 4, 0) ] Find three consecutive numbers whose sum is 138 by writing and solving an equation. [ 45, 46, 47; x + (x + 1) + (x + 2) = 138 ] Match each rule below with its corresponding graph. Can you do this without making any tables? Explain your selections. [ a: 2, b: 3, c: 1 ] a. y =!x 2! 2 b. y = x 2! 2 c. y =!x Algebra Connections

27 Lesson What do I know about a parabola? Investigating a Parabola Lesson Objective: Students will describe a parabola, using its intercepts, vertex, symmetry, and whether it is pointing up or down. Length of Activity: One day (approximately 50 minutes) Core Problems: Problem 8-43 Ways of Thinking: Materials: Suggested Lesson Activity: Generalizing, making connections Poster graph paper and markers OR overhead graph paper and overhead pens Have a student volunteer read the problem statement for problem 8-43, Functions of America. Be sure that all students understand the goals of this investigation. Describe your expectations for the team posters (such as being readable and full of mathematics). Emphasize that completed posters should address all four bullets in the student text. If you use team roles, you may want to discuss the importance of each student fulfilling his or her responsibility in their team. See suggestions in the Team Roles section below. Assign each team a parabola from the list below and get teams started on their investigation. Each parabola will offer new insights during presentations. See the notes below: y = x 2! 2x! 8 This parabola has x-intercepts at x = 4 and 2. Observations can be that the y-intercept is the constant term in the equation and that the product of the roots is the y-intercept. y =!x y = x 2! 4x + 5 This parabola points downward, and its y-intercept is the vertex. Its x-intercepts are at (2, 0) and ( 2, 0), and the y-axis is its line of symmetry. This parabola has no x-intercepts. y = x 2! 2x + 1 This parabola has only one x-intercept: (1, 0). y = x 2! 6x + 5 This parabola has x-intercepts at x = 1 and x = 5. If students graph it using a narrow domain (such as! 4 " x " 4 ), they will not get a complete graph with both intercepts. Chapter 8: Quadratics 629

28 y =!x 2 + 3x + 4 This parabola has x-intercepts at x = 4 and x = 1. The vertex of the parabola occurs at x = 1.5, which will not show up in a table with integer inputs. Therefore, students need to use the idea of symmetry to find the vertex. y =!x 2 + 2x! 1 y = x 2 + 5x + 1 This parabola has only one x-intercept at (1, 0) and is the same as y = x 2! 2x + 1 but flipped over. (Students may connect this with flipping tiles to find the opposite expression in Chapter 2.) This is a parabola with no integer x-intercepts, so the x-intercepts need to be estimated. As you circulate, be prepared to help students with the calculations for their rules, especially teams with rules that include!x 2. Be sure to ask students to justify their conclusions. Here are some questions that can help students support their reasons and use mathematical reasoning: Do you predict that all parabolas behave that way? How do you know? How do you know if that point is the highest (or lowest) point on the parabola? Why does your parabola point downward? What part of the rule causes the parabola to behave that way? Are there any patterns in the table? Do all parabolas have this (these) pattern(s)? Why or why not? If any team is stuck on the meaning of the word symmetry, you may want to point out the Math Notes box at the end of the lesson. This box not only defines the word, but it also offers examples of some lines of symmetry. Remind students to put their findings on their team poster or transparency. Leave enough time for quick presentations. Closure: (15 minutes) Have teams quickly share their findings. If there is not much time remaining to have complete presentations, then encourage one team member (such as the Recorder/Reporter) to make a short statement on one or two important observations that no other team has yet mentioned. As teams share, create a class list of all of the observations from the investigation. Record each statement using the language the student uses, as long as the rest of the class understands the statement. Expect some simplistic statements along with some unique and interesting observations. 630 Algebra Connections

29 The list should contain all of the key elements that we want students to use for the rest of this chapter when describing parabolas: x-intercepts, y-intercepts, symmetry, vertex, and whether the parabola is pointing up or down. The posters of student work will be referred to in Chapter 11 when students do similar investigations of other types of functions, such as y = x and y = x 3. Team Roles: If you use team roles, emphasize that the Recorder/Reporter has the important task of organizing the creation of the poster or presentation or team report. If you are going to require individual reports from each student, then the Recorder/Reporter is responsible to help teammates describe the team s findings. On the other hand, the team will need the Facilitator to make sure that all team members understand the task and agree with the findings. The Resource Manager will be responsible for quickly asking for assistance from the teacher when the entire team is stuck. Finally, the team will need the Task Manager to be very mindful of the time remaining for the investigation. This student needs to remind the other team members respectfully to stay on task and to make sure that the roles are being fulfilled. Homework: Problems 8-45 through What do I know about a parabola? Investigating a Parabola Student pages for this lesson are In previous chapters, you have investigated linear equations. In Section 8.2, you will study parabolas. You will learn all you can about their shape, study different equations used to graph them, and see how they can be used in real-life situations. Chapter 8: Quadratics 631

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

### Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials

visit us at www.cpm.org Using the Area Model to Teach Multiplying, Factoring and Division of Polynomials For more information about the materials presented, contact Chris Mikles mikles@cpm.org From CCA

### Using Algebra Tiles from Polynomials to Factoring

Using Algebra Tiles from Polynomials to Factoring For more information about the materials you find in this packet, contact: Chris Mikles (888) 808-4276 mikles@cpm.org CPM Educational Program 203, all

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00

UNIT TWO POLYNOMIALS MATH 421A 22 HOURS Revised May 2, 00 38 UNIT 2: POLYNOMIALS Previous Knowledge: With the implementation of APEF Mathematics at the intermediate level, students should be able to: -

### FACTORING QUADRATICS 8.1.1 through 8.1.4

Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

### Factors and Products

CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Unit 3: Day 2: Factoring Polynomial Expressions

Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored

### High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

### CHAPTER 2. Sequences and Equivalence

CHAPTER 2 Sequences and Equivalence Chapter 2 provides you an opportunity to review and strengthen your algebra skills while you learn about arithmetic and geometric sequences. Early in the chapter, you

### Multiplying Polynomials 5

Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### Module: Graphing Linear Equations_(10.1 10.5)

Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular

### a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Learning Objectives 9.2. Media Run Times 9.3

Unit 9 Table of Contents Unit 9: Factoring Video Overview Learning Objectives 9.2 Media Run Times 9.3 Instructor Notes 9.4 The Mathematics of Factoring Polynomials Teaching Tips: Conceptual Challenges

### 6.3 FACTORING ax 2 bx c WITH a 1

290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

### 6706_PM10SB_C4_CO_pp192-193.qxd 5/8/09 9:53 AM Page 192 192 NEL

92 NEL Chapter 4 Factoring Algebraic Epressions GOALS You will be able to Determine the greatest common factor in an algebraic epression and use it to write the epression as a product Recognize different

### Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.

MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Introduction Assignment

PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

### This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.

COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### CPM Educational Program

CPM Educational Program A California, Non-Profit Corporation Chris Mikles, National Director (888) 808-4276 e-mail: mikles @cpm.org CPM Courses and Their Core Threads Each course is built around a few

### 15.1 Factoring Polynomials

LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### ALGEBRA I (Created 2014) Amherst County Public Schools

ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles

### Quadratic and Square Root Functions. Square Roots & Quadratics: What s the Connection?

Activity: TEKS: Overview: Materials: Grouping: Time: Square Roots & Quadratics: What s the Connection? (2A.9) Quadratic and square root functions. The student formulates equations and inequalities based

### MTH 100 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created June 6, 2011

MTH 00 College Algebra Essex County College Division of Mathematics Sample Review Questions Created June 6, 0 Math 00, Introductory College Mathematics, covers the mathematical content listed below. In

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Developmental Math Course Outcomes and Objectives

Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/Pre-Algebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

Factoring Quadratic Trinomials Student Probe Factor x x 3 10. Answer: x 5 x Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials. Part 1 of the lesson consists

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One

### Polynomials and Factoring. Unit Lesson Plan

Polynomials and Factoring Unit Lesson Plan By: David Harris University of North Carolina Chapel Hill Math 410 Dr. Thomas, M D. 2 Abstract This paper will discuss, and give, lesson plans for all the topics

### 1.1 Practice Worksheet

Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

### Algebra 1 Course Objectives

Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in

### Factoring Polynomials

Factoring Polynomials 8A Factoring Methods 8-1 Factors and Greatest Common Factors Lab Model Factoring 8-2 Factoring by GCF Lab Model Factorization of Trinomials 8-3 Factoring x 2 + bx + c 8-4 Factoring

### Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials.

Algebra Success T697 [OBJECTIVE] The student will learn how to multiply monomials and polynomials. [MATERIALS] Student pages S269 S278 Transparencies T704, T705, T707, T709, T711, T713, T715 Red and yellow

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### 10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### A Quick Algebra Review

1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6