# Basic numerical skills: TRIANGLES AND TRIGONOMETRIC FUNCTIONS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Basic numerical skills: TRIANGLES AND TRIGONOMETRIC FUNCTIONS 1. Introduction and the three basic trigonometric functions (simple) Triangles are basic geometric shapes comprising three straight lines, each of which is joined to the two others at its ends. A triangle has three included angles (angles defined by two of the sides) and together these angles sum to 180. We will start with a special sort of triangle, where one of the included angles is a right-angle (90 ). The lengths of the sides of a right-angled triangle can be calculated using Pythagoras' Theorem, and this is described graphically in the Appendix to this document. Here, the main aim is to introduce a set of relationships between the sides and angles of triangles which form the basis of trigonometry. Most people encounter trigonometric functions in the context of geometry. However, some trigonometric functions are used in other applications, including the construction of regular cycles in models of physical and biological systems. The three basic trigonometric functions relate an angle to the ratio between pairs of sides of a right-angled triangle. In this diagram, the angle α (Greek 'alpha') is at the junction between the hypotenuse, the longest side of the right-angled triangle, and a side designated the 'adjacent'. The side opposite angle α is designated the 'opposite'. Three ratios between pairs of sides are the sine, cosine and tangent: You will notice that for the third angle of the triangle, which we can designate β: β = 90 α sine β = cosine α cosine β = sine α tangent β = 1/tangent α Given a value for one of the two non-right angles in a right-angled triangle, and the length of any side, it is possible to calculate the length of either of the other two sides. Conversely, given the length of any two sides, it is possible to calculate the value of either non-right angle from one of the trigonometric functions shown in the figure. The three functions are usually written in their abbreviated forms, which are 'sin', 'cos' and 'tan'. These terms are used in spreadsheet calculations, for instance as SIN(A12), where the value contained in cell A12 (in brackets) is termed the 'argument' of the function. 2. How high is that tree? (simple) A simple application of trigonometry is to calculate the height of an object that cannot be measured directly. For instance, it is seldom practical to measure the height of a tree with a tape measure, but it can be accomplished easily by using an instrument called a clinometer to measure the angle of a line between the horizontal and a line from the observer to the top of the tree, when the distance of the observer from the base of the tree is known: Triangles and trigonometric functions page 1 of 7

2 then, tan α = (height of tree height of observer)/distance to base of tree height of tree = (tan α/distance to base of tree) + height of observer Obviously, if the clinometer were set on the ground, level with the base of the tree, there would be no need to include the height of the observer in the calculation. 3. Triangle of forces (intermediate) Any force has both magnitude and direction. Imagine someone pulling along a loaded trolley, attached to them by a rope and harness. If the rope makes a very shallow angle with the direction of travel, most of the force generated by the person pulling is applied to moving the trolley. Conversely, if the rope is at a steep angle, some of the force is trying to lift the trolley rather than pulling it along. Look at these two diagrams, where the force along the rope, F, has been divided into a horizontal component h and a vertical component v: In both cases, the magnitude and direction of the pulling force are represented by the hypotenuse of a right-angled triangle. We can use trigonometry to determine the proportion of the force that acts horizontally, pulling the trolley along. If we assume that the force is the same in each case, this is shown as the length of the hypotenuse, F. The horizontal force, h, is the side of the triangle that is adjacent to the angle between the rope and the horizontal, which we can again represent as α. (For simplicity, the third side of the triangle, which is equal to v, has been omitted from the diagram.) The trigonometric function that relates the hypotenuse and adjacent is the cosine, so that: cos α = h/f h = F. cos α If the rope were horizontal, the angle α would be zero and its cosine would have the value 1, so that the entire towing force acts to pull the trolley along. As the rope is inclined a a greater angle to the horizontal, the value of the cosine decreases. When the rope is vertical, cos α = 0 and there is no horizontal force all the person's effort is going into trying to lift the trolley off the ground! At an angle of 60, half of the force along the rope is acting horizontally. Triangles and trigonometric functions page 2 of 7

3 Angle of rope above horizontal Proportion of force along rope acting to tow the trolley % 97% 87% 71% 50% 26% 4. Other types of triangles (intermediate) So far, we have looked at trigonometric functions in the context of a right-angled triangle, where one of the angles is 90. There are other types of triangles: Equilateral triangles have all three sides of equal length, and all angles are 60 Isosceles triangles have two sides of equal length, so that two angles are also equal Scalene triangles have no sides or angles equal For all triangles: The sum of the three angles of a triangle is always 180 o. The longest side is opposite to the largest angle. A triangle can only have one angle that is equal to 90 (a right angle) or greater (an obtuse angle). There are two important trigonometric rules that apply to all triangles. First, look at this scalene triangle with sides a, b and c opposite angles α, β and γ respectively: The sine rule states that: a/sinα = b/sinβ = c/sinγ This means that all of the sides and angles of any triangle can be calculated if one angle and its opposite side, plus one other angle or side are known. The cosine rule states that: a 2 = b 2 + c 2 2bc cosα b 2 = a 2 + c 2 2ac cosβ c 2 = a 2 + b 2 2ab cosγ This allows the length of one side of a triangle to be calculated if the lengths of the other two sides and the size of the included angle are known, or any angle if the lengths of all three sides are known. 5. Degrees and radians (intermediate) We are used to measuring angles in degrees, where a right angle is 90, the angle subtended by a straight line is 180 and a full revolution of a circle is 360. We can also measure angles using a unit called a 'radian', which is based on the relationship between the circumference of a circle and its radius. Imagine an arc of a circle whose length is equal to the circle's radius. If you draw the Triangles and trigonometric functions page 3 of 7

5 A geometrical proof of Pythagoras' theorem These seven diagrams illustrate a simple geometric proof of Pythagoras' theorem. This states that for a right-angled triangle, the square of the length of the hypotenuse (the longest side of the triangle, opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. (This illustration is based on an animation produced by the University of Waterloo, Onatario. Visit: goras.shtml) Figure 1. This right-angled triangle has three sides a, b and c. Side a is the hypotenuse, and Pythagoras' theorem states that: a 2 = b 2 + c 2 Figure 2. Draw a square with side a along the hypotenuse. The square has an area a 2. Figure 3. Construct a larger square by arranging copies of the triangle around the square on the hypotenuse as shown. Triangles and trigonometric functions page 5 of 7

6 Figure 4. The square contains four copies of the triangle. The area not occupied by the four triangles (unshaded) is still a 2. Figure 5. Wherever the triangles are placed in the new square, the unshaded area will always be equal to a 2 (so long as the triangles do not overlap). Figure 6. This arrangement of the four triangles creates two rectangles. The unshaded area, now broken into two smaller squares, must still be equal to a 2. Triangles and trigonometric functions page 6 of 7

7 Figure 7. The sides of the two unshaded squares are equal to the lengths of the non-hypotenuse sides of the original triangle, b and c. Therefore, the areas of the two squares that occupy the non-shaded area are b 2 and c 2. The four triangles still account for the same area within the larger square, so these two unshaded squares must occupy the same area as the original unshaded area before the triangles were re-arranged. So: a 2 = b 2 + c 2 Triangles and trigonometric functions page 7 of 7

### 11 Trigonometric Functions of Acute Angles

Arkansas Tech University MATH 10: Trigonometry Dr. Marcel B. Finan 11 Trigonometric Functions of Acute Angles In this section you will learn (1) how to find the trigonometric functions using right triangles,

### 6.1 Basic Right Triangle Trigonometry

6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at

### Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

### 15 Trigonometry Pythagoras' Theorem. Example 1. Solution. Example 2

15 Trigonometry 15.1 Pythagoras' Theorem MEP Y9 Practice Book B Pythagoras' Theorem describes the important relationship between the lengths of the sides of a right-angled triangle. Pythagoras' Theorem

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### Types of Angles acute right obtuse straight Types of Triangles acute right obtuse hypotenuse legs

MTH 065 Class Notes Lecture 18 (4.5 and 4.6) Lesson 4.5: Triangles and the Pythagorean Theorem Types of Triangles Triangles can be classified either by their sides or by their angles. Types of Angles An

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Dyffryn School Ysgol Y Dyffryn Mathematics Faculty

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty Formulae and Facts Booklet Higher Tier Number Facts Sum This means add. Difference This means take away. Product This means multiply. Share This means

### Teaching & Learning Plans. Plan 8: Introduction to Trigonometry. Junior Certificate Syllabus

Teaching & Learning Plans Plan 8: Introduction to Trigonometry Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes

### Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

### Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles

Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use

### Trigonometry I. MathsStart. Topic 5

MathsStart (NOTE Feb 0: This is the old version of MathsStart. New books will be created during 0 and 04) Topic 5 Trigonometry I h 0 45 50 m x MATHS LEARNING CENTRE Level, Hub Central, North Terrace Campus

### Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Solutions to Exercises, Section 6.1

Instructor s Solutions Manual, Section 6.1 Exercise 1 Solutions to Exercises, Section 6.1 1. Find the area of a triangle that has sides of length 3 and 4, with an angle of 37 between those sides. 3 4 sin

### Biggar High School Mathematics Department. National 4 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 4 Learning Intentions & Success Criteria: Assessing My Progress Expressions and Formulae Topic Learning Intention Success Criteria I understand this Algebra

### Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Objectives Use the triangle measurements to decide which side is longest and which angle is largest.

### 7.1 Apply the Pythagorean Theorem

7.1 Apply the Pythagorean Theorem Obj.: Find side lengths in right triangles. Key Vocabulary Pythagorean triple - A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation

### 3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Student Academic Learning Services Page 1 of 6 Trigonometry

Student Academic Learning Services Page 1 of 6 Trigonometry Purpose Trigonometry is used to understand the dimensions of triangles. Using the functions and ratios of trigonometry, the lengths and angles

### FLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.

Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself.

Exponents An integer is multiplied by itself one or more times. The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself. Example:

### Remember that the information below is always provided on the formula sheet at the start of your exam paper

Maths GCSE Linear HIGHER Things to Remember Remember that the information below is always provided on the formula sheet at the start of your exam paper In addition to these formulae, you also need to learn

### Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

### Definition III: Circular Functions

SECTION 3.3 Definition III: Circular Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Evaluate a trigonometric function using the unit circle. Find the value of a

### CLIL MultiKey lesson plan

LESSON PLAN Subject: Mathematics Topic: Triangle Age of students: 16 Language level: B1, B2 Time: 45-60 min Contents aims: After completing the lesson, the student will be able to: Classify and compare

### Trigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out:

First, a couple of things to help out: Page 1 of 24 Use periodic properties of the trigonometric functions to find the exact value of the expression. 1. cos 2. sin cos sin 2cos 4sin 3. cot cot 2 cot Sin

### Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

### Time Topic What students should know Mathswatch links for revision

Time Topic What students should know Mathswatch links for revision 1.1 Pythagoras' theorem 1 Understand Pythagoras theorem. Calculate the length of the hypotenuse in a right-angled triangle. Solve problems

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Modern Geometry Homework.

Modern Geometry Homework. 1. Rigid motions of the line. Let R be the real numbers. We define the distance between x, y R by where is the usual absolute value. distance between x and y = x y z = { z, z

### Trigonometry Notes Sarah Brewer Alabama School of Math and Science. Last Updated: 25 November 2011

Trigonometry Notes Sarah Brewer Alabama School of Math and Science Last Updated: 25 November 2011 6 Basic Trig Functions Defined as ratios of sides of a right triangle in relation to one of the acute angles

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Navigating by the Numbers

Navigating by the Numbers Unit Topic: Navigation Grade Level: 7 th grade (with suggestions to scale for grades 6 to 8) Lesson No. 3 of 10 Lesson Subject(s): Calculation, approximation, geometry, trigonometry,

### Trigonometry. Week 1 Right Triangle Trigonometry

Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge

### CHAPTER 38 INTRODUCTION TO TRIGONOMETRY

CHAPTER 38 INTRODUCTION TO TRIGONOMETRY EXERCISE 58 Page 47. Find the length of side x. By Pythagoras s theorem, 4 = x + 40 from which, x = 4 40 and x = 4 40 = 9 cm. Find the length of side x. By Pythagoras

### Upper Elementary Geometry

Upper Elementary Geometry Geometry Task Cards Answer Key The unlicensed photocopying, reproduction, display, or projection of the material, contained or accompanying this publication, is expressly prohibited

### Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle

### Alabama Course of Study Mathematics Geometry

A Correlation of Prentice Hall to the Alabama Course of Study Mathematics Prentice Hall, Correlated to the Alabama Course of Study Mathematics - GEOMETRY CONGRUENCE Experiment with transformations in the

### MA Lesson 19 Summer 2016 Angles and Trigonometric Functions

DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### Similarity, Right Triangles, and Trigonometry

Instruction Goal: To provide opportunities for students to develop concepts and skills related to trigonometric ratios for right triangles and angles of elevation and depression Common Core Standards Congruence

### Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

### Applications of Trigonometry

chapter 6 Tides on a Florida beach follow a periodic pattern modeled by trigonometric functions. Applications of Trigonometry This chapter focuses on applications of the trigonometry that was introduced

### θ. The angle is denoted in two ways: angle θ

1.1 Angles, Degrees and Special Triangles (1 of 24) 1.1 Angles, Degrees and Special Triangles Definitions An angle is formed by two rays with the same end point. The common endpoint is called the vertex

### as a fraction and as a decimal to the nearest hundredth.

Express each ratio as a fraction and as a decimal to the nearest hundredth. 1. sin A The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So, 2. tan C The tangent of an

### y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)

5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If

### Basic Electrical Theory

Basic Electrical Theory Mathematics Review PJM State & Member Training Dept. Objectives By the end of this presentation the Learner should be able to: Use the basics of trigonometry to calculate the different

### Laboratory 2 Application of Trigonometry in Engineering

Name: Grade: /26 Section Number: Laboratory 2 Application of Trigonometry in Engineering 2.1 Laboratory Objective The objective of this laboratory is to learn basic trigonometric functions, conversion

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Chapter 8. Right Triangles

Chapter 8 Right Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the

### Right Triangles Long-Term Memory Review Review 1

Review 1 1. Is the statement true or false? If it is false, rewrite it to make it true. A right triangle has two acute angles. 2 2. The Pythagorean Theorem for the triangle shown would be a b c. Fill in

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### 11-4 Areas of Regular Polygons and Composite Figures

1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,

### Justine Lyka P. Chua Marie Antoinette T. Sy

SOLVING TRIANGLES Objective and Significance of the Application Our main objective for our machine project is to create a C application that will compute for the missing side and angles of a triangle given

### Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

### 2012 Junior Certificate Higher Level Official Sample Paper 2

2012 Junior Certificate Higher Level Official Sample Paper 2 Question 1 (Suggested maximum time: 20 minutes) Deirdre constructs a polytunnel on a level part of her back garden. Five vertical, semicircular

### Framework for developing schemes of work for the geometry curriculum for ages 14-16

Framework for developing schemes of work for the geometry curriculum for ages 14-16 CURRICULUM GRADES G - F GRADES E - D GRADES C - B GRADES A A* INVESTIGATION CONTEXT Distinguish Know and use angle, Construct

### Maths Pack. For the University Certificates in Astronomy and Cosmology

Maths Pack Distance Learning Mathematics Support Pack For the University Certificates in Astronomy and Cosmology These certificate courses are for your enjoyment. However, a proper study of astronomy or

### 55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

### 1. Introduction identity algbriac factoring identities

1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as

### 1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.

Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number

### BASICS ANGLES. θ x. Figure 1. Trigonometric measurement of angle θ. trigonometry, page 1 W. F. Long, 1989

TRIGONOMETRY BASICS Trigonometry deals with the relation between the magnitudes of the sides and angles of a triangle. In a typical trigonometry problem, two angles and a side of a triangle would be given

### G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...

### Unit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS

Unit 2: Right Triangle Trigonometry This unit investigates the properties of right triangles. The trigonometric ratios sine, cosine, and tangent along with the Pythagorean Theorem are used to solve right

### B a. This means that if the measures of two of the sides of a right triangle are known, the measure of the third side can be found.

The Pythagorean Theorem One special kind of triangle is a right triangle a triangle with one interior angle of 90º. B A Note: In a polygon (like a triangle), the vertices (and corresponding angles) are

### ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in

### Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 17 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

### Angles are what trigonometry is all about. This is where it all started, way back when.

Chapter 1 Tackling Technical Trig In This Chapter Acquainting yourself with angles Identifying angles in triangles Taking apart circles Angles are what trigonometry is all about. This is where it all started,

### Identifying Triangles 5.5

Identifying Triangles 5.5 Name Date Directions: Identify the name of each triangle below. If the triangle has more than one name, use all names. 1. 5. 2. 6. 3. 7. 4. 8. 47 Answer Key Pages 19 and 20 Name

### Sample Test Questions

mathematics College Algebra Geometry Trigonometry Sample Test Questions A Guide for Students and Parents act.org/compass Note to Students Welcome to the ACT Compass Sample Mathematics Test! You are about

### SAT Subject Math Level 2 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

### Triangle. A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles.

Triangle A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles. A triangle is consisting of three line segments linked end to end. As the figure linked

### Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)

Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING

### Circle Geometry. Properties of a Circle Circle Theorems:! Angles and chords! Angles! Chords! Tangents! Cyclic Quadrilaterals

ircle Geometry Properties of a ircle ircle Theorems:! ngles and chords! ngles! hords! Tangents! yclic Quadrilaterals http://www.geocities.com/fatmuscle/hs/ 1 Properties of a ircle Radius Major Segment

### (Mathematics Syllabus Form 3 Track 3 for Secondary Schools June 2013) Page 1 of 9

(Mathematics Syllabus Form 3 Track 3 for Secondary Schools June 2013) Page 1 of 9 Contents Pages Number and Applications 3-4 Algebra 5-6 Shape Space and Measurement 7-8 Data Handling 9 (Mathematics Syllabus

### Geometry Credit Recovery

Geometry Credit Recovery COURSE DESCRIPTION: This is a comprehensive course featuring geometric terms and processes, logic, and problem solving. Topics include parallel line and planes, congruent triangles,

### (a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

### With the Tan function, you can calculate the angle of a triangle with one corner of 90 degrees, when the smallest sides of the triangle are given:

Page 1 In game development, there are a lot of situations where you need to use the trigonometric functions. The functions are used to calculate an angle of a triangle with one corner of 90 degrees. By

### D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

### Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

### LEVEL G, SKILL 1. Answers Be sure to show all work.. Leave answers in terms of ϖ where applicable.

Name LEVEL G, SKILL 1 Class Be sure to show all work.. Leave answers in terms of ϖ where applicable. 1. What is the area of a triangle with a base of 4 cm and a height of 6 cm? 2. What is the sum of the

### Law of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem.

Law of Cosines In the previous section, we learned how the Law of Sines could be used to solve oblique triangles in three different situations () where a side and two angles (SAA) were known, () where

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### 4 Week Modular Course in Geometry and Trigonometry Strand 1. Module 1

4 Week Modular Course in Geometry and Trigonometry Strand 1 Module 1 Theorems: A Discovery Approach Theorems are full of potential for surprise and delight. Every theorem can be taught by considering the

### Grade 6 Math Circles March 24/25, 2015 Pythagorean Theorem Solutions

Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 4/5, 015 Pythagorean Theorem Solutions Triangles: They re Alright When They