# Mathematics programmes of study: key stage 4. National curriculum in England

Size: px
Start display at page:

Download "Mathematics programmes of study: key stage 4. National curriculum in England"

Transcription

1 Mathematics programmes of study: key stage 4 National curriculum in England July 2014

2 Contents Purpose of study 3 Aims 3 Information and communication technology (ICT) 4 Spoken language 4 Working mathematically 5 Develop fluency 5 Reason mathematically 5 Solve problems 6 Subject content 7 Number 7 Algebra 7 Ratio, proportion and rates of change 9 Geometry and measures 9 Probability 10 Statistics 10

3 Purpose of study Mathematics key stage 4 Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some of history s most intriguing problems. It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject. Aims The national curriculum for mathematics aims to ensure that all pupils: become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately. reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions. Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 4 is organised into apparently distinct domains, but pupils should develop and consolidate connections across mathematical ideas. They should build on learning from key stage 3 to further develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge wherever relevant in other subjects and in financial contexts. The expectation is that the majority of pupils will move through the programme of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils understanding and their readiness to progress. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on. This programme of study specifies: the mathematical content that should be taught to all pupils, in standard type; and additional mathematical content to be taught to more highly attaining pupils, in bold type and braces { }. 3

4 Together, the mathematical content set out in the key stage 3 and key stage 4 programmes of study covers the full range of material contained in the GCSE Mathematics qualification. Wherever it is appropriate, given pupils security of understanding and readiness to progress, pupils should be taught the full content set out in this programme of study. Information and communication technology (ICT) Calculators should not be used as a substitute for good written and mental arithmetic. In secondary schools, teachers should use their judgement about when ICT tools should be used. Spoken language The national curriculum for mathematics reflects the importance of spoken language in pupils development across the whole curriculum cognitively, socially and linguistically. The quality and variety of language that pupils hear and speak are key factors in developing their mathematical vocabulary and presenting a mathematical justification, argument or proof. They must be assisted in making their thinking clear to themselves as well as others and teachers should ensure that pupils build secure foundations by using discussion to probe and remedy their misconceptions. Schools are not required by law to teach the example content in [square brackets] or the content indicated as being non-statutory.

5 Key stage 4 Working mathematically Through the mathematics content, pupils should be taught to: Develop fluency consolidate their numerical and mathematical capability from key stage 3 and extend their understanding of the number system to include powers, roots {and fractional indices} select and use appropriate calculation strategies to solve increasingly complex problems, including exact calculations involving multiples of π {and surds}, use of standard form and application and interpretation of limits of accuracy consolidate their algebraic capability from key stage 3 and extend their understanding of algebraic simplification and manipulation to include quadratic expressions, {and expressions involving surds and algebraic fractions} extend fluency with expressions and equations from key stage 3, to include quadratic equations, simultaneous equations and inequalities move freely between different numerical, algebraic, graphical and diagrammatic representations, including of linear, quadratic, reciprocal, {exponential and trigonometric} functions use mathematical language and properties precisely. Reason mathematically extend and formalise their knowledge of ratio and proportion, including trigonometric ratios, in working with measures and geometry, and in working with proportional relations algebraically and graphically extend their ability to identify variables and express relations between variables algebraically and graphically make and test conjectures about the generalisations that underlie patterns and relationships; look for proofs or counter-examples; begin to use algebra to support and construct arguments {and proofs} reason deductively in geometry, number and algebra, including using geometrical constructions interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning 5

6 explore what can and cannot be inferred in statistical and probabilistic settings, and express their arguments formally assess the validity of an argument and the accuracy of a given way of presenting information. Solve problems develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems develop their use of formal mathematical knowledge to interpret and solve problems, including in financial contexts make and use connections between different parts of mathematics to solve problems model situations mathematically and express the results using a range of formal mathematical representations, reflecting on how their solutions may have been affected by any modelling assumptions select appropriate concepts, methods and techniques to apply to unfamiliar and nonroutine problems; interpret their solution in the context of the given problem.

7 Subject content Mathematics key stage 4 Number apply systematic listing strategies, {including use of the product rule for counting} {estimate powers and roots of any given positive number} calculate with roots, and with integer {and fractional} indices calculate exactly with fractions, {surds} and multiples of π; {simplify surd expressions involving squares [for example 12 = 4 3 = 4 3 = 2 3] and rationalise denominators} calculate with numbers in standard form A 10 n, where 1 A < 10 and n is an integer {change recurring decimals into their corresponding fractions and vice versa} identify and work with fractions in ratio problems apply and interpret limits of accuracy when rounding or truncating, {including upper and lower bounds}. Algebra simplify and manipulate algebraic expressions (including those involving surds {and algebraic fractions}) by: x 2 + bx + c factorising quadratic expressions of the form, including the difference of two squares; {factorising quadratic expressions of the form } 2 ax + bx + c simplifying expressions involving sums, products and powers, including the laws of indices know the difference between an equation and an identity; argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments {and proofs} where appropriate, interpret simple expressions as functions with inputs and outputs; {interpret the reverse process as the inverse function ; interpret the succession of two functions as a composite function } 7

9 Ratio, proportion and rates of change compare lengths, areas and volumes using ratio notation and/or scale factors; make links to similarity (including trigonometric ratios) convert between related compound units (speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts understand that X is inversely proportional to Y is equivalent to X is proportional to 1 Y ; {construct and} interpret equations that describe direct and inverse proportion interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion {interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of instantaneous and average rate of change (gradients of tangents and chords) in numerical, algebraic and graphical contexts} set up, solve and interpret the answers in growth and decay problems, including compound interest {and work with general iterative processes}. Geometry and measures interpret and use fractional {and negative} scale factors for enlargements {describe the changes and invariance achieved by combinations of rotations, reflections and translations} identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment {apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results} construct and interpret plans and elevations of 3D shapes interpret and use bearings calculate arc lengths, angles and areas of sectors of circles calculate surface areas and volumes of spheres, pyramids, cones and composite solids apply the concepts of congruence and similarity, including the relationships between lengths, {areas and volumes} in similar figures 9

10 apply Pythagoras Theorem and trigonometric ratios to find angles and lengths in right-angled triangles {and, where possible, general triangles} in two {and three} dimensional figures know the exact values of sinθ and cosθ for θ = 0, 30, 45, 60 0 and 90 ; know the exact value of tanθ for θ = 0, 30, 45 and 60 {know and apply the sine rule, a = b = c, and cosine rule, sin A sin B sinc a 2 =b 2 + c 2 2bc cos A, to find unknown lengths and angles} 1 {know and apply Area = sin 2 ab C to calculate the area, sides or angles of any triangle} describe translations as 2D vectors apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of vectors; {use vectors to construct geometric arguments and proofs}. Probability apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one use a probability model to predict the outcomes of future experiments; understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions {calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams}. Statistics infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling interpret and construct tables and line graphs for time series data {construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use}

11 interpret, analyse and compare the distributions of data sets from univariate empirical distributions through: appropriate graphical representation involving discrete, continuous and grouped data, {including box plots} appropriate measures of central tendency (including modal class) and spread {including quartiles and inter-quartile range} apply statistics to describe a population use and interpret scatter graphs of bivariate data; recognise correlation and know that it does not indicate causation; draw estimated lines of best fit; make predictions; interpolate and extrapolate apparent trends whilst knowing the dangers of so doing. Crown copyright 2014 Reference: DFE

### Mathematics. GCSE subject content and assessment objectives

Mathematics GCSE subject content and assessment objectives June 2013 Contents Introduction 3 Subject content 4 Assessment objectives 11 Appendix: Mathematical formulae 12 2 Introduction GCSE subject criteria

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

### Mathematics. Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007)

Mathematics Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007) Crown copyright 2007 Qualifications and Curriculum Authority 2007 Curriculum

### MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

### GCSE (9-1) Mathematics

GCSE (9-1) Mathematics Specification Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics (1MA1) First teaching from September 2015 First certification from June 2017 Issue 2 Pearson Edexcel Level

### Changes to GCSE assessment across subjects

OCR GCSE Mathematics (J560) now accredited ocr.org.uk/gcsemaths Introducing the new Mathematics GCSE for first teaching from 2015 In February 2013, the Secretary of State for Education Michael Gove wrote

### The Australian Curriculum Mathematics

The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

### Section 1: How will you be tested? This section will give you information about the different types of examination papers that are available.

REVISION CHECKLIST for IGCSE Mathematics 0580 A guide for students How to use this guide This guide describes what topics and skills you need to know for your IGCSE Mathematics examination. It will help

### FOREWORD. Executive Secretary

FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

### Curriculum Overview YR 9 MATHS. SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures

Curriculum Overview YR 9 MATHS AUTUMN Thursday 28th August- Friday 19th December SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures Rounding Rounding Upper and lower

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Key Topics What will ALL students learn? What will the most able students learn?

2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding

### Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

### NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

### Prentice Hall Connected Mathematics 2, 7th Grade Units 2009

Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Year 10 & 11. La Salle EDUCATION. Mathematics. Solved.

Year 10 & 11 Scheme of Work www.completemaths.co.uk This example shows our exemplification of Year 10 and 11. Complete Mathematics contains full exemplification for all year groups from Year 1 upwards.

### Standards and progression point examples

Mathematics Progressing towards Foundation Progression Point 0.5 At 0.5, a student progressing towards the standard at Foundation may, for example: connect number names and numerals with sets of up to

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### DRAFT. Further mathematics. GCE AS and A level subject content

Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

### Mathematics Policy. Michael Sobell Sinai School

Mathematics Policy 2014 Mathematics Policy Section 1: Introduction Mathematics is a creative and highly inter-connected discipline that has been developed over centuries, providing the solution to some

### Oxford Cambridge and RSA Examinations

Oxford Cambridge and RSA Examinations OCR FREE STANDING MATHEMATICS QUALIFICATION (ADVANCED): ADDITIONAL MATHEMATICS 6993 Key Features replaces and (MEI); developed jointly by OCR and MEI; designed for

### MINISTRY OF EDUCATION

Republic of Namibia MINISTRY OF EDUCATION NAMIBIA SENIOR SECONDARY CERTIFICATE (NSSC) MATHEMATICS SYLLABUS ORDINARY LEVEL SYLLABUS CODE: 4324 GRADES 11-12 FOR IMPLEMENTATION IN 2006 FOR FIRST EXAMINATION

### For examination in June and November 2016. Also available for examination in March 2016 for India only.

SYLLABUS Cambridge IGCSE Mathematics 0580 For examination in June and November 2016. Also available for examination in March 2016 for India only. This syllabus is approved for use in England, Wales and

### NEW MEXICO Grade 6 MATHEMATICS STANDARDS

PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Big Ideas in Mathematics

Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

### PREPARING YOUR LEARNERS FOR THE MATHEMATICS (MAT) TEST

THE NATIONAL Dr Carol Bohlmann BENCHMARK TESTS: PREPARING YOUR LEARNERS FOR THE MATHEMATICS (MAT) TEST Dr Carol Bohlmann NBTP Mathematics Research Lead Centre for Educational Testing for Access and Placement

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Paper 2 Revision. (compiled in light of the contents of paper1) Higher Tier Edexcel

Paper 2 Revision (compiled in light of the contents of paper1) Higher Tier Edexcel 1 Topic Areas 1. Data Handling 2. Number 3. Shape, Space and Measure 4. Algebra 2 Data Handling Averages Two-way table

### National 5 Mathematics Course Support Notes

National 5 Mathematics Course Support Notes This specification may be reproduced in whole or in part for educational purposes provided that no profit is derived from reproduction and that, if reproduced

### Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013

A Correlation of Prentice Hall Mathematics Courses 1-3 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates

### CURRICULUM FOR THE COMMON CORE SUBJECT OF MATHEMATICS

CURRICULUM FOR THE COMMON CORE SUBJECT OF Dette er ei omsetjing av den fastsette læreplanteksten. Læreplanen er fastsett på Nynorsk Established as a Regulation by the Ministry of Education and Research

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### Bridging Documents for Mathematics

Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, Post-Primary Primary Post-Primary Card # Strand(s): Number, Measure Number (Strand 3) 2-5 Strand: Shape and Space Geometry and

### Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

### Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Specification September 2007. The right formula for success. GCSE Maths GCSE

Specification September 2007 GCSE Maths The right formula for success GCSE Edexcel GCSE in Mathematics (Linear) (1380) First examination June 2009 First certification June 2009 Edexcel, a Pearson company,

### Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

### GCSE MATHEMATICS (8300)

GCSE MATHEMATICS (8300) Specification For teaching from September 2015 onwards For exams in May/June 2017 onwards Version 1.0 12 September 2014 GCSE Mathematics (8300). For exams in May/June 2017 onwards.

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### AMSCO S Ann Xavier Gantert

AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence

### Numeracy and mathematics Experiences and outcomes

Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different

### KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### WORK SCHEDULE: MATHEMATICS 2007

, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check

### Secondary Mathematics Syllabuses

Secondary Mathematics Syllabuses Copyright 006 Curriculum Planning and Development Division. This publication is not for sale. All rights reserved. No part of this publication may be reproduced without

### Unit 6 Trigonometric Identities, Equations, and Applications

Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

### Mathematics for Engineering Technicians

Unit 4: Mathematics for Engineering Technicians Unit code: A/600/0253 QCF Level 3: BTEC National Credit value: 10 Guided learning hours: 60 Aim and purpose This unit aims to give learners a strong foundation

### 04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators

04 Mathematics CO-SG-FLD004-03 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal

### 089 Mathematics (Elementary)

089 Mathematics (Elementary) MI-SG-FLD089-07 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW OF THE TESTING PROGRAM... 1-1 Contact Information Test Development

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Monday 1 January 015 Afternoon Time: hours Candidate Number

### McDougal Littell California:

McDougal Littell California: Pre-Algebra Algebra 1 correlated to the California Math Content s Grades 7 8 McDougal Littell California Pre-Algebra Components: Pupil Edition (PE), Teacher s Edition (TE),

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### X On record with the USOE.

Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is

### Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

### Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)

Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Centre Number Tuesday 6 January 015 Afternoon Time: hours Candidate Number Higher Tier Paper Reference

### Mathematics Georgia Performance Standards

Mathematics Georgia Performance Standards K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by

### The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### PROVINCE OF THE EASTERN CAPE EDUCATION

PROVINCE OF THE EASTERN CAPE EDUCATION DIRECTORATE: CURRICULUM FET PROGRAMMES LESSON PLANS TERM 3 MATHEMATICS GRADE 10 FOREWORD The following Grade 10, 11 and 12 Lesson Plans were developed by Subject

### LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,

Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Maths Non-negotiables

Maths Non-negotiables Arithmetic must be taught on a daily basis. Its focus should be developing mental strategies fluency. Times tables should be a key mental maths focus in year 3 4. The new curriculum

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

### Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

### Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

### Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### GCSE. Mathematics. A (3 units, terminally assessed) 4360. Specification. For exams June 2014 onwards For certification June 2014

GCSE Specification Mathematics For exams June 2014 onwards For certification June 2014 onwards A (3 units, terminally assessed) 4360 GCSE Specification Mathematics 4360 Our specification is published on

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Topic: Unit 1-Variables, Expressions, and Integers

Grade 7th Topic: Unit 1-Variables, Expressions, and Integers Essential Questions/Enduring CC.7.NS.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### Stage 1 Higher Revision Sheet

Stage 1 Higher Revision Sheet This document attempts to sum up the contents of the Higher Tier Stage 1 Module. There are two exams, each 25 minutes long. One allows use of a calculator and the other doesn

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,