Inequalities and Absolute Value Equations and Inequations


 Jared Bates
 2 years ago
 Views:
Transcription
1 Inequalities and Absolute Value Equations and Inequations Fall Math 1010 A no TIE fighter and squinting cat zone. (Math 1010) M / 12
2 Roadmap Notes for solving inequalities. Examples of solving inequalities. Notes for solving absolute value equations and inequalites. Examples of solving absolute value equations and inequalities. Today s lecture will procede with slide notes and then chalkboard examples. (Math 1010) M / 12
3 2.4  The Symbols for Inequalities less than Example x < 7 less than or equal Example x 4 greater than Example x > 3 greater than or equal Example x or equal means the values for the unknown can include that number.  Inequalties without or equal, that is < and >, are called strict inequalities. (Math 1010) M / 12
4 2.4  Notations Styles in this section include intervals, inequalty signs, graphs, and set (or set builder) notation. The samples below are equivalent. Example x + 6 < 9 x < 3 Interval: (, 3) Inequality signs: x < 3 Set builder notation: {x x < 3} (I like to use : in place of.) (Math 1010) M / 12
5 2.4  Operations Operations on all sides of an inequality with expressions are the same for equalities with one exception: Multiplication and division by a negative quantity produces an equivalent inequality with a reversed inequality symbol. Summary: Add/Subtract: a < b a + c < b + c a c < b c Multiply/Divide: positive quantities a < b ac < bc a c < b c, c > 0 Multiply/Divide: negative quantities a < b ac > bc a c > b c, c < 0 Transitivity: When a < b and b < c, then it follows that a < c. (Math 1010) M / 12
6 2.4  Compound Inequalties  Conjunctive And Conjunctive (and) is used for compound inequalties that have two conditions. Both conditions must be met. Example 1 5 2x and 5 2x < 7 Write this as a double inequalty and solve. (Math 1010) M / 12
7 2.4  Compound Inequalties  Conjunctive And Conjunctive (and) is used for compound inequalties that have two conditions. Both conditions must be met. Example 1 5 2x and 5 2x < 7 Write this as a double inequalty and solve x < 7 (Math 1010) M / 12
8 2.4  Compound Inequalties  Conjunctive And Conjunctive (and) is used for compound inequalties that have two conditions. Both conditions must be met. Example 1 5 2x and 5 2x < 7 Write this as a double inequalty and solve x < 7 6 2x < 2 (Math 1010) M / 12
9 2.4  Compound Inequalties  Conjunctive And Conjunctive (and) is used for compound inequalties that have two conditions. Both conditions must be met. Example 1 5 2x and 5 2x < 7 Write this as a double inequalty and solve x < 7 6 2x < x > 2 2 (Math 1010) M / 12
10 2.4  Compound Inequalties  Conjunctive And Conjunctive (and) is used for compound inequalties that have two conditions. Both conditions must be met. Example 1 5 2x and 5 2x < 7 Write this as a double inequalty and solve x < 7 6 2x < x > x > 1 1 < x 3 (Math 1010) M / 12
11 Just Say No (Math 1010) M / 12
12 2.4  Compound Inequalties  Disjunctive Or Disjuctive (or) is used for compound inequalties that have two conditions. Either condition may be met. These inequalities cannot be written as a compound inequality. Example x + 3 < 7 or x + 3 > 14 Solve. (Math 1010) M / 12
13 2.4  Compound Inequalties  Disjunctive Or Disjuctive (or) is used for compound inequalties that have two conditions. Either condition may be met. These inequalities cannot be written as a compound inequality. Example x + 3 < 7 or x + 3 > 14 Solve. One at a time: x + 3 < 7 x < 10 (Math 1010) M / 12
14 2.4  Compound Inequalties  Disjunctive Or Disjuctive (or) is used for compound inequalties that have two conditions. Either condition may be met. These inequalities cannot be written as a compound inequality. Example x + 3 < 7 or x + 3 > 14 Solve. One at a time: x + 3 < 7 x < 10 Next one: x + 3 > 14 x > 11 (Math 1010) M / 12
15 2.4  Compound Inequalties  Disjunctive Or Disjuctive (or) is used for compound inequalties that have two conditions. Either condition may be met. These inequalities cannot be written as a compound inequality. Example x + 3 < 7 or x + 3 > 14 Solve. One at a time: x + 3 < 7 x < 10 Next one: x + 3 > 14 x > 11 Solution: x < 10 or x > 11. (Math 1010) M / 12
16 2.5  Absolute Value Equations and Inequalties An absolute value equation contains a term with an absolute value expression. It may have no solution, or it may have one or more solutions. Example x = 3.6 x = 3.6 or x = 3.6 Example x = 12 No solution; an absolute value cannot be negative. To solve x = a, a 0 the algebraic expression inside the absolute value symbols x may be a or a. (Math 1010) M / 12
17 2.5  Solving Equations Simplify each side to have at most one absolute value expression. Write two linear equations  write one side equal to the other side, and then write one side equal to the opposite of the other side. Solve each linear equation one after the other. Check the solutions! It is possible for no solution or one solution. (Math 1010) M / 12
18 2.5  Solving Inequalities Absolute value inequalties match a conjunctive pair of statements (also, a compound inequality) or a disjunctive pair of statements. (Math 1010) M / 12
19 2.5  Solving Inequalities Absolute value inequalties match a conjunctive pair of statements (also, a compound inequality) or a disjunctive pair of statements. Example Solutions to x < 2 lie between 2 and 2. That is, 2 < x < 2. (Math 1010) M / 12
20 2.5  Solving Inequalities Absolute value inequalties match a conjunctive pair of statements (also, a compound inequality) or a disjunctive pair of statements. Example Solutions to x < 2 lie between 2 and 2. That is, 2 < x < 2. Example Solutions to x > 2 lie outside 2 and 2. That is, x < 2 or x > 2. (Math 1010) M / 12
21 Assignment Assignment: For Monday: 1. Read sections 3.1 and Exercises from 2.4, 2.5 due Monday, September PreExam 1 Wednesday, September 18. (Math 1010) M / 12
Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
More informationWarm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2
28 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Solve. 1. y + 7 < 11 2. 4m 12 3. 5 2x 17 y < 18 m 3 x 6 Use interval notation to indicate the graphed numbers. 4. (2, 3] 5. (, 1] Objectives Solve
More informationChapter 1 Section 5: Equations and Inequalities involving Absolute Value
Introduction The concept of absolute value is very strongly connected to the concept of distance. The absolute value of a number is that number s distance from 0 on the number line. Since distance is always
More information7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
More informationREVIEW: Write each statement as an inequality and then graph the inequality.
LESSON 15 NOTES (Part A): SOLVING INEQUALITIES Words like "at most" and "at least" suggest a relationship in which two quantities may not be equal. These relationships can be represented by a mathematical
More informationSolving Inequalities Examples
Solving Inequalities Examples 1. Joe and Katie are dancers. Suppose you compare their weights. You can make only one of the following statements. Joe s weight is less than Kate s weight. Joe s weight is
More informationLinear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109  Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
More informationCompound Inequalities. AND/OR Problems
Compound Inequalities AND/OR Problems There are two types of compound inequalities. They are conjunction problems and disjunction problems. These compound inequalities will sometimes appear as two simple
More informationAbsolute Value Equations and Inequalities
. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between
More information( ) # 0. SOLVING INEQUALITIES and Example 1. Example 2
SOLVING INEQUALITIES 9.1.1 and 9.1.2 To solve an inequality in one variable, first change it to an equation and solve. Place the solution, called a boundary point, on a number line. This point separates
More informationSect Solving and graphing inequalities
81 Sect 2.7  Solving and graphing inequalities Concepts #1 & 2 Graphing Linear Inequalities Definition of a Linear Inequality in One Variable Let a and b be real numbers such that a 0. A Linear Inequality
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationSolving and Graphing Compound Inequalities of a Single Variable
Section 3.2 Chapter 3 Graphing Fundamentals Solving and Graphing Compound Inequalities of a Single Variable TERMINOLOGY 3.2 Prerequisite Terms: Absolute Value Inequality Your definition New Terms to Learn:
More informationInequalities  Absolute Value Inequalities
3.3 Inequalities  Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
More informationDefinition: Absolute Value The absolute value of a number is the distance that the number is from zero. The absolute value of x is written x.
R Absolute Values We begin this section by recalling the following definition Definition: Absolute Value The absolute value of a number is the distance that the number is from zero The absolute value of
More information1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
More informationAdvanced Algebra Chapter 1. Date Assignment Extra info
Advanced Algebra Chapter 1 Date Assignment Extra info Expectations/Getting to know you sheets Pg. 9 #1634(E), 3848(E), 54, 58 Pg. 15 #1927 all, 4962all Pg. 15 #2835(E), 4048(E), 7273 Pg. 24#2034(E),
More informationSection 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4.
Section 4.1 Inequalities & Applications Equations 3x + 7 = 13 y = 7 3x + 2y = 6 Inequalities 3x + 7 < 13 y > 7 3x + 2y 6 Symbols: < > 4.1 1 Overview of Linear Inequalities 4.1 Study Inequalities with One
More information3.5. Solving Inequalities. Introduction. Prerequisites. Learning Outcomes
Solving Inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,, > or
More informationMath 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)
Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What
More informationMath 1111 Journal Entries Unit I (Sections , )
Math 1111 Journal Entries Unit I (Sections 1.11.2, 1.41.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection
More informationLearning Objectives for Section 1.1 Linear Equations and Inequalities
Learning Objectives for Section 1.1 Linear Equations and Inequalities After this lecture and the assigned homework, you should be able to solve linear equations. solve linear inequalities. use interval
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More information2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
More informationAbsolute Value Equations and Inequalities
Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers
More informationTable of Contents Sequence List
Table of Contents Sequence List 368102215 Level 1 Level 5 1 A1 Numbers 010 63 H1 Algebraic Expressions 2 A2 Comparing Numbers 010 64 H2 Operations and Properties 3 A3 Addition 010 65 H3 Evaluating
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More informationLinear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
More informationLecture 7 : Inequalities 2.5
3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of
More informationEquations and Inequalities
Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.
More information1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.
1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know
More information7 th $Grade$ $Summer$Math$Packet$
13 Write, read, and evaluate expressions in which letters stand for numbers. 13a Write expressions that record operations with numbers and with letters standing for numbers. Objective: Write an algebraic
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More informationOrdered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.
Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value
More informationFlorida Department of Education/Office of Assessment January 2012. Algebra 1 EndofCourse Assessment Achievement Level Descriptions
Florida Department of Education/Office of Assessment January 2012 Algebra 1 EndofCourse Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationHigh School Mathematics Algebra
High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.
More informationLesson 7: Solving Absolute Value Inequalities. Absolute Value Inequalities with Less Than (<)
Lesson 7: Solving Absolute Value Absolute Value with Less Than () x > 5 For all real numbers, a and b, if b>0, then the following statements are true. 1. If
More informationAlgebra 12. A. Identify and translate variables and expressions.
St. Mary's College High School Algebra 12 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used
More informationAbsolute Value Equations
Absolute Value Equations Discussion: Absolute value refers to the measure of distance from zero f any value on the number line. F example, the absolute value of 3 is 3 (written as ) because there are three
More informationMath 407A: Linear Optimization
Math 407A: Linear Optimization Lecture 4: LP Standard Form 1 1 Author: James Burke, University of Washington LPs in Standard Form Minimization maximization Linear equations to linear inequalities Lower
More information1.1 Solving a Linear Equation ax + b = 0
1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x = 0 x = (ii)
More informationGuide to SRW Section 1.7: Solving inequalities
Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is 65 43 21 0
More information3.5. Solving inequalities. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,,> or
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationSummer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2
Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level
More informationLINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
More informationWhat students need to know for... ALGEBRA II
What students need to know for... ALGEBRA II 20152016 NAME Students expecting to take Algebra II at Cambridge Rindge & Latin School should demonstrate the ability to... General: o Keep an organized notebook
More informationLesson 22: Solution Sets to Simultaneous Equations
Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationSession 3 Solving Linear and Quadratic Equations and Absolute Value Equations
Session 3 Solving Linear and Quadratic Equations and Absolute Value Equations 1 Solving Equations An equation is a statement expressing the equality of two mathematical expressions. It may have numeric
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationSolving and Graphing Inequalities
Algebra I Pd Basic Inequalities 3A What is the answer to the following questions? Solving and Graphing Inequalities We know 4 is greater than 3, so is 5, so is 6, so is 7 and 3.1 works also. So does 3.01
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationYear 6 Maths Objectives
Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers
More informationInequalities  Compound Inequalities
3.2 Inequalities  Compound Inequalities Objective: Solve, graph and give interval notation to the solution of compound inequalities. Several inequalities can be combined together to form what are called
More information13 Absolute Value in Equations and Inequalities
SECTION 1 3 Absolute Value in Equations and Inequalities 103 13 Absolute Value in Equations and Inequalities Z Relating Absolute Value and Distance Z Solving Absolute Value Equations and Inequalities
More informationIsolate the absolute value expression. Add 5 to both sides and then divide by 2.
11 of 21 8/14/2014 2:35 PM of a variable expression. You can use the definition of absolute value to solve absolute value equations algebraically. Since then the equation ax + b = c is equivalent to (ax
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More information3.1 Graphically Solving Systems of Two Equations
3.1 Graphicall Solving Sstems of Two Equations (Page 1 of 24) 3.1 Graphicall Solving Sstems of Two Equations Definitions The plot of all points that satisf an equation forms the graph of the equation.
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationCHAPTER 2. Inequalities
CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential
More informationEVERY DAY: Practise and develop oral and mental skills (e.g. counting, mental strategies, rapid recall of +, and x facts)
Year 6/Band 6 Autumn Term Maths Curriculum Progression and Assessment Criteria EVERY DAY: Practise and develop oral and mental skills (e.g. counting, mental strategies, rapid recall of +, and x facts)
More informationChapter Exam Review for MAT098  Prealgebra Chapters 12: Whole Numbers and Introduction to Algebra & Integers and Introduction to Solving Equations
Chapter Exam Review for MAT098  Prealgebra Chapters 12: Whole Numbers and Introduction to Algebra & Integers and Introduction to Solving Equations Chapters 12 Learning Objectives: In chapter 1 students
More informationPreAlgebra Notes: , Absolute Value and Integers. Name: Block: Date: Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }
Name: Block: Date: Section 2.1: Integers and Absolute Value We remember from our previous lesson that the set Z of integers looks like: Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, } Why do we care about
More informationAlgebra 6.1 Solving Inequalities by Addition and Subtraction
Algebra Chapter 6 Solving Linear Inequalities K: Students will know how to solve and graph inequalities and absolute value equations. U: Students will understand the similarities and differences between
More informationLecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties
Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an
More informationhttps://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...
of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach BellRinger Activity Students
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationBig Bend Community College. Beginning Algebra MPC 095. Lab Notebook
Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond
More informationDOK 1. Algebra 1 Standards: Section: Essential Question: Questions, Vocabulary, Side notes:
Algebra 1 Standards: Algebra 1 CCSS Prep for A.REI.3 Students will learn how to write, solve, and graph inequalities on a number line. Section: HW Side notes: Essential Question: What is a solution to
More informationREVIEW, pages
REVIEW, pages 69 697 8.. Sketch a graph of each absolute function. Identif the intercepts, domain, and range. a) = ƒ  + ƒ b) = ƒ ( + )(  ) ƒ 8 ( )( ) Draw the graph of. It has intercept.. Reflect, in
More informationAlgebra Course KUD. Green Highlight  Incorporate notation in class, with understanding that not tested on
Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight  Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and
More information1 of 43. Simultaneous Equations
1 of 43 Simultaneous Equations Simultaneous Equations (Graphs) There is one pair of values that solves both these equations: x + y = 3 y x = 1 We can find the pair of values by drawing the lines x + y
More informationMATH REFRESHER I. Notation, Solving Basic Equations, and Fractions. Rockefeller College MPA Welcome Week 2016
MATH REFRESHER I Notation, Solving Basic Equations, and Fractions Rockefeller College MPA Welcome Week 2016 Lucy C. Sorensen Assistant Professor of Public Administration and Policy 1 2 Agenda Why Are You
More informationMath Foundations IIB Grade Levels 912
Math Foundations IIB Grade Levels 912 Math Foundations IIB introduces students to the following concepts: integers coordinate graphing ratio and proportion multistep equations and inequalities points,
More informationLINEAR EQUATIONS. Example: x + 2 = 4 Linear equation: highest exponent of the variable is 1.
LINEAR EQUATIONS A linear equation can be defined as an equation in which the highest exponent of the equation variable is one. When graphed, the equation is shown as a single line. Example: x + = 4 Linear
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationLAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1Semester 2 Grade Level: 1012 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
More information3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
More informationy y y 5
Sstems of Linear Inequalities SUGGESTED LEARNING STRATEGIES: Marking the Tet, Quickwrite, Create Representations. Graph each inequalit on the number lines and grids provided. M Notes ACTIVITY.7 Inequalit
More informationBasic Understandings. Recipes for Functions Guess My Rule!
Activity: TEKS: Recipes for Functions Guess My Rule! (a). (3) Function concepts. A function is a fundamental mathematical concept; it expresses a special kind of relationship between two quantities. Students
More informationRockhurst High School Algebra 1 Topics
Rockhurst High School Algebra 1 Topics Chapter 1 PreAlgebra Skills Simplify a numerical expression using PEMDAS. Substitute whole numbers into an algebraic expression and evaluate that expression. Substitute
More information3.5. Solving inequalities. Introduction. Prerequisites. Learning Outcomes
Solving inequalities 3.5 Introduction An inequality is an expression involving one of the symbols,, > or
More information1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B. Whole Numbers
Whole Numbers Scope and Sequence for Primary Mathematics, U.S. Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced or specifically addressed. Understand
More informationVariable. 1.1 Order of Operations. August 17, evaluating expressions ink.notebook. Standards. letter or symbol used to represent a number
1.1 evaluating expressions ink.notebook page 8 Unit 1 Basic Equations and Inequalities 1.1 Order of Operations page 9 Square Cube Variable Variable Expression Exponent page 10 page 11 1 Lesson Objectives
More informationMAT 0950 Course Objectives
MAT 0950 Course Objectives 5/15/20134/27/2009 A student should be able to R1. Do long division. R2. Divide by multiples of 10. R3. Use multiplication to check quotients. 1. Identify whole numbers. 2. Identify
More informationAlgebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students notetaking, problemsolving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
More informationMath Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
More informationMATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
More informationWentzville School District Curriculum Development Template Stage 1 Desired Results
Wentzville School District Curriculum Development Template Stage 1 Desired Results Unit Title: Radicals and Radical Expressions Course: Middle School Algebra 1 Unit 10 Radicals and Radical Expressions
More informationLetter to the Student... 5 Letter to the Family... 6 Correlation of Mississippi Competencies and Objectives to Coach Lessons... 7 Pretest...
Table of Contents Letter to the Student........................................... 5 Letter to the Family............................................. 6 Correlation of Mississippi Competencies and Objectives
More informationALGEBRA I A PLUS COURSE OUTLINE
ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best
More informationSECTION 14 Absolute Value in Equations and Inequalities
14 Absolute Value in Equations and Inequalities 37 SECTION 14 Absolute Value in Equations and Inequalities Absolute Value and Distance Absolute Value in Equations and Inequalities Absolute Value and
More informationSolving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter
Mathematics Learning Centre Solving inequalities Jackie Nicholas Jacquie Hargreaves Janet Hunter c 6 Universit of Sdne Mathematics Learning Centre, Universit of Sdne Solving inequalities In these nots
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationCD 1 Real Numbers, Variables, and Algebraic Expressions
CD 1 Real Numbers, Variables, and Algebraic Expressions The Algebra I Interactive Series is designed to incorporate all modalities of learning into one easy to use learning tool; thereby reinforcing learning
More information