# Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode

Save this PDF as:

Size: px
Start display at page:

Download "Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode"

## Transcription

1 Summarizing Scores with Measures of Central Tendency: The Mean, Median, and Mode

2 Outline of the Course III. Descriptive Statistics A. Measures of Central Tendency (Chapter 3) 1. Mean 2. Median 3. Mode B. Measures of Variability (Chapter 4) 1. Range 2. Mean deviation 3. Variance 4. Standard Deviation C. Skewness (Chapter 2) 1. Positive skew 2. Normal distribution 3. Negative skew D. Kurtosis 1. Platykurtic 2. Mesokurtic 3. Leptokurtic

3 The goal of measures of central tendency is to come up with the one single number that best describes a distribution of scores. Lets us know if the distribution of scores tends to be composed of high scores or low scores.

4 There are three basic measures of central tendency, and choosing one over another depends on two different things. 1. The scale of measurement used, so that a summary makes sense given the nature of the scores. 2. The shape of the frequency distribution, so that the measure accurately summarizes the distribution.

5 Mode The most common observation in a group of scores. Distributions can be unimodal, bimodal, or multimodal. If the data is categorical (measured on the nominal scale) then only the mode can be calculated. The most frequently occurring score (mode) is Vanilla. Flavor f 30 Vanilla 28 Chocolate 22 f Strawberry Neapolitan 8 Butter Pecan 12 Rocky Road 9 Fudge Ripple Vanilla Chocolate Strawberry Neapolitan Butter Pecan Rocky Road Fudge Ripple

6 Mode The mode can also be calculated with ordinal and higher data, but it often is not appropriate. If other measures can be calculated, the mode would never be the first choice! 7, 7, 7, 20, 23, 23, 24, 25, 26 has a mode of 7, but obviously it doesn t make much sense.

7 Median The number that divides a distribution of scores exactly in half. The median is the same as the 50th percentile. Better than mode because only one score can be median and the median will usually be around where most scores fall. If data are perfectly normal, the mode is the median. The median is computed when data are ordinal scale or when they are highly skewed.

8 Median There are three methods for computing the median, depending on the distribution of scores. First, if you have an odd number of scores pick the middle score Median is 7 Second, if you have an even number of scores, take the average of the middle two Median is (7+8)/2 = 7.5 Third, if you have several scores with the same value in the middle of the distribution use the formula for percentiles (not found in your book).

9 Mean The arithmetic average, computed simply by adding together all scores and dividing by the number of scores. It uses information from every single score. For a population: μ = ΣX N For a Sample: X = ΣX n

10 Mean Other Notes If data are perfectly normal, then the mean, median and mode are exactly the same. I would prefer to use the mean whenever possible since it uses information from EVERY score. Though the preferred symbol for the mean is an X with a line over the top, creating this symbol is pretty tricky on the computer. APA style says: X = M

11 The Shape of Distributions With perfectly bell shaped distributions, the mean, median, and mode are identical. With positively skewed data, the mode is lowest, followed by the median and mean. With negatively skewed data, the mean is lowest, followed by the median and mode.

12 Mean vs. Median Salary Example On one block, the income from the families are (in thousands of dollars) 40, 42, 41, 45, 38, 40, 42, 500 ΣX=788, X = ΣX n = 788 = The Mean salary for this sample is \$98,500 which is more than twice almost all of the scores. Arrange the scores 38, 40, 40, 41, 42, 42, 45, 500 The middle two # s are 41 and 42, thus the average is \$41500, perhaps a more accurate measure of central tendency.

13 Mean vs. Median Reaction Time Example Data is time to complete task (in s): 45, 34, 87, 56, 21, didn t finish, 49 It is not possible to compute a mean with this unknown number. Even though we do not know this person s time, I do know it is REALLY big. 21, 34, 45, 49, 56, 87, something bigger The median is the middle number, 49

14 Mean Algebra Revisited Its useful to consider the formula as the same as any other algebraic formulas, subject to the same rules. X = ΣX n X n = ΣX Therefore, if we know the mean of a group of scores, we can figure out the ΣX.

15 Mean Weighted Mean Lets pretend that one semesters class of 23 students scored M 1 = 18 points on a quiz. The same quiz was then given the next semester to 34 students who then got M 2 = 22 points. What is the overall (weighted) mean for these 57 students. ΣX 1 can be computed by multiplying M 1 times the sample size (ΣX 1 = M 1 *n 1 = 18*23 = 414). For the second class, ΣX 2 = M 2 *n 2 = 22 * 34 = 748 ΣX total = ΣX 1 + ΣX 2 = = 1206 n total = n 1 + n 2 = = 57 M total = ΣX total / n total = 1206/57 =

16 Mean Adding a Score On the first exam, 15 students had M = 85. One kid came in late and took the test and scored 53, what is M new? ΣX original = M original *n original = 85*15 = 1275 ΣX new = ΣX original + new score = = 1328 n new = n original + 1 M new = ΣX new /n new = 1328/16 = 83

17 Mean Changing an Existing Score On the first exam, 16 students had M = 83. One kid came in after the test and complained, I listened and decided to give him 10 extra points, now what? ΣX original = M original *n original = 83*16 = 1328 ΣX new = ΣX original + extra points = = 1338 M new = ΣX new /n = 1338/16 =

18 Mean Transformations If a constant is added (or subtracted) to each score, the same constant will be added (or subtracted) to the mean. If M for an exam is 82, then I find that I screwed up a question and give everyone 5 extra points, M simply becomes 82+5=87. If every score is multiplied or divided by a constant number, then the mean will also be multiplied or divided by the same number. This last property is particularly useful when converting between units of measurement. If the M for the height of a group of first-graders is 47 inches, but I need to know their heights in cm I could: Take every kids height * 2.54, then recompute M Or, I could take the mean times 2.54 and conclude the M height of these kids is cm.

19 Deviations around the Mean A common formula we will be working with extensively is the deviation: X X = X ΣX n ΣX = 72 n = 8 = 72 = 8 9 Exam Score X X (7-9) = -2 (6-9) = -3 (8-9) = -1 (9-9) = 0 (12-9) = 3 (10-9) = 1 (11-9) = 2 (9-9) = 0 ( X X ) = 0

20 Using the Mean to Interpret Data Predicting Scores If asked to predict a score, and you know nothing else, then predict the mean. However, we will probably be wrong, and our error will equal: X X A score s deviation indicates the amount of error we have when using the mean to predict an individual score.

21 Using the Mean to Interpret Data Describing a Score s Location If you take a test and get a score of 45, the 45 means nothing in and of itself. However, if you learn that the M = 50, then we know more. Your score was 5 units BELOW M. Positive deviations are above M. Negatives deviations are below M. Large deviations indicate a score far from M. Large deviations occur less frequently.

22 Using the Mean to Interpret Data Describing the Population Mean Remember, we usually want to know population parameters, but populations are too large. So, we use the sample mean to estimate the population mean. X μ

### ( ) ( ) Central Tendency. Central Tendency

1 Central Tendency CENTRAL TENDENCY: A statistical measure that identifies a single score that is most typical or representative of the entire group Usually, a value that reflects the middle of the distribution

### Homework 3. Part 1. Name: Score: / null

Name: Score: / Homework 3 Part 1 null 1 For the following sample of scores, the standard deviation is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 2 2 For any set of data, the sum of the deviation scores

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

### Frequency Distributions

Descriptive Statistics Dr. Tom Pierce Department of Psychology Radford University Descriptive statistics comprise a collection of techniques for better understanding what the people in a group look like

### CHAPTER 3 CENTRAL TENDENCY ANALYSES

CHAPTER 3 CENTRAL TENDENCY ANALYSES The next concept in the sequential statistical steps approach is calculating measures of central tendency. Measures of central tendency represent some of the most simple

### Measures of Center Section 3-2 Definitions Mean (Arithmetic Mean)

Measures of Center Section 3-1 Mean (Arithmetic Mean) AVERAGE the number obtained by adding the values and dividing the total by the number of values 1 Mean as a Balance Point 3 Mean as a Balance Point

### Chapter 3 : Central Tendency

Chapter 3 : Central Tendency Overview Definition: Central tendency is a statistical measure to determine a single score that t defines the center of a distribution. The goal of central tendency is to find

### Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

### STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

### Lesson 4 Measures of Central Tendency

Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

### MEASURES OF CENTRAL TENDENCY

CHAPTER 5 MEASURES OF CENTRAL TENDENCY OBJECTIVES After completing this chapter, you should be able to define, discuss, and compute the most commonly encountered measures of central tendency the mean,

### Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

### Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

### Chapter 3 Central Tendency

Chapter 3 Central Tendency PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry B. Wallnau Learning Outcomes 1 2 3 4 5 6 Understand

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### The Normal Distribution

The Normal Distribution Cal State Northridge Ψ320 Andrew Ainsworth PhD The standard deviation Benefits: Uses measure of central tendency (i.e. mean) Uses all of the data points Has a special relationship

### Data. ECON 251 Research Methods. 1. Data and Descriptive Statistics (Review) Cross-Sectional and Time-Series Data. Population vs.

ECO 51 Research Methods 1. Data and Descriptive Statistics (Review) Data A variable - a characteristic of population or sample that is of interest for us. Data - the actual values of variables Quantitative

### Midterm Review Problems

Midterm Review Problems October 19, 2013 1. Consider the following research title: Cooperation among nursery school children under two types of instruction. In this study, what is the independent variable?

### Chapter 6. The Standard Deviation as a Ruler and the Normal Model. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Copyright 2012, 2008, 2005 Pearson Education, Inc. The Standard Deviation as a Ruler The trick in comparing very different-looking values

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### CHINHOYI UNIVERSITY OF TECHNOLOGY

CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: DESCRIPTIVE STATISTICS - FREQUENCY DISTRIBUTIONS AND AVERAGES: Inferential and Descriptive Statistics: There are four

### Unit 4: Statistics Measures of Central Tendency & Measures of Dispersion

Unit 4: Statistics Measures of Central Tendency & Measures of Dispersion 1 Measures of Central Tendency a measure that tells us where the middle of a bunch of data lies most common are Mean, Median, and

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

### Central Tendency and Dispersion

4 Central Tendency and Dispersion In this chapter, you can learn how the values of the cases on a single variable can be summarized using measures of central tendency and measures of dispersion; how the

### MAT 142 College Mathematics Module #3

MAT 142 College Mathematics Module #3 Statistics Terri Miller Spring 2009 revised March 24, 2009 1.1. Basic Terms. 1. Population, Sample, and Data A population is the set of all objects under study, a

### consider the number of math classes taken by math 150 students. how can we represent the results in one number?

ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.

### Frequency Distributions

Displaying Data Frequency Distributions After collecting data, the first task for a researcher is to organize and summarize the data to get a general overview of the results. Remember, this is the goal

### We will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:

MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having

### In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing.

3.0 - Chapter Introduction In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing. Categories of Statistics. Statistics is

### Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

### Descriptive Statistics: Measures of Central Tendency and Crosstabulation. 789mct_dispersion_asmp.pdf

789mct_dispersion_asmp.pdf Michael Hallstone, Ph.D. hallston@hawaii.edu Lectures 7-9: Measures of Central Tendency, Dispersion, and Assumptions Lecture 7: Descriptive Statistics: Measures of Central Tendency

### Statistical Concepts and Market Return

Statistical Concepts and Market Return 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 2 2. Some Fundamental Concepts... 2 3. Summarizing Data Using Frequency Distributions...

### 11. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

11. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

### Nominal Scaling. Measures of Central Tendency, Spread, and Shape. Interval Scaling. Ordinal Scaling

Nominal Scaling Measures of, Spread, and Shape Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning The lowest level of

### Research Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement

Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.

### Introduction to Statistics for Computer Science Projects

Introduction Introduction to Statistics for Computer Science Projects Peter Coxhead Whole modules are devoted to statistics and related topics in many degree programmes, so in this short session all I

### Descriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2

Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

### Statistical Foundations: Measures of Location and Central Tendency and Summation and Expectation

Statistical Foundations: and Central Tendency and and Lecture 4 September 5, 2006 Psychology 790 Lecture #4-9/05/2006 Slide 1 of 26 Today s Lecture Today s Lecture Where this Fits central tendency/location

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

### Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

### Central Tendency. n Measures of Central Tendency: n Mean. n Median. n Mode

Central Tendency Central Tendency n A single summary score that best describes the central location of an entire distribution of scores. n Measures of Central Tendency: n Mean n The sum of all scores divided

### MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

### Describing Data. We find the position of the central observation using the formula: position number =

HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### (d) 20, 28, 23, 25, 3, 5, 30, 22, 18, 40, 16, 35, 1, 33, 12

Section 2 Answer Key: 0) Find the median and quartiles of each of the following sets of numbers. These represent the four cases that you should be able to compute using the rules in this course. (a) 23,

### Chapter 7 What to do when you have the data

Chapter 7 What to do when you have the data We saw in the previous chapters how to collect data. We will spend the rest of this course looking at how to analyse the data that we have collected. Stem and

### Mean To find the mean or average of a set of numbers, add them up and divide by the number of numbers. Sum of the terms Average= Number of terms

Mean To find the mean or average of a set of numbers, add them up and divide by the number of numbers. Sum of the terms Average= Number of terms At times you need to use the mean to find the sum. Then

### 1-2 Mean, Median, Mode, and Range

Learn to find the mean, median, mode, and range of a data set. mean median mode range outlier Vocabulary The mean is the sum of the data values divided by the number of data items. The median is the middle

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Free Pre-Algebra Lesson 24 page 1

Free Pre-Algebra Lesson page 1 Lesson Equations with Negatives You ve worked with equations for a while now, and including negative numbers doesn t really change any of the rules. Everything you ve already

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### DESCRIPTIVE STATISTICS & DATA PRESENTATION*

Level 1 Level 2 Level 3 Level 4 0 0 0 0 evel 1 evel 2 evel 3 Level 4 DESCRIPTIVE STATISTICS & DATA PRESENTATION* Created for Psychology 41, Research Methods by Barbara Sommer, PhD Psychology Department

### Each exam covers lectures from since the previous exam and up to the exam date.

Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,

### Recitation, Week 3: Basic Descriptive Statistics and Measures of Central Tendency:

Recitation, Week 3: Basic Descriptive Statistics and Measures of Central Tendency: 1. What does Healey mean by data reduction? a. Data reduction involves using a few numbers to summarize the distribution

### - Inter-Quartile Range, - Outliers, - Boxplots.

Today: - Inter-Quartile Range, - Outliers, - Boxplots. Reading for today: Start Chapter 4. Quartiles and the Five Number Summary - The five numbers are the Minimum (Q0), Lower Quartile (Q1), Median (Q2),

### Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS

Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction

### A Picture Really Is Worth a Thousand Words

4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram

### Rescaling and shifting

Rescaling and shifting A fancy way of changing one variable to another Main concepts involve: Adding or subtracting a number (shifting) Multiplying or dividing by a number (rescaling) Where have you seen

### Why do we measure central tendency? Basic Concepts in Statistical Analysis

Why do we measure central tendency? Basic Concepts in Statistical Analysis Chapter 4 Too many numbers Simplification of data Descriptive purposes What is central tendency? Measure of central tendency A

### Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

### CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

### Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

### LearnStat MEASURES OF CENTRAL TENDENCY, Learning Statistics the Easy Way. Session on BUREAU OF LABOR AND EMPLOYMENT STATISTICS

LearnStat t Learning Statistics the Easy Way Session on MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS MEASURES OF CENTRAL TENDENCY, DISPERSION AND SKEWNESS OBJECTIVES At the end of the session,

### Math 240 Practice Exam 1 Note: Show all work whenever possible for full credit. You may leave your answers in terms of fractions.

Name: (Solution on last page)... Math 240 Practice Exam 1 Note: Show all work whenever possible for full credit. You may leave your answers in terms of fractions. Formulas: 2 2 x x n x x s x x n f x f

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### 4. DESCRIPTIVE STATISTICS. Measures of Central Tendency (Location) Sample Mean

4. DESCRIPTIVE STATISTICS Descriptive Statistics is a body of techniques for summarizing and presenting the essential information in a data set. Eg: Here are daily high temperatures for Jan 6, 29 in U.S.

### Describing Data: Measures of Central Tendency and Dispersion

100 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 8 Describing Data: Measures of Central Tendency and Dispersion In the previous chapter we

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Chapter 5: The normal approximation for data

Chapter 5: The normal approximation for data Context................................................................... 2 Normal curve 3 Normal curve.............................................................

### Statistics Review Solutions

Statistics Review Solutions 1. Katrina must take five exams in a math class. If her scores on the first four exams are 71, 69, 85, and 83, what score does she need on the fifth exam for her overall mean

### Exemplar 8 Exploring the Effects of the Change of Data on the Measures of Central Tendency

Exemplar 8 Exemplar 8 Exploring the Effects of the Change of Data on the Measures of Central Tendency Objectives To explore and make conjectures on the effects on the measures of central tendency of data

PROBLEM SET 1 For the first three answer true or false and explain your answer. A picture is often helpful. 1. Suppose the significance level of a hypothesis test is α=0.05. If the p-value of the test

### Univariate Descriptive Statistics

Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin

### GRE MATH REVIEW #8. Charts and Tables

GRE MATH REVIEW #8 Charts and Tables These questions test your ability to read and interpret charts and graphs. The mathematics involved in these questions is nothing more than percentages, ratios, averages,

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### Lesson Plan. Mean Count

S.ID.: Central Tendency and Dispersion S.ID.: Central Tendency and Dispersion Summarize, represent, and interpret data on a single count or measurement variable. Use statistics appropriate to the shape

### Central Tendency and Variation

Contents 5 Central Tendency and Variation 161 5.1 Introduction............................ 161 5.2 The Mode............................. 163 5.2.1 Mode for Ungrouped Data................ 163 5.2.2 Mode

### Introduction to Regression. Dr. Tom Pierce Radford University

Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

### Math 016. Materials With Exercises

Math 06 Materials With Exercises June 00, nd version TABLE OF CONTENTS Lesson Natural numbers; Operations on natural numbers: Multiplication by powers of 0; Opposite operations; Commutative Property of

### Measures of Central Tendency

CHAPTER Measures of Central Tendency Studying this chapter should enable you to: understand the need for summarising a set of data by one single number; recognise and distinguish between the different

### x Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 3-1 Example 3-1: Solution

Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4

### Module 2 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation Inter-Quartile Range

### ACCUPLACER MATH TEST REVIEW

ACCUPLACER MATH TEST REVIEW ARITHMETIC ELEMENTARY ALGEBRA COLLEGE ALGEBRA The following pages are a comprehensive tool used to maneuver the ACCUPLACER UAS Math portion. This tests your mathematical capabilities

### Describing Data. Carolyn J. Anderson EdPsych 580 Fall Describing Data p. 1/42

Describing Data Carolyn J. Anderson EdPsych 580 Fall 2005 Describing Data p. 1/42 Describing Data Numerical Descriptions Single Variable Relationship Graphical displays Single variable. Relationships in

### MEASURES OF CENTER AND SPREAD MEASURES OF CENTER 11/20/2014. What is a measure of center? a value at the center or middle of a data set

MEASURES OF CENTER AND SPREAD Mean and Median MEASURES OF CENTER What is a measure of center? a value at the center or middle of a data set Several different ways to determine the center: Mode Median Mean

### 3.2 Measures of Central Tendency

3. Measures of Central Tendency outlier an element of a data set that is very different from the others mean a measure of central tendency found by dividing the sum of all the data by the number of pieces