Review the following from Chapter 5


 Aldous Marcus Tyler
 1 years ago
 Views:
Transcription
1 Bluman, Chapter 6 1
2 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that the procedure was successful on exactly two patients? b) The mean, variance and standard deviation of number of successful surgeries. Bluman, Chapter 6 2
3 Approximating a Binomial Distribution But what if the doctor performs the surgical procedure on 150 patients and you want to find the probability of fewer than 100 successful surgeries? To do this using the techniques described in chapter 5, you would have to use the binomial formula 100 times and find the sum of the resulting probabilities. This is not practical and a better approach is to use a normal distribution to approximate the binomial distribution.
4 6.4 The Normal Approximation to the Binomial Distribution A normal distribution is often used to solve problems that involve the binomial distribution since when n is large (say, 100), the calculations are too difficult to do by hand using the binomial distribution. Bluman, Chapter 6 4
5 The Normal Approximation to the Binomial Distribution The normal approximation to the binomial is appropriate when np > 5 and nq > 5. I. μ = np II. σ = npq where q = 1 p See page 274 for above formulas. Bluman, Chapter 6 5
6 The Normal Approximation to the Binomial Distribution In addition, a correction for continuity may be used in the normal approximation to the binomial. The continuity correction means that for any specific value of X, say 8, the boundaries of X in the binomial distribution (in this case, 7.5 to 8.5) must be used. Bluman, Chapter 6 6
7 Correction for Continuity
8 Websites The following websites simulate the concept. /stat_sim/normal_approx/index.html omdist/binomdist.html Bluman, Chapter 6 8
9 The Normal Approximation to the Binomial Distribution; see page 342 Binomial Normal When finding: Use: P(X = a) P(a 0.5 < X < a + 0.5) P(X a) P(X > a 0.5) P(X > a) P(X > a + 0.5) P(X a) P(X < a + 0.5) P(X < a) P(X < a 0.5) For all cases, np, npq, np 5, nq 5 Bluman, Chapter 6 9
10 Bluman, Chapter 6 10
11 The Normal Approximation to the Binomial Distribution Procedure Table Step 1: Check to see whether the normal approximation can be used. Step 2: Find the mean µ and the standard deviation. Step 3: Write the problem in probability notation, using X. Step 4: Rewrite the problem by using the continuity correction factor, and show the corresponding area under the normal distribution. Step 5: Find the corresponding z values. Step 6: Find the solution. Bluman, Chapter 6 11
12 Ex. 3: Approximating a Binomial Probability Thirtyseven percent of Americans say they always fly an American flag on the Fourth of July. You randomly select 15 Americans and ask each if he or she flies an American flag on the Fourth of July. What is the probability that fewer than eight of them reply yes? SOLUTION: From Example 1, you know that you can use a normal distribution with = 5.55 and 1.87 to approximate the binomial distribution. By applying the continuity correction, you can rewrite the discrete probability P(x < 8) as P (x < 7.5). The graph on the next slide shows a normal curve with = 5.55 and 1.87 and a shaded area to the left of 7.5. The zscore that corresponds to x = 7.5 is
13 Continued... z x Using the Standard Normal Table, P (z<1.04) = So, the probability that fewer than eight people respond yes is
14 Ex. 4: Approximating a Binomial Probability Twentynine percent of Americans say they are confident that passenger trips to the moon will occur during their lifetime. You randomly select 200 Americans and ask if he or she thinks passenger trips to the moon will occur in his or her lifetime. What is the probability that at least 50 will say yes? SOLUTION: Because np = = 58 and nq = = 142, the binomial variable x is approximately normally distributed with np 58 and npq
15 Ex. 4 Continued Using the correction for continuity, you can rewrite the discrete probability P (x 50) as the continuous probability P ( x 49.5). The graph shows a normal curve with = 58 and = 6.42, and a shaded area to the right of 49.5.
16 Ex. 4 Continued The zscore that corresponds to 49.5 is z x So, the probability that at least 50 will say yes is: P(x 49.5) = 1 P(z 1.32) = =
17 Chapter 6 Normal Distributions Section 64 Example 616 Page #343 Bluman, Chapter 6 17
18 Example 616: Reading While Driving A magazine reported that 6% of American drivers read the newspaper while driving. If 300 drivers are selected at random, find the probability that exactly 25 say they read the newspaper while driving. Here, p = 0.06, q = 0.94, and n = 300. Step 1: Check to see whether a normal approximation can be used. np = (300)(0.06) = 18 and nq = (300)(0.94) = 282 Since np 5 and nq 5, we can use the normal distribution. Step 2: Find the mean and standard deviation. µ = np = (300)(0.06) = npq Bluman, Chapter 6 18
19 Example 616: Reading While Driving Step 3: Write in probability notation. Step 4: Rewrite using the continuity correction factor. P(24.5 < X < 25.5) Step 5: Find the corresponding z values z 1.58, z Step 6: Find the solution P(X = 25) The area between the two z values is = , or 2.27%. Hence, the probability that exactly 25 people read the newspaper while driving is 2.27%. Bluman, Chapter 6 19
20 Chapter 6 Normal Distributions Section 64 Example 617 Page #343 Bluman, Chapter 6 20
21 Example 617: Widowed Bowlers Of the members of a bowling league, 10% are widowed. If 200 bowling league members are selected at random, find the probability that 10 or more will be widowed. Here, p = 0.10, q = 0.90, and n = 200. Step 1: Check to see whether a normal approximation can be used. np = (200)(0.10) = 20 and nq = (200)(0.90) = 180 Since np 5 and nq 5, we can use the normal distribution. Step 2: Find the mean and standard deviation. µ = np = (200)(0.06) = npq Bluman, Chapter 6 21
22 Example 617: Widowed Bowlers Step 3: Write in probability notation. Step 4: Rewrite using the continuity correction factor. P(X > 9.5) Step 5: Find the corresponding z values z Step 6: Find the solution P(X 10) The area to the right of the z value is = , or 99.34%. The probability of 10 or more widowed people in a random sample of 200 bowling league members is 99.34%. Bluman, Chapter 6 22
23 Study Tip In a discrete distribution, there is a difference between P (x c) and P( x > c). This is true because the probability that x is exactly c is not zero. In a continuous distribution, however, there is no difference between P (x c) and P (x >c) because the probability that x is exactly c is zero.
24 homework Sec 6.4 page 346 #513 odds Bluman, Chapter 6 24
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
More informationNormal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 11 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationChapter 6 Continuous Probability Distributions
Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability
More informationSOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
More informationAP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
More informationCh5: Discrete Probability Distributions Section 51: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
More informationChapter 5: Normal Probability Distributions  Solutions
Chapter 5: Normal Probability Distributions  Solutions Note: All areas and zscores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
More informationSampling Distribution of a Sample Proportion
Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given
More information16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of
More informationExercises  The Normal Curve
Exercises  The Normal Curve 1. Find e following proportions under e Normal curve: a) P(z>2.05) b) P(z>2.5) c) P(1.25
More informationStats Review chapters 78
Stats Review chapters 78 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More informationPROBLEM SET 1. For the first three answer true or false and explain your answer. A picture is often helpful.
PROBLEM SET 1 For the first three answer true or false and explain your answer. A picture is often helpful. 1. Suppose the significance level of a hypothesis test is α=0.05. If the pvalue of the test
More informationSampling Central Limit Theorem Proportions. Outline. 1 Sampling. 2 Central Limit Theorem. 3 Proportions
Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Outline 1 Sampling 2 Central Limit Theorem 3 Proportions Populations and samples When we use statistics, we are trying to find out information about
More information8.2 Confidence Intervals for One Population Mean When σ is Known
8.2 Confidence Intervals for One Population Mean When σ is Known Tom Lewis Fall Term 2009 8.2 Confidence Intervals for One Population Mean When σ isfall Known Term 2009 1 / 6 Outline 1 An example 2 Finding
More informationCHAPTER 6: ZSCORES. ounces of water in a bottle. A normal distribution has a mean of 61 and a standard deviation of 15. What is the median?
CHAPTER 6: ZSCORES Exercise 1. A bottle of water contains 12.05 fluid ounces with a standard deviation of 0.01 ounces. Define the random variable X in words. X =. ounces of water in a bottle Exercise
More informationThe Normal Curve. The Normal Curve and The Sampling Distribution
Discrete vs Continuous Data The Normal Curve and The Sampling Distribution We have seen examples of probability distributions for discrete variables X, such as the binomial distribution. We could use it
More informationComputing Binomial Probabilities
The Binomial Model The binomial probability distribution is a discrete probability distribution function Useful in many situations where you have numerical variables that are counts or whole numbers Classic
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.2 Homework Answers 5.29 An automatic grinding machine in an auto parts plant prepares axles with a target diameter µ = 40.125
More informationSection 5 3 The Mean and Standard Deviation of a Binomial Distribution
Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a
More informationTree Diagrams. on time. The man. by subway. From above tree diagram, we can get
1 Tree Diagrams Example: A man takes either a bus or the subway to work with probabilities 0.3 and 0.7, respectively. When he takes the bus, he is late 30% of the days. When he takes the subway, he is
More informationChapter 6 Random Variables
Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationSampling Distribution of a Normal Variable
Ismor Fischer, 5/9/01 5.1 5. Formal Statement and Examples Comments: Sampling Distribution of a Normal Variable Given a random variable. Suppose that the population distribution of is known to be normal,
More informationLecture 5 : The Poisson Distribution. Jonathan Marchini
Lecture 5 : The Poisson Distribution Jonathan Marchini Random events in time and space Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More informationgiven that among year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20...
Probability  Chapter 5 given that among 1214 year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20... 5.6 What percentage of boys in this age range
More information4.4 Other Discrete Distribution: Poisson and Hypergeometric S
4.4 Other Discrete Distribution: Poisson and Hypergeometric S S time, area, volume, length Characteristics of a Poisson Random Variable 1. The experiment consists of counting the number of times x that
More informationNormal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College
Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission
More informationReview Exam Suppose that number of cars that passes through a certain rural intersection is a Poisson process with an average rate of 3 per day.
Review Exam 2 This is a sample of problems that would be good practice for the exam. This is by no means a guarantee that the problems on the exam will look identical to those on the exam but it should
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationSolutions to Homework 7 Statistics 302 Professor Larget
s to Homework 7 Statistics 30 Professor Larget Textbook Exercises.56 Housing Units in the US (Graded for Accurateness According to the 00 US Census, 65% of housing units in the US are owneroccupied while
More informationTopic 5 Review [81 marks]
Topic 5 Review [81 marks] A foursided die has three blue faces and one red face. The die is rolled. Let B be the event a blue face lands down, and R be the event a red face lands down. 1a. Write down
More informationThe ChiSquare Distributions
MATH 183 The ChiSquare Distributions Dr. Neal, WKU The chisquare distributions can be used in statistics to analyze the standard deviation " of a normally distributed measurement and to test the goodness
More information5.3. The Poisson distribution. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Poisson distribution 5.3 Introduction In this block we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and where
More informationStat1600 Solution to Midterm #2 Form A
Stat1600 Solution to Midterm #2 Form A 1. (10 points) According to the Centers for Disease Control and Prevention, 33.5% U.S. adults have high LDL, or bad, cholestrol. Given a random sample of n=12 U.S.
More informationReview for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair sixsided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
More informationAP * Statistics Review. Probability
AP * Statistics Review Probability Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,
More informationChapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
More informationThe number of phone calls to the attendance office of a high school on any given school day A) continuous B) discrete
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) State whether the variable is discrete or continuous.
More informationProperties of Expected values and Variance
Properties of Expected values and Variance Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Expected value Consider a random variable Y = r(x ) for some function r, e.g. Y = X 2 +
More informationStatistics 100 Binomial and Normal Random Variables
Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random
More informationContinuous Distributions, Mainly the Normal Distribution
Continuous Distributions, Mainly the Normal Distribution 1 Continuous Random Variables STA 281 Fall 2011 Discrete distributions place probability on specific numbers. A Bin(n,p) distribution, for example,
More informationSTAT 200 QUIZ 2 Solutions Section 6380 Fall 2013
STAT 200 QUIZ 2 Solutions Section 6380 Fall 2013 The quiz covers Chapters 4, 5 and 6. 1. (8 points) If the IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. (a) (3 pts)
More informationRandom Variable: A function that assigns numerical values to all the outcomes in the sample space.
STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.
More information6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function
Normal Distributions (Page 1 of 23) 6.1 Graphs of Normal Probability Distributions Normal Curve aka Probability Density Function Normal Probability Distribution TP TP µ! " µ µ +! x xaxis Important Properties
More informationProbability. Experiment is a process that results in an observation that cannot be determined
Probability Experiment is a process that results in an observation that cannot be determined with certainty in advance of the experiment. Each observation is called an outcome or a sample point which may
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationMATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables
MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More informationChapter 5. Section 5.1: Central Tendency. Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data.
Chapter 5 Section 5.1: Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Example 1: The test scores for a test were: 78, 81, 82, 76,
More information37.3. The Poisson distribution. Introduction. Prerequisites. Learning Outcomes
The Poisson distribution 37.3 Introduction In this block we introduce a probability model which can be used when the outcome of an experiment is a random variable taking on positive integer values and
More informationThe normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 5.1 Homework Answers 5.7 In the proofreading setting if Exercise 5.3, what is the smallest number of misses m with P(X m)
More informationWhat is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts
Basic Concepts Introduction to Probability A probability experiment is any experiment whose outcomes relies purely on chance (e.g. throwing a die). It has several possible outcomes, collectively called
More informationCopyright 2013 by Laura Schultz. All rights reserved. Page 1 of 6
Using Your TINSpire Calculator: Binomial Probability Distributions Dr. Laura Schultz Statistics I This handout describes how to use the binompdf and binomcdf commands to work with binomial probability
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationThis HW reviews the normal distribution, confidence intervals and the central limit theorem.
Homework 3 Solution This HW reviews the normal distribution, confidence intervals and the central limit theorem. (1) Suppose that X is a normally distributed random variable where X N(75, 3 2 ) (mean 75
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will get observations
More informationNormal approximation to the Binomial
Chapter 5 Normal approximation to the Binomial 5.1 History In 1733, Abraham de Moivre presented an approximation to the Binomial distribution. He later (de Moivre, 1756, page 242 appended the derivation
More informationThe basics of probability theory. Distribution of variables, some important distributions
The basics of probability theory. Distribution of variables, some important distributions 1 Random experiment The outcome is not determined uniquely by the considered conditions. For example, tossing a
More informationCHAPTER 7: THE CENTRAL LIMIT THEOREM
CHAPTER 7: THE CENTRAL LIMIT THEOREM Exercise 1. Yoonie is a personnel manager in a large corporation. Each month she must review 16 of the employees. From past experience, she has found that the reviews
More informationUnit 21: Binomial Distributions
Unit 21: Binomial Distributions Summary of Video In Unit 20, we learned that in the world of random phenomena, probability models provide us with a list of all possible outcomes and probabilities for how
More informationRandom Variables. Consider a probability model (Ω, P ). Discrete Random Variables Chs. 2, 3, 4. Definition. A random variable is a function
Rom Variables Discrete Rom Variables Chs.,, 4 Rom Variables Probability Mass Functions Expectation: The Mean Variance Special Distributions Hypergeometric Binomial Poisson Joint Distributions Independence
More informationLecture.7 Poisson Distributions  properties, Normal Distributions properties. Theoretical Distributions. Discrete distribution
Lecture.7 Poisson Distributions  properties, Normal Distributions properties Theoretical distributions are Theoretical Distributions 1. Binomial distribution 2. Poisson distribution Discrete distribution
More informationEach exam covers lectures from since the previous exam and up to the exam date.
Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,
More information62 The Standard Normal Distribution. Uniform Distribution. Density Curve. Area and Probability. Using Area to Find Probability
62 The Standard Normal Distribution This section presents the standard normal distribution which has three properties: 1. Its graph is bellshaped. 2. Its mean is equal to 0 (μ = 0). 3. Its standard deviation
More informationDEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Continuous Probability Distribution
DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Dr. Mohammad Zainal Continuous Probability Distribution 2 When a RV x is discrete,
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationthe number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?
Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of
More informationChapter 6: Random Variables
Chapter : Random Variables Section.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter Random Variables.1 Discrete and Continuous Random Variables.2 Transforming and Combining
More informationUnit 16 Normal Distributions
Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationThe normal approximation to the binomial
The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There
More informationIII. Famous Discrete Distributions: The Binomial and Poisson Distributions
III. Famous Discrete Distributions: The Binomial and Poisson Distributions Up to this point, we have concerned ourselves with the general properties of categorical and continuous distributions, illustrated
More informationHomework 4  KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4  KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 21 Since there can be anywhere from 0 to 4 aces, the
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin
More informationCHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
More informationDiscrete Random Variables and their Probability Distributions
CHAPTER 5 Discrete Random Variables and their Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Discrete Random Variable
More informationMAT 118 DEPARTMENTAL FINAL EXAMINATION (written part) REVIEW. Ch 13. One problem similar to the problems below will be included in the final
MAT 118 DEPARTMENTAL FINAL EXAMINATION (written part) REVIEW Ch 13 One problem similar to the problems below will be included in the final 1.This table presents the price distribution of shoe styles offered
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationContinuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.
UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,
More information39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes
The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and
More informationQuestion 1 Question 2 Question 3 Question 4 Question 5 Question 6. Math 144 tutorial April, 2010
Math 144 tutorial 7 12 April, 2010 1. Let us define S 2 = 1 n n i=1 (X i X) 2. Show that E(S 2 ) = n 1 n σ2. 1. Let us define S 2 = 1 n n i=1 (X i X) 2. Show that E(S 2 ) = n 1 n σ2. 1. Let us define S
More information76: Solving Open Sentences Involving Absolute Value. 76: Solving Open Sentences Involving Absolute Value
OBJECTIVE: You will be able to solve open sentences involving absolute value and graph the solutions. We need to start with a discussion of what absolute value means. Absolute value is a means of determining
More informationSection 8.5 Round answers to four decimal places.
This last WIR is based on homework problems. Section 8.5 Round answers to four decimal places. 1. a. Choose a sketch of the area under the standard normal curve corresponding to P(0.6 < Z < 1.8). a. b.
More informationBinomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
More information3. Continuous Random Variables
3. Continuous Random Variables A continuous random variable is one which can take any value in an interval (or union of intervals) The values that can be taken by such a variable cannot be listed. Such
More informationtable to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The zscores for 16 and 60 are: 60 38 = 1.
Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find
More informationCh. 6.1 #749 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.77340.5= 0.2734
Ch. 6.1 #749 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.77340.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.50.0192
More information6.1. Construct and Interpret Binomial Distributions. p Study probability distributions. Goal VOCABULARY. Your Notes.
6.1 Georgia Performance Standard(s) MM3D1 Your Notes Construct and Interpret Binomial Distributions Goal p Study probability distributions. VOCABULARY Random variable Discrete random variable Continuous
More informationRandom variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
More informationChapter 4. iclicker Question 4.4 Prelecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Prelecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Prelecture iclicker Question 4.4 Prelecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
More informationMath 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5
ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has
More informationCentral Limit Theorem
Central Limit Theorem General Idea: Regardless of the population distribution model, as the sample size increases, the sample mean tends to be normally distributed around the population mean, and its standard
More informationContinuous Distributions
MAT 2379 3X (Summer 2012) Continuous Distributions Up to now we have been working with discrete random variables whose R X is finite or countable. However we will have to allow for variables that can take
More information2. Discrete random variables
2. Discrete random variables Statistics and probability: 21 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More information