PPL(H) 52 Grundlagen des Fluges (Hubschrauber)

Size: px
Start display at page:

Download "PPL(H) 52 Grundlagen des Fluges (Hubschrauber)"

Transcription

1 Part-FCL Fragenkatalog PPL(H) gemäß Verordnung (EU) 1178/2011 und AMC FCL.115,.120, 210,.215 (Auszug) 52 Grundlagen des Fluges (Hubschrauber)

2 Herausgeber: AIRCADEMY LTD. LPLUS GmbH COPYRIGHT Vermerk: Dieses Werk ist urheberrechtlich geschützt. Die kommerzielle Nutzung des Werkes oder Ausschnitte aus dem Werk in Lehr- und Lernmedien ist nur nach vorheriger Zustimmung durch die Herausgeber erlaubt. Für Anfragen wenden Sie sich bitte an die Herausgeber Bitte beachten Sie, dass dieser Auszug ca. 75% der Aufgaben des gesamten Prüfungsfragenkataloges enthält. In der Prüfung werden auch unbekannte Aufgaben erscheinen. Revision & Qualitätssicherung Im Rahmen der stetigen Revision und Aktualisierung der internationalen Fragendatenbank für Privatpiloten (ECQB-PPL) sind wir stetig auf der Suche nach fachkompetenten Experten. Sollten Sie Interesse an einer Mitarbeit haben, wenden Sie sich per an Sollten Sie inhaltliche Anmerkungen oder Vorschläge zum Fragenkatalog haben, senden Sie diese bitte an v

3 1 Which ratio corresponds to the rotor disc loading? (1,00 P.) Rotor thrust / rotor disc Helicopter mass / rotor disc Rotor disc / helicopter mass Rotor thrust / rotor disc 2 What causes the phase lag between the displacement and the flapping of a rotor blade? (1,00 P.) Inertia, mass, and aerodynamic forces Advance or retreat angle of 90 Friction in the rotor blade spindles Rounding of the rotor blade tips 3 If the critical angle of attack is exceeded, the... (1,00 P.) transition point starts moving towards the airflow direction. laminar boundary layer turns into a turbulent boundary layer. boundary layer on the upper side of the rotor blade begins to separate. boundary layer on the lower side of the rotor blade begins to separate. 4 What types of airflow can be observed around a rotor blade aerofoil? (1,00 P.) Laminar airflow on the entire upper surface Turbulent airflow on the entire upper surface Turbulent airflow at the leading edge, laminar airflow further back Laminar airflow at the leading edge, turbulent airflow further back 5 What is the advantage of a turbulent airflow compared to a laminar airflow at an aerofoil with a high angle of attack? (1,00 P.) It adheres to the aerofoil for a longer time It has no form drag It has a thinner boundary layer The separation point moves further forward 6 The virtual rotation axis of a rotor is... (1,00 P.) perpendicular to the hub plane. parallel with the main rotor shaft. perpendicular to the tip path plane. perpendicular to the plane which contains the swash plate. v

4 7 The effective angle of attack is the angle between... (1,00 P.) chord line and tip path plane. effective airflow and tip path plane. effective airflow and chord line. tip path plane and rotor blade. 8 What kind of drag is caused by a lift-producing aerofoil? (1,00 P.) Induced drag Frictional drag Parasite drag Interference drag 9 What force affects the braking torque of the rotor in cruise? (1,00 P.) Inclined forward lift Upward directional rotor thrust Inclined rearward tangential force Inclined forward drag force 10 The rotor thrust is... (1,00 P.) perpendicular to the tip path plane. perpendicular to the hub plane. parallel with the main rotor shaft. opposite to the rotation of the rotor blade element. 11 What happens to thrust and tangential force if the rotor RPM decreases by about 10 % in cruise flight? (1,00 P.) The thrust and the tangential force increase The thrust and the tangential force decrease The thrust remains constant and the tangential force increases The thrust decreases and the tangential force remains constant 12 The effective airflow velocity of a rotor blade element varies with the distance from the rotor shaft axis, because the... (1,00 P.) tangential force and airflow reversal vary. peripheral speed increases if the displacement to the rotor blade tip decreases. helicopter airframe disturbs the airflow. drag force in direction of the rotaion axis is increased. v

5 13 Which of the stated relationships between lift and drag applies best for a flying helicopter (lift : drag)? (1,00 P.) 45 : 1 2 : 1 1 : 45 1 : 2 14 The reason for a stall at a given pitch angle can be... (1,00 P.) smaller effective angle of attack and small peripheral speed. smaller vertical airflow through the rotor and constant peripheral speed. constant peripheral speed and great vertical airflow through the rotor. smaller frontal resistance and turbulent airflow. 15 The neutral point is a point where... (1,00 P.) the entire helicopter mass can be assumed to attack. the aerodynamic forces act torque-free. the torque at the chord line remains constant for changing angles of attack. the imaginary axes of a helicopter meet each other. 16 What shape of a rotor blade has a positive impact on the lift distribution? (1,00 P.) Rectangular blade with a geometric setting of 1 Trapezoidal blade without radius at the blade tip Double trapezoidal rotor blade with a radius at the blade tip Rectangular trapezoidal blade with no aerodynamic twist 17 The rotor blade shape takes effect on the... (1,00 P.) lift distribution. rotor head used. noch sensitivity. structural take-off mass. 18 The drive system of the autogyro's main rotor is based on... (1,00 P.) an engine in the cabin. a fan in the cabin. an engine at the rotor blade tip. the speed of the airflow. v

6 19 The rotor RPM is kept constant in the helicopter by the engine RPM. It can be influenced by the... (1,00 P.) collective. throttle and the governor. cyclic stick. starter and the impulse coupling. 20 The beam theory enables statements about the... (1,00 P.) drag in cruise flight. power requirements during hover flight. transition lift close to the ground. energy conversion in an autorotation. 21 During hover flight, the induced airflow velocity... (1,00 P.) increases further having passed the rotor. remains constant after having passed the rotor. is equal above and below the rotor. decreases after having passed the rotor. 22 Why is a helicopter's climb initially accelerated after an increase of the pitch angle? (1,00 P.) The initially high airflow increases the rotor thrust until the lower air density reduces the rotor thrust again The larger pitch angle causes a decrease and a compression of the airflow until the climb rate corresponds to the induced velocity through the main rotor disc The inertia of the air increases the effective angle of attack temporarily until an additional component of the climb rate reduces the effective angle of attack again The conversion of energetic air into kinetic rotor energy decreases continuously with increasing density altitude 23 A helicopter with a rotor turning in an anti-clockwise direction seen from above, hovers sideways to the right. What is the azimuth angle where the main rotor blades have the biggest pitch angle? (1,00 P.) v

7 24 The airframe of an accelerating helicopter continues to bend until the... (1,00 P.) thrust passes in front of the centre of gravity. horizontal thrust component equals the drag. thrust passes behind the centre of gravity. vertical thrust component equals the drag. 25 What is the reason for retreating blade stall? (1,00 P.) Small pitch angle and large effective airflow Small cone angle and constant peripheral speed Large centrifugal forces of the peripheral speed Large pitch angle and small effective airflow 26 The induced airflow on the rotor of a helicopter in level flight has the greatest value at the... (1,00 P.) front rotor area. retreating rotor blade. rear rotor area. advancing rotor blade. 27 Which option describes the term "asymmetric airflow"? (1,00 P.) The displacement of the driving forces to the advancing rotor blade in a vertical autorotation During cruise flight the advancing rotor blade has more airflow than the retreating rotor blade The greater lift in the outer region of the rotor as opposed to the inner region The difference in required performance during hover in and out of ground effect 28 The transitional lift can be noticed by... (1,00 P.) an aural warning. vibrations. a loss of engine rpm. strong load factors. 29 Which statement about the rotor disc loading in a horizontal curve is correct? (1,00 P.) Effects depend on the type of helicopter It increases with increasing bank angle It decreases with increasing bank angle No change in relation to the cruise flight v

8 30 What action is necessary in a modern helicopter during the transition to a horizontal turn? (1,00 P.) Open the throttle in a helicopter with a rotor turning in an anti-clockwise direction seen from above Open the throttle in a helicopter with a rotor turning in a clockwise direction seen from above A control column movement forward or raising the collective A control column movement backward or raising the collective 31 Why does a stall begin on the retreating rotor blade at high cruise speeds? (1,00 P.) The airflow reaches subsonic speed and causes an increase of the induced drag The small pitch angle and a relatively low peripheral speed cause a small effective angle of attack The airflow reaches supersonic speed and causes an increase of the parasite drag The large pitch angle and relatively low peripheral speed cause a large effective angle of attack 32 Without corrective moves, a helicopter hovering in ground effect in no-wind conditions, will execute... (1,00 P.) slight upward and downward movements. pitching motion about the centre. fast yaw motions. rolling movements to about The ground effect is noticeable by... (1,00 P.) strong horizontal vibrations. larger power requirements. lower power requirements. strong vertical oscillations. 34 What can be expected during a hover flight in ground effect within a forest glade? (1,00 P.) Recirculation of air masses and an impairment of the ground effect Useful ground effect caused by a smaller induced airflow Aspiration of the tail rotor in the direction of the forest and a performance gain No air turbulence through the slipstream and stable attitude 35 Which landing site (no wind) prevents the impairment of the ground effect? (1,00 P.) Elevated helipad Plain terrain Narrow forest glade Sloping ground v

9 36 What is the result of the vortex ring state? (1,00 P.) The helicopter loses power The rotor RPM increases The helicopter is more stable The sink rate increases uncontrollably 37 What is the correct way to counteract the vortex ring state? (1,00 P.) Raise collective and decrease rotor RPM Try to gain airspeed and enter autorotation Open throttle and pull back the stick Raise collective and pull back the stick 38 What is the effect of vortex ring state? (1,00 P.) Stable descent and high-frequency vibrations in the helicopter Fluctuations in rotor and engine RPM High rate of descent and irregular pitch, roll, and yaw motions Decreased rate of descent and strong vibrations from the engine 39 What is the risk arising in a vertical autorotation with a subsequent increase in airspeed prior to the landing? (1,00 P.) Vortex ring state High rotor RPM Misjudgement when increasing the airspeed Loss of the tail rotor efficiency 40 What is the reason for the driving forces in an autorotation? (1,00 P.) Increased pitch angle Downward tilted effective airflow High airspeeds Low rate of descent 41 During an autorotation the airspeed is limited by... (1,00 P.) the interference drag during low rates of descent. the landing gear during the touchdown. the displacement of the stall regions in the inner area of the rotor blade. the drift of the driving forces on the returning blade. v

10 42 Which of the following options has an effect on the autorotation characteristics? (1,00 P.) Helicopter mass and density altitude Air temperature and wind speed Smoothly working tail rotor control and low RPM warning systems Pressure altitude and wind speed 43 During an autorotation with forward speed of a helicopter the driving forces are located in the... (1,00 P.) inner region. outer region. region of the advancing rotor blade. region of the retreating rotor blade. 44 During an autorotation a helicopter accelerates from 60 to 90 knots without further corrections. The rotor RPM will... (1,00 P.) increase. remain constant. decrease. vary. 45 What action has no effect on the rotor RPM in an autorotation? (1,00 P.) Centre of gravity displacement. Pitch angle change. Utilisation of friction brake. Transition into a turning flight. 46 After entering an autorotation a large helicopter mass leads to... (1,00 P.) a small rate of descent in a vertical autorotation. a large change in center of gravity. a rapid collapse of the rotor RPM. a rapid build-up of the rotor RPM. 47 What shall be considered before terminating a turn in an autorotation? (1,00 P.) The decreasing gravity relieves the main rotor and the helicopter cabin The Coriolis force causes an increase in the main rotor rpm The pitch angle must be decreased by using the collective pitch lever again The flight velocity shall be increased to obtain all the kinetic energy v

11 48 Which energies serve to maintain the rotor rpm in an autorotation? (1,00 P.) Rotational and linear energy Potential or kinetic energy Frictional and flow energy Mechanical or chemical energy 49 The maximum range in an autorotation will be achieved by... (1,00 P.) a relatively high effective angle of attack. a negative effective angle of attack. a relatively low effective angle of attack. a neutral effective angle of attack. 50 Why does a flare during an autorotation generate higher rotor RPM? (1,00 P.) The pitch angle increases The ground effect leads to better performance The vertical airflow through the rotor disc increases The tangential force tilts backwards 51 Which movement is caused by the Coriolis effect on the advancing rotor blade? (1,00 P.) Flapping downwards Drag movement forwards Mass movement outwards Tilt movement backwards 52 Which factor affects the available response time to initiate an autorotation after engine failure? (1,00 P.) Functionality of the coupling Inertia of the main rotor system Profile shape of the rotor blades Movement of the pressure point 53 Which statement about the required force to change the pitch angle is correct? (1,00 P.) It is the smallest by using an advance angle of 90 It must be greater than the tangential force It is the smallest by using a delta-three-hinge It must be greater than the rotor disc loading v

12 54 Why do helicopters with a semi-rigid rotor system react slower than others? (1,00 P.) The central flapping hinge does not transmit any moments The lowered attachment of the rotor blades allows a transmission of forces The angled lag hinges prevent the transmission of aerodynamic forces on the helicopter frame The missing lag hinges cause a rotor imbalance 55 The pitch angle of a tail rotor blade is changed... (1,00 P.) symmetrically. cyclically. collectively. asymmetrically. 56 A delta-three hinge is used to allow... (1,00 P.) for a decreased pitch angle at an upwards flapping blade. the advancing blade to lead about the hinge. the advancing blade to drag about the hinge. the advancing blade to flap up about the hinge. 57 What needs to be observed in conjunction with a temporary loss of tail rotor efficiency in a stationary hover? (1,00 P.) Mechanical blockage of the control Vortex ring stage of the tail rotor Rotating movement in the main rotor direction Loss of the main rotor thrust 58 What is caused by an increase of stability in a helicopter? (1,00 P.) A decrease of the required control forces An enhance of control under negative load factors An increase of general flight safety An optimization of the maximum helicopter mass 59 What is caused by an increase of stability in a helicopter? (1,00 P.) A decrease of the required control forces An enhance of control under all load factors A relief of the pilot in command An optimization of the maximum helicopter mass v

13 60 Why are the stability criteria of a helicopter very important? (1,00 P.) Low stability reduces the available control forces High stability prevents low load factors A lack of stability may lead to loss of control Large stability increases the maximum take-off mass 61 The helicopter's stability is increased by... (1,00 P.) decreasing the rotor mass. reducing the rotor RPM. attaching a stabilizer. pivoting the drag hinge. 62 What is the purpose of the vertical stabilizer? (1,00 P.) Improvement of directional stability Reduction of manoeuvre stability Adjustment of longitudinal stability Compensation of tail rotor stability 63 An increase of stability in a helicopter causes... (1,00 P.) a reduced controllability. an enhancement of control under negative load factors. a decrease of general aviation safety. an optimization of the maximum helicopter mass. 64 What behavior does a helicopter without stabilization systems show after external disturbances in a hover, without a corrective action? (1,00 P.) Statically stable and dynamically stable Statically stable and dynamically indifferent Statically indifferent and dynamically instable Statically stable and dynamically instable 65 What relieves the helicopter in a low G manoeuvre? (1,00 P.) Increased vertical airflow through the rotor Weightlessness of the passengers during the push over Centrifugal force in parabolic flight during the entire manoeuvre Rolling movement of the helicopter to the right v

14 66 Vx is the speed... (1,00 P.) never to be exceeded. for the best rate of climb. for the best angle of climb. to rotate. 67 Vy is the speed... (1,00 P.) never to be exceeded. for the best rate of climb. for the best angle of climb. to rotate. v

Learning objectives 5.2 Principles of Flight - Helicopter

Learning objectives 5.2 Principles of Flight - Helicopter 082 00 00 00 PRINCIPLES OF FLIGHT HELICOPTER 082 01 00 00 SUBSONIC AERODYNAMICS 082 01 01 00 Basic concepts, laws and definitions 082 01 01 01 SI Units and conversion of units PPL: Conversion of units

More information

Aerodynamics of Flight

Aerodynamics of Flight Chapter 2 Aerodynamics of Flight Introduction This chapter presents aerodynamic fundamentals and principles as they apply to helicopters. The content relates to flight operations and performance of normal

More information

Certification Specifications for Large Rotorcraft CS-29

Certification Specifications for Large Rotorcraft CS-29 European Aviation Safety Agency Certification Specifications for Large Rotorcraft CS-29 11 December 2012 CS-29 CONTENTS (general layout) CS 29 LARGE ROTORCRAFT BOOK 1 CERTIFICATION SPECIFICATIONS SUBPART

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

Flightlab Ground School 5. Longitudinal Static Stability

Flightlab Ground School 5. Longitudinal Static Stability Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal

More information

Helicopter Emergencies and Hazards

Helicopter Emergencies and Hazards Chapter 11 Helicopter Emergencies and Hazards Introduction Today, helicopters are quite reliable. However, emergencies do occur, whether a result of mechanical failure or pilot error, and should be anticipated.

More information

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i

Amendment List Date Amended by Incorporated No Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i No Amendment List Date Amended by Date Incorporated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i ACP 33 FLIGHT CONTENTS Volume 1... History of Flight Volume 2... Principles of Flight Volume 3... Propulsion

More information

McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM. Professor Von Kliptip Answers Your Questions About The

McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM. Professor Von Kliptip Answers Your Questions About The Professor Von Kliptip Answers Your Questions About The McCAULEY FULL FEATHERING CONSTANT SPEED PROPELLER GOVERNING SYSTEM FOR COUNTERWEIGHTED PRESSURE-TO- DECREASE PITCH PROPELLERS ON RECIPROCATING ENGINES

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

Understanding Drag, Thrust, and Airspeed relationships

Understanding Drag, Thrust, and Airspeed relationships Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion

More information

McCAULEY CONSTANT SPEED PROPELLER GOVERNING SYSTEM

McCAULEY CONSTANT SPEED PROPELLER GOVERNING SYSTEM Professor Von Kliptip Answers Your Questions About The McCAULEY CONSTANT SPEED PROPELLER GOVERNING SYSTEM FOR NON-COUNTERWEIGHTED PRESSURE TO INCREASE PITCH PROPELLERS ON TYPICAL SINGLE ENGINE AIRCRAFT

More information

Learning to Hover. Aircraft Technical Book Company http://www.actechbooks.com (800) 780-4115 (970) 887-2207

Learning to Hover. Aircraft Technical Book Company http://www.actechbooks.com (800) 780-4115 (970) 887-2207 6 Learning to Hover I did most of the flying at that time and became very familiar with the helicopter's operation. During my years in aviation, I had never been in a machine that was as pleasant to fly

More information

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06

Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Lab 8 Notes Basic Aircraft Design Rules 6 Apr 06 Nomenclature x, y longitudinal, spanwise positions S reference area (wing area) b wing span c average wing chord ( = S/b ) AR wing aspect ratio C L lift

More information

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name:

UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: UCCS PES/ENSC 2500: Renewable Energy Spring 2014 Test 3 name: 1. When a wind turbine is positioned between radio, television or microwave transmitter and receiver it can sometime reflect some of the in

More information

Longitudinal and lateral dynamics

Longitudinal and lateral dynamics Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6 Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip

More information

Behavioral Animation Simulation of Flocking Birds

Behavioral Animation Simulation of Flocking Birds Behavioral Animation Simulation of Flocking Birds Autonomous characters determine their actions Simulating the paths of individuals in: flocks of birds, schools of fish, herds of animals crowd scenes 1.

More information

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing

Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Design and Structural Analysis of the Ribs and Spars of Swept Back Wing Mohamed Hamdan A 1, Nithiyakalyani S 2 1,2 Assistant Professor, Aeronautical Engineering & Srinivasan Engineering College, Perambalur,

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Model Aircraft Design

Model Aircraft Design Model Aircraft Design A teaching series for secondary students Contents Introduction Learning Module 1 How do planes fly? Learning Module 2 How do pilots control planes? Learning Module 3 What will my

More information

Certification Specifications for Very Light Aeroplanes CS-VLA

Certification Specifications for Very Light Aeroplanes CS-VLA European Aviation Safety Agency Certification Specifications for Very Light Aeroplanes CS-VLA Amendment 1 5 March 2009 1-0-1 CONTENTS (Layout) CS VLA VERY LIGHT AEROPLANES BOOK 1 AIRWORTHINESS CODE SUBPART

More information

PROPELLER PERFORMANCE ON PERSONAL AND BUSINESS AIRCRAFT

PROPELLER PERFORMANCE ON PERSONAL AND BUSINESS AIRCRAFT Professor Von Kliptip s Twelve All-Time Favorite Questions and Answers About PROPELLER PERFORMANCE ON PERSONAL AND BUSINESS AIRCRAFT About Professor Von Kliptip In 1903 as a young boy at Kitty Hawk, Professor

More information

Exam questions for obtaining aircraft licenses and ratings

Exam questions for obtaining aircraft licenses and ratings Exam questions for obtaining aircraft licenses and ratings Subject: PPL (A) Flight performance and planning Revision 1 07.10.2009. Period of validity: 01 January 2010 th - 31 December 2010 th Belgrade

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS

PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they

More information

Project Flight Controls

Project Flight Controls Hogeschool van Amsterdam Amsterdamse Hogeschool voor techniek Aviation studies Project Flight Controls ALA Group: 2A1Q Jelle van Eijk Sander Groenendijk Robbin Habekotte Rick de Hoop Wiecher de Klein Jasper

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events

More information

Cessna 172SP & NAV III Maneuvers Checklist

Cessna 172SP & NAV III Maneuvers Checklist Cessna 172SP & NAV III Maneuvers Checklist Introduction Power Settings This document is intended to introduce to you the standard method of performing maneuvers in Sunair Aviation s Cessna 172SP and NAV

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Mechanical Reasoning Review

Mechanical Reasoning Review Mechanical Reasoning Review Work can be made easier or faster through practical applications of simple and/or compound machines. This is called mechanical advantage - in other words, using the principal

More information

Turn off all electronic devices

Turn off all electronic devices Balloons 1 Balloons 2 Observations about Balloons Balloons Balloons are held taut by the gases inside Some balloon float in air while others don t Hot-air balloons don t have to be sealed Helium balloons

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

REFERENCE BOOK SIKORSKY HELICOPTER FLIGHT THEORY FOR PILOTS AND MECHANICS

REFERENCE BOOK SIKORSKY HELICOPTER FLIGHT THEORY FOR PILOTS AND MECHANICS I. ItI REFERENCE BOOK SIKORSKY HELICOPTER FLIGHT THEORY FOR PILOTS AND MECHANICS IN SUPPORT OF THEORY OF FLIGHT -7715-8 S50 SEP1 1982 JANUARY 1976 A LJ UNITED STATES ARMY AVIATION CENTER FCRT RUCKER, ALABAMA

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

Teacher Edition. Written By Tom Dubick. 2011 by Fly To Learn. All rights reserved.

Teacher Edition. Written By Tom Dubick. 2011 by Fly To Learn. All rights reserved. Teacher Edition Written By Tom Dubick TABLE OF CONTENTS First Flight... 3 May The Force(s) Be With You... 9 Lift A Real Pick Me Up... 17 What a Drag, Man... 23 Thrust It s All About Altitude... 29 Flight

More information

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics

Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics Chapter 6 Lateral static stability and control - 3 Lecture 21 Topics 6.11 General discussions on control surface 6.11.1 Aerodynamic balancing 6.11.2 Set back hinge or over hang balance 6.11.3 Horn balanace

More information

Lab #4 - Linear Impulse and Momentum

Lab #4 - Linear Impulse and Momentum Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

More information

EZdok CAMERA ADDON EZCA. for. Microsoft Flight Simulator X. Advanced Effects Manual

EZdok CAMERA ADDON EZCA. for. Microsoft Flight Simulator X. Advanced Effects Manual EZdok CAMERA ADDON EZCA for Microsoft Flight Simulator X Advanced Effects Manual 1 CONTENTS Chapter Title Page Number 1 Preface 3 2 RND effect 4 2.1 Generators 4 2.2 Mixer-distributor 9 2.3 Profiles 11

More information

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle Flight is the central avian adaptation Birds can fly at great speeds, for extended distances and time periods, can soar for days, and hover, fly upside down, and backwards Adaptations for flight are integrated

More information

AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN

AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN Transportation Safety Board of Canada Bureau de la sécurité des transports du Canada AVIATION INVESTIGATION REPORT A04A0111 LOSS OF CONTROL - COLLISION WITH TERRAIN CANADIAN HELICOPTERS LIMITED AEROSPATIALE

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

MODULE 11B. PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS

MODULE 11B. PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS MODULE 11B. PISTON AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS Note: The scope of this Module should reflect the technology of aeroplanes pertinent to the A2 and B1.2 subcategory. 11.1 Theory of Flight

More information

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1

FLIGHT CONTROLS 1. GENERAL 2. MAIN COMPONENTS AND SUBSYSTEMS ROLL CONTROL. Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 Smartcockpit.com BOEING 737 SYSTEMS REVIEW Page 1 FLIGHT CONTROLS 1. GENERAL The primary flight controls, ailerons, elevators and rudders, are hydraulically powered. Hydraulic power is provided from hydraulic

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone

rarecorvettes.com, joe@rarecorvettes.com, (831) 475-4442 Pacific Time Zone INTRODUCTION TO WHEEL ALIGNMENT A SHORT COURSE ON WHEEL ALIGNMENT, FRONT AND REAR PREPARED FOR THE N.C.R.S. NATIONAL CONVENTION JUNE 29 TO JULY 5, 2012 by: JOE CALCAGNO, RARE CORVETTES rarecorvettes.com,

More information

Assessment Specifications for Remotely Piloted Aircraft Systems, Class 1 AS-RPAS1

Assessment Specifications for Remotely Piloted Aircraft Systems, Class 1 AS-RPAS1 AMC Civil Aviation Authority The Netherlands Assessment Specifications for Remotely Piloted Aircraft Systems, Class 1 AS-RPAS1 Version 1.1 1 December 2014-1 - CONTENTS (general layout) AS RPAS1 REMOTELY

More information

SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS

SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS SECTION 2B WHEEL ALIGNMENT TABLE OF CONTENTS Description and Operation... 2B2 Four Wheel Alignment... 2B2 Toein... 2B2 Caster... 2B2 Camber... 2B2 Diagnostic Information and Procedures... 2B3 Tire Diagnosis...

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

How Noise is Generated by Wind Turbines The mechanisms of noise generation. Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury

How Noise is Generated by Wind Turbines The mechanisms of noise generation. Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury How Noise is Generated by Wind Turbines The mechanisms of noise generation Malcolm Hayes Hayes McKenzie Partnership Ltd Machynlleth & Salisbury Overview Main sources of noise from wind turbines Causes

More information

Light Aircraft Design

Light Aircraft Design New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

More information

IR Flight Training Handbook

IR Flight Training Handbook IR Flight Training Handbook (in accordance with Part-FCL and Global Aviation Training Manual) Copyright 2013 by Global Aviation SA Version 1.6 PREFACE This IR Flight Training Handbook is developed by Global

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

Advanced Flight Maneuvers

Advanced Flight Maneuvers Chapter 10 Advanced Flight Maneuvers Introduction The maneuvers presented in this chapter require more skill and understanding of the helicopter and the surrounding environment. When performing these maneuvers,

More information

Understanding High Advance Ratio Flight

Understanding High Advance Ratio Flight Alfred Gessow Rotorcraft Center University of Maryland Understanding High Advance Ratio Flight Graham Bowen-Davies Graduate Research Assistant Adviser: Inderjit Chopra Alfred Gessow Professor and Director

More information

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014 Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

Mechanical & Electrical Reasoning Study Guide

Mechanical & Electrical Reasoning Study Guide Mechanical & Electrical Reasoning Study Guide About Mechanical Aptitude Tests Who is likely to take a mechanical reasoning test? Mechanical aptitude tests are commonly administered during pre-employment

More information

Principles of Flight. Chapter 3. Introduction. Structure of the Atmosphere

Principles of Flight. Chapter 3. Introduction. Structure of the Atmosphere Chapter 3 Principles of Flight Introduction This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what effect these natural laws and forces have

More information

RC HELICOPTER INSTRUCTION MANUAL

RC HELICOPTER INSTRUCTION MANUAL AGE 14+ RC HELICOPTER INSTRUCTION MANUAL 1. Smart R/C system 2. Full scale remote control 3. Omnidirectional flight 4. Smooth hover performance 5. Newly designed electricity saving functionality 6. Longer

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS 51

DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS 51 DESIGN OF THE MODERN FAMILY OF HELICOPTER AIRFOILS Wojciech KANIA, Wieńczysław STALEWSKI, Bogumiła ZWIERZCHOWSKA Institute of Aviation Summary The paper presents results of numerical design and experimental

More information

Cessna Skyhawk II / 100. Performance Assessment

Cessna Skyhawk II / 100. Performance Assessment Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction

More information

Mechanical Design of Turbojet Engines. An Introduction

Mechanical Design of Turbojet Engines. An Introduction Mechanical Design of Turbomachinery Mechanical Design of Turbojet Engines An Introduction Reference: AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL University of Liege (Belgium)

More information

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF According to RYANAIR Procedures PF PM REMARKS Control the aircraft (FULL T/O thrust can be manually selected) Announce «ENGINE FAILURE» or «ENGINE FIRE»

More information

Joint Authorities for Rulemaking of Unmanned Systems WG-3 Airworthiness Certification Specification for Light Unmanned Rotorcraft Systems (CS-LURS)

Joint Authorities for Rulemaking of Unmanned Systems WG-3 Airworthiness Certification Specification for Light Unmanned Rotorcraft Systems (CS-LURS) Joint Authorities for Rulemaking of Unmanned Systems WG-3 Airworthiness Certification Specification for Light Unmanned Rotorcraft Systems (CS-LURS) Version 1.0 30-10-2013 BOOK 1 AIRWORTHINESS CODE SUBPART

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP Propeller Efficiency Rule of Thumb David F. Rogers, PhD, ATP Theoretically the most efficient propeller is a large diameter, slowly turning single blade propeller. Here, think the Osprey or helicopters.

More information

TOTAL ENERGY COMPENSATION IN PRACTICE

TOTAL ENERGY COMPENSATION IN PRACTICE TOTAL ENERGY COMPENSATION IN PRACTICE by Rudolph Brozel ILEC GmbH Bayreuth, Germany, September 1985 Edited by Thomas Knauff, & Dave Nadler April, 2002 This article is copyright protected ILEC GmbH, all

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

Onboard electronics of UAVs

Onboard electronics of UAVs AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia 2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency ED Decision 2003/2/RM Final 17/10/2003 The Executive Director DECISION NO. 2003/2/RM OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 17 October 2003 on certification specifications,

More information

Introduction. The Normal Takeoff. The Critical Engine. Flying Light Twins Safely

Introduction. The Normal Takeoff. The Critical Engine. Flying Light Twins Safely Note: The graphics and some of the material in this document have been modified from the original printed version. Introduction The major difference between flying a light twin and a single-engine airplane

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

LEVEL I SKATING TECHNICAL. September 2007 Page 1

LEVEL I SKATING TECHNICAL. September 2007 Page 1 SKATING September 2007 Page 1 SKATING SKILLS The game of Ice Hockey is a fast-paced, complex, team sport, which demands quick thinking, fast reactions and special athletic skills. Skating is the most important

More information

VARIABLE STABILITY FLIGHT OPERATIONS MANUAL

VARIABLE STABILITY FLIGHT OPERATIONS MANUAL SPACE INSTITUTE VARIABLE STABILITY FLIGHT OPERATIONS MANUAL Prepared by the Aviation Systems and Flight Research Department September 2004 Index 1.1 General Description...1 1.2 Variable Stability System...5

More information

The aerodynamic center

The aerodynamic center The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate

More information

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering

More information

Airplane/Glider Design Guidelines and Design Analysis Program

Airplane/Glider Design Guidelines and Design Analysis Program Airplane/Glider Design Guidelines and Design Analysis Program Ever have the urge to design your own plane but didn t feel secure enough with your usual TLAR (that looks about right) methods to invest all

More information

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com

Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com The Pilot s Manual 1: Flight School Aviation Supplies & Academics, Inc. 7005 132nd Place SE Newcastle, Washington 98059-3153 www.asa2fly.com Originally published by Aviation Theory Centre 1990 1993. Fourth

More information

Helicopters. Educational support materials for groups participating in this activity

Helicopters. Educational support materials for groups participating in this activity Helicopters Educational support materials for groups participating in this activity This pack contains information designed to support teachers whose classes are visiting the RAF Museum and participating

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Note I Introduction Operations in crosswind conditions require strict adherence to applicable crosswind limitations or maximum recommended crosswind values, operational recommendations

More information