Onboard electronics of UAVs

Size: px
Start display at page:

Download "Onboard electronics of UAVs"

Transcription

1 AARMS Vol. 5, No. 2 (2006) TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent advances in computer and sensing technology have made it possible to develop autonomous aerial robotic systems. Fixed-wing unmanned aerial vehicles (UAVs) have been in service for some years and are being used routinely for military and meteorological purposes. Autonomous aircraft capable of vertical take-off and landing (VTOL) have also been considered in recent years because they are suitable for intelligence, surveillance and inspection applications, due to their hovering capability. The growing demand for reliable civil UAVs speeded up research work in this field. In this paper, a control system approach is stated for mini and micro UAVs. The theory of physical behaviour of rigid bodies, such as UAVs, is also described besides the characteristics of four-rotor VTOL type UAVs. Introduction The onboard electronics in the mini and micro UAVs has to provide almost the same performance as they do in the larger ones. That means a lot of different sensors and units have to be implemented in the smallest size and the lightest weight possible. Since the smaller size, the smaller inertia and controllability, the flight control system of small UAVs has to be more sophisticated. Our aim is to develop and build a control system that is suitable and flexible enough for most of our intended applications regardless of the airframe. The only difference between the individual control systems would be the airframe-dependent software. Figure 2 outlines the main blocks and their communication in our system approach. This article focuses on the inertial part of the system. Received: March 6, 2006 Address for correspondence: ANTAL TURÓCZI Department of Electronic Warfare Miklós Zrínyi National Defence University H 1581 Budapest, P.O. Box 15, Hungary Inertial navigation, stabilization Inertial navigation systems are used in areas such as military and civil aviation or space technology where precision and reliability are the most important elements. In the beginning the size and the weight of these systems were not suitable for mobile applications like UAVs. But recent progress in Micro Electro-Mechanical System

2 (MEMS) led to sophisticated low-cost sensor products. With these single chip accelerometer and gyro sensors small, light and cheap inertial navigation systems can be made. 1 In order to describe spatial movement of a rigid body we need six parameters: three translation and three rotation parameters. Three acceleration sensors and three gyros can form an orthogonal system that can provide x, y, z acceleration and angular velocity. Position and orientation information can be obtained by integration of the individual translation and rotation components. Figure 1 depicts the theory of this method. 2 x( = a(dt 2 ϕ( = ω(dt Figure 1: Six parameters of freedom The finite precision of the sensors is the main limitation of the system performance. Integrating a small continuous error in the measured acceleration results in a big error in speed, integrated a second time in a huge error in distance. The same applies to angular rate errors. Therefore the sensors and the data processing, including the error correction must be very precise to get an accurate inertial navigation platform. With the introduction of GPS, or electronic compass or the g-vector as a reference or all together the entire accuracy can be improved. But these concepts require careful considerations about the calibration method for not disturbing the whole control system. 1,3 If the adequate acceleration and angular rate values are available we can describe the change of state of the airframe over time. This involves a short briefing of rigid body physics. The following differential equation describes the motion of a rigid body: d dt S( = d dt x( v( R( ω ( R( =. P( F( ( ) ( ) L t τ t 238 AARMS 5(2) (2006)

3 AARMS 5(2) (2006) 239

4 The linear velocity v( represents the rate of change of the position x( over time. Point x is at the centre of mass. The body may also be spinning. The angular velocity ω( encodes both the axis and speed of rotation. The columns of the 3 3 rotation matrix R( represent the transformed axes of the so-called body space, which is a coordinate system fixed to the airframe with origin in the centre of a mass. The rate of change of the linear momentum P( and the angular momentum L( over time equal to the total force F( and torque τ( applied to the airframe. In order to set up the momentum equations we need two parameters describing the airframe itself. These are mass M and the inertia tensor I: P( = Mv( L( = I( ω( The 3 3 inertia tensor is a matrix which describes how the shape and mass distribution of the airframe is affected by the angular velocity. This matrix is computed in body space and transformed as needed to world space. The calculation and the transformation methods are: 2 I xx I body = I yx I zx I xy I yy I zx I xz I yz I zz where I xx = I yy = I zz = 2 2 ( y + z ) dv 2 2 ( x + z ) dv 2 2 ( x + y ) dv and I xy = I yx = I yz = I zy = I xz = I zx = xy yx xz dv dv dv I( = R( I ( tr ) body T Now, we got over the physics part of the problem but here comes the control problem of it. Since we do not know the exact solution of our differential equation we cannot use classical linear control methods on the highly nonlinear system model. In addition to the non-linear differential equations the individual control signals are not independent of each other in most of the cases. That is the case in our ongoing research work, which is a quad-rotor helicopter design. Four-rotor design The four-rotor platform is not a new idea. The first attempts at implementing such designs were unsuccessful because it is almost impossible to manually control the four rotors. The task is more difficult for model-sized helicopters because of their small 240 AARMS 5(2) (2006)

5 inertia. The solution of this problem is designing an onboard controller system that is capable of autonomous hovering and can stabilize the four-rotor aircraft. Technologically, the smaller time constant require accurate sensors and fast response time from the computational unit and also from the propulsion system. 4,5 Figure 3: Four-rotor arrangement All helicopters, mostly the smaller ones, are dynamically instable because of the lack of natural damping. The rotors have to be constantly controlled to achieve appropriate thrust. In conventional helicopters thrust is controlled by adjusting the motor power and by adjusting the angle of attack of the rotor blades. Adjusting the motor power is not an efficient way of control because of the large inertia of the engine and the rotor. But adjusting the rotor pitch causes an immediate change on the thrust. To move the helicopter in horizontal directions, however, the rotor blade pitch has to be adjusted during one turn, which means a complex motion of the rotor blades. 6 In the four-rotor platform the tail rotor and control of the rotor blade pitch can be abandoned. The tail rotor is not needed since the counter-rotating rotors can balance the craft. The adjustment of the blade pitch is not needed either using electric motors because they respond quickly enough to control thrust only by adjusting motor power. Increasing or decreasing the angular velocity of the motors controls the motion of the aircraft, up, down pitch, yaw and roll (Figure 4). But the individual control signals are not independent of each other. They must be changed simultaneously in order to maintain stable flight. This interaction is derived from the highly non-linear physical nature of the construction. 4,7,8 That means multiple input multiple output robust controller is needed. AARMS 5(2) (2006) 241

6 Figure 4: Controlling the four-rotor platform: a. More power to the left rotors produces a left-thrust. b. More power to the diagonally arranged rotors produces horizontal rotation 4 Electric Propulsion The electric motor is a convenient propulsion system for the four-rotor platform. Unlike combustion engines electric motors have much smaller inertia and far better efficiency and can easily be controlled. Besides, their construction is simple consequently more reliable. The disadvantage of electric power compared to gasoline power is the significantly smaller stored energy to weight ratio and shorter operation time. But new battery technologies and recent advances in fuel-cell technology, driven by the rapidly expanding market of mobile applications, promise fast development in energy density of batteries. Alternatively longer operation time can be achieved by using hybrid power system similarly to hybrid cars. That means a combustion engine driving a generator that charges a battery power supply. Conclusion In this paper, the physical basement of controlling UAVs has been presented. Being non-linear mechanical system the stabilization of naturally instable UAVs requires non classical, robust controller. Unlike conventional methods of controlling linear systems the implementation of robust controllers involves different way of thinking and requires more sophisticated mathematical background from the engineer. A special arrangement, a four-rotor platform eliminates the mechanical complexity of traditional tail rotor helicopters. The main advantage of this layout is that the helicopter is controlled only by the adjustment of the power of the four electric motors. The implementation of an experimental autopilot is currently on the way. 242 AARMS 5(2) (2006)

7 References 1. INTERSENSE: Inertial Cube2 Manual. 2. A. WITKIN, D. BARAFF: Physically Based Modeling: Principles and Practice. Online Siggraph 97 Course notes (http://www-2.cs.cmu.edu/~baraff/sigcourse/) 3. J. BORENSTEIN, H. R. EVERETT, L. FENG, D. WEHE: Mobile robot positioning Sensors and techniques. Journal of Robotic Systems, Special Issue on Mobile Robots. 14 (4) J. BORENSTEIN: The HoverBot An electrically powered flying robot. Unpublished White Paper 5. T. HAMEL, R. MAHONY, R. LOZANO, J. OSTROWSKI: Dynamic Modelling and Configuration Stabilization for an X4-Flyer. 15th Triennial World Congress, Barcelona, Spain M. CHEN, M. HUZMEZAN: A Combined MBPC/ 2 DOF H Controller for a Quad Rotor UAV. Unpublished White Paper 8. L. A. YOUNG, E. W. AIKEN, J. L. JOHNSON, R. DEMBLEWSKI, J. ANDREWS, J. KLEM: New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles. Unpublished White Paper AARMS 5(2) (2006) 243

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Background of the Research Agile and precise maneuverability of helicopters makes them useful for many critical tasks ranging from rescue and law enforcement task to inspection

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES

CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES 1 / 23 CONTRIBUTIONS TO THE AUTOMATIC CONTROL OF AERIAL VEHICLES MINH DUC HUA 1 1 INRIA Sophia Antipolis, AROBAS team I3S-CNRS Sophia Antipolis, CONDOR team Project ANR SCUAV Supervisors: Pascal MORIN,

More information

Quadcopters. Presented by: Andrew Depriest

Quadcopters. Presented by: Andrew Depriest Quadcopters Presented by: Andrew Depriest What is a quadcopter? Helicopter - uses rotors for lift and propulsion Quadcopter (aka quadrotor) - uses 4 rotors Parrot AR.Drone 2.0 History 1907 - Breguet-Richet

More information

Collaborative UAV Study. Tan Han Rong, Ronald

Collaborative UAV Study. Tan Han Rong, Ronald Collaborative UAV Study Tan Han Rong, Ronald Department of Mechanical Engineering, National University of Singapore ABSTRACT This is a preliminary assessment into the feasibility of developing a UAV that

More information

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement

More information

Gyroscope Angular Rate Sensor Three main types

Gyroscope Angular Rate Sensor Three main types Gyroscopes Gyroscope Angular Rate Sensor Three main types Spinning Mass Optical Ring Laser Gyros Fiber Optic Gyros Vibratory Coriolis Effect devices MEMS 4 March 2011 EE 570: Location and Navigation: Theory

More information

2. Dynamics, Control and Trajectory Following

2. Dynamics, Control and Trajectory Following 2. Dynamics, Control and Trajectory Following This module Flying vehicles: how do they work? Quick refresher on aircraft dynamics with reference to the magical flying space potato How I learned to stop

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

More information

Control of a quadrotor UAV (slides prepared by M. Cognetti)

Control of a quadrotor UAV (slides prepared by M. Cognetti) Sapienza Università di Roma Corso di Laurea in Ingegneria Elettronica Corso di Fondamenti di Automatica Control of a quadrotor UAV (slides prepared by M. Cognetti) Unmanned Aerial Vehicles (UAVs) autonomous/semi-autonomous

More information

DESIGN AND DEVELOPMENT OF AN AUTONOMOUS QUAD-COPTER

DESIGN AND DEVELOPMENT OF AN AUTONOMOUS QUAD-COPTER - 171 - DESIGN AND DEVELOPMENT OF AN AUTONOMOUS QUAD-COPTER G.G.Bhanuka 1, N.D.Silva 1, C.M.Liyanawadu 1, R.M.T.P.Rajakaruna 1 ABSTRACT 1 Department of Mechatronics, Faculty of Engineering, South Asian

More information

Principles of inertial sensing technology and its applications in IHCI

Principles of inertial sensing technology and its applications in IHCI Principles of inertial sensing technology and its applications in IHCI Intelligent Human Computer Interaction SS 2011 Gabriele Bleser Gabriele.Bleser@dfki.de Motivation I bet you all got in touch with

More information

Control of a Quadrotor Helicopter Using Visual Feedback

Control of a Quadrotor Helicopter Using Visual Feedback Control of a Quadrotor Helicopter Using Visual Feedback Erdinc Altu~*, James P. Ostrowski*, Robert Mahony** *GRASP Lab. University of Pennsylvania, Philadelphia, PA 1914, USA **Dep. of Eng., Australian

More information

A Design of Hovering System for Quadrotor UAV using Multi-Sensor Fusion

A Design of Hovering System for Quadrotor UAV using Multi-Sensor Fusion , pp.13-20 http://dx.doi.org/10.21742/ijsda.2016.4.2.03 A Design of Hovering System for Quadrotor UAV using Multi-Sensor Fusion Hyun-Soo Kim, Youngwan Cho Dept. of Computer Engineering, Seokyeong University

More information

The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm

The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm The Design and Implementation of a Quadrotor Flight Controller Using the QUEST Algorithm Jacob Oursland Department of Mathematics and Computer Science South Dakota School of Mines and Technology Rapid

More information

Design and Implementation of IMU Sensor Fusion and PID Control in Quadrotor

Design and Implementation of IMU Sensor Fusion and PID Control in Quadrotor Design and Implementation of IMU Sensor Fusion and PID Control in Quadrotor Rohan Urdhwareshe 1, Md.Zaki Bakshi 2, Pranav Naiknavare 3, Sumit Naik 4 1 Jr. Research Fellow, Central Electronics Engineering

More information

Quadcopter Dynamics, Simulation, and Control Introduction

Quadcopter Dynamics, Simulation, and Control Introduction Quadcopter Dynamics, Simulation, and Control Introduction A helicopter is a flying vehicle which uses rapidly spinning rotors to push air downwards, thus creating a thrust force keeping the helicopter

More information

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras

CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation. Prof. Dr. Hani Hagras 1 CE801: Intelligent Systems and Robotics Lecture 3: Actuators and Localisation Prof. Dr. Hani Hagras Robot Locomotion Robots might want to move in water, in the air, on land, in space.. 2 Most of the

More information

ROTATIONS AND THE MOMENT OF INERTIA TENSOR

ROTATIONS AND THE MOMENT OF INERTIA TENSOR ROTATIONS AND THE MOMENT OF INERTIA TENSOR JACOB HUDIS Abstract. This is my talk for second year physics seminar taught by Dr. Henry. In it I will explain the moment of inertia tenssor. I explain what

More information

Ergonomic Remote Control Technique for Horizontal Rotors Equipped UAVs

Ergonomic Remote Control Technique for Horizontal Rotors Equipped UAVs Ergonomic Remote Control Technique for Horizontal Rotors Equipped UAVs Alpár A. Sándor and Gergely B. Soós Faculty of Information Technology, Pázmány Péter Catholic University H-1083 Práter u. 50/a Budapest,

More information

ZMART Technical Report The International Aerial Robotics Competition 2014

ZMART Technical Report The International Aerial Robotics Competition 2014 ZMART Technical Report The International Aerial Robotics Competition 2014 ZJU s Micro-Aerial Robotics Team (ZMART) 1 Zhejiang University, Hangzhou, Zhejiang Province, 310027, P.R.China Abstract The Zhejiang

More information

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication

Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Time Domain and Frequency Domain Techniques For Multi Shaker Time Waveform Replication Thomas Reilly Data Physics Corporation 1741 Technology Drive, Suite 260 San Jose, CA 95110 (408) 216-8440 This paper

More information

Development of a Low Cost Inertial Measurement Unit for UAV Applications with Kalman Filter based Attitude Determination

Development of a Low Cost Inertial Measurement Unit for UAV Applications with Kalman Filter based Attitude Determination Development of a Low Cost Inertial Measurement Unit for UAV Applications with Kalman Filter based Attitude Determination Claudia Pérez-D Arpino, Member, IEEE, Damian Vigouroux, Wilfredis Medina-Meléndez,

More information

Camera-Inertial Sensor modelling and alignment for Visual Navigation

Camera-Inertial Sensor modelling and alignment for Visual Navigation Proceedings of ICAR 23 The th International Conference on Advanced Robotics Coimbra, Portugal, June 3 - July 3, 23 Camera-Inertial Sensor modelling and alignment for Visual Navigation João Alves Jorge

More information

An Introduction to Mobile Robotics

An Introduction to Mobile Robotics An Introduction to Mobile Robotics Who am I. Steve Goldberg 15 years programming robots for NASA/JPL Worked on MSL, MER, BigDog and Crusher Expert in stereo vision and autonomous navigation Currently Telecommuting

More information

UAV Pose Estimation using POSIT Algorithm

UAV Pose Estimation using POSIT Algorithm International Journal of Digital ontent Technology and its Applications. Volume 5, Number 4, April 211 UAV Pose Estimation using POSIT Algorithm *1 M. He, 2. Ratanasawanya, 3 M. Mehrandezh, 4 R. Paranjape

More information

Lecture L29-3D Rigid Body Dynamics

Lecture L29-3D Rigid Body Dynamics J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L29-3D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the body-fixed axis of

More information

PID, LQR and LQR-PID on a Quadcopter Platform

PID, LQR and LQR-PID on a Quadcopter Platform PID, LQR and LQR-PID on a Quadcopter Platform Lucas M. Argentim unielargentim@fei.edu.br Willian C. Rezende uniewrezende@fei.edu.br Paulo E. Santos psantos@fei.edu.br Renato A. Aguiar preaguiar@fei.edu.br

More information

Controllo del volo di velivoli autonomi: stato dell'arte e sfide future Marco Lovera Aerospace Systems and Control Laboratory Department of Aerospace

Controllo del volo di velivoli autonomi: stato dell'arte e sfide future Marco Lovera Aerospace Systems and Control Laboratory Department of Aerospace Controllo del volo di velivoli autonomi: stato dell'arte e sfide future Marco Lovera Aerospace Systems and Control Laboratory Department of Aerospace Science and Technology Politecnico di Milano Outline

More information

Inertial Measurement Units Andreas Bork

Inertial Measurement Units Andreas Bork Inertial Measurement Units 01.12.2014 Andreas Bork Table of content 1) Introduction 2) Definition of IMU 3) Architecture 1) Gyroscope 2) Accelerometer 4) Integration of data 5) Problems of IMUs 6) Solutions

More information

Unmanned Aerial Vehicles in the Hungarian Defence Forces

Unmanned Aerial Vehicles in the Hungarian Defence Forces Unmanned Aerial Vehicles in the Hungarian Defence Forces László Kovács, László Ványa kovacs.laszlo@zmne.hu; vanya.laszlo@zmne.hu Abstract: The history of research and development of unmanned aerial vehicles

More information

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Indrek Mandre http://www.mare.ee/indrek/ February 26, 2008 1 Motivation I became interested in the angular dynamics

More information

DATA COLLECTION FOR DEVELOPING A DYNAMIC MODEL OF A LIGHT HELICOPTER

DATA COLLECTION FOR DEVELOPING A DYNAMIC MODEL OF A LIGHT HELICOPTER DATA COLLECTION FOR DEVELOPING A DYNAMIC MODEL OF A LIGHT HELICOPTER Stefano Geluardi 1,2, Frank Nieuwenhuizen 1, Lorenzo Pollini 2, and Heinrich H. Bülthoff 1 1 Max Planck Institute for Biological Cybernetics,

More information

IMU Components An IMU is typically composed of the following components:

IMU Components An IMU is typically composed of the following components: APN-064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation

More information

Automatic Take Off, Hovering and Landing Control for Miniature Helicopters with Low-Cost Onboard Hardware

Automatic Take Off, Hovering and Landing Control for Miniature Helicopters with Low-Cost Onboard Hardware Automatic Take Off, Hovering and Landing Control for Miniature Helicopters with Low-Cost Onboard Hardware Karl E. Wenzel and Andreas Zell University of Tübingen, Department of Computer Science, Sand 1,

More information

MEMs Inertial Measurement Unit Calibration

MEMs Inertial Measurement Unit Calibration MEMs Inertial Measurement Unit Calibration 1. Introduction Inertial Measurement Units (IMUs) are everywhere these days; most particularly in smart phones and other mobile or handheld devices. These IMUs

More information

Stage Metrology Concepts: Application Specific Testing. Hans Hansen Sr. Systems Design Engineer BSME, MSE 2/28/2008

Stage Metrology Concepts: Application Specific Testing. Hans Hansen Sr. Systems Design Engineer BSME, MSE 2/28/2008 Stage Metrology Concepts: Application Specific Testing Hans Hansen Sr. Systems Design Engineer BSME, MSE 2/28/2008 Topics Review of Stage Error Definitions Setting Stage Specifications for Applications

More information

Development of a Rotorcraft UAV Using NI CompactRIO Embedded System

Development of a Rotorcraft UAV Using NI CompactRIO Embedded System Development of a Rotorcraft UAV Using NI CompactRIO Embedded System Overview At University of Bologna (UNIBO) DIEM Aerospace Department, a rotorcraft UAV has been developed, which can be used as flying

More information

Mathematical Model and Simulation for a Helicopter with Tail Rotor

Mathematical Model and Simulation for a Helicopter with Tail Rotor Mathematical Model and Simulation for a Helicopter with Tail Rotor TULIO SALAZAR School of Mechanical Engineering and Automation Beijing University of Aeronautics and Astronautics XueYuan Road No.37, HaiDian

More information

Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security

Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security Design Specifications of an UAV for Environmental Monitoring, Safety, Video Surveillance, and Urban Security A. Alessandri, P. Bagnerini, M. Gaggero, M. Ghio, R. Martinelli University of Genoa - Faculty

More information

Optimizing a Coaxial Propulsion System to a Quadcopter

Optimizing a Coaxial Propulsion System to a Quadcopter Optimizing a Coaxial Propulsion System to a Quadcopter Cédric Martins Simões Dept. Engenharia Mecânica, Instituto Superior Técnico, Av. Rovisco Pais, 149-1 Lisboa, Portugal E-mail: cedricmartinssimoes@ist.utl.pt

More information

9 Degrees of Freedom Inertial Measurement Unit with AHRS [RKI-1430]

9 Degrees of Freedom Inertial Measurement Unit with AHRS [RKI-1430] 9 Degrees of Freedom Inertial Measurement Unit with AHRS [RKI-1430] Users Manual Robokits India info@robokits.co.in http://www.robokitsworld.com Page 1 This 9 Degrees of Freedom (DOF) Inertial Measurement

More information

R.Forder Design and Development of a Flying Platform MEng

R.Forder Design and Development of a Flying Platform MEng 1. Introduction 1.1 Project Aims and objectives The principle aim of this 4 th year group project is to design and develop an autonomous flying platform. The flying platform must be capable of monitoring

More information

EDUMECH Mechatronic Instructional Systems. Ball on Beam System

EDUMECH Mechatronic Instructional Systems. Ball on Beam System EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 998-9 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional

More information

Full design of a low-cost quadrotor UAV by student team

Full design of a low-cost quadrotor UAV by student team Full design of a low-cost quadrotor UAV by student team Jean-Baptiste Devaud, Stéphane Najko, Pierre Le Nahédic, Cédric Maussire, Etienne Zante, Julien Marzat To cite this version: Jean-Baptiste Devaud,

More information

Assignment #5" due: End of day, Oct 24, 2014!

Assignment #5 due: End of day, Oct 24, 2014! Aircraft Equations of Motion - 1 Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2014 Learning Objectives What use are the equations of motion? How is the angular orientation of the airplane described?

More information

Design of a Four-Rotor Aerial Robot

Design of a Four-Rotor Aerial Robot Proc. 2002 Australasian Conference on Robotics and Automation Auckland, 27-29 November 2002 Design of a Four-Rotor Aerial Robot P. Pounds & R. Mahony Department of Engineering Faculty of Engineering and

More information

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com

Engineers from Geodetics select KVH for versatile high-performance inertial sensors. White Paper. kvh.com White Paper Overcoming GNSS Vulnerability by Applying Inertial Data Integration in Multi-Sensor Systems for High Accuracy Navigation, Pointing, and Timing Solutions Engineers from Geodetics select KVH

More information

Industrial Robotics. Training Objective

Industrial Robotics. Training Objective Training Objective After watching the program and reviewing this printed material, the viewer will learn the basics of industrial robot technology and how robots are used in a variety of manufacturing

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE

SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2011 SIMULATION AND CONTROL OF A QUADROTOR UNMANNED AERIAL VEHICLE Michael David Schmidt University of Kentucky,

More information

Linear State-Space Control Systems

Linear State-Space Control Systems Linear State-Space Control Systems Prof. Kamran Iqbal College of Engineering and Information Technology University of Arkansas at Little Rock kxiqbal@ualr.edu Course Overview State space models of linear

More information

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor J. Peraire, S. Widnall 16.07 Dynaics Fall 008 Lecture L6-3D Rigid Body Dynaics: The Inertia Tensor Version.1 In this lecture, we will derive an expression for the angular oentu of a 3D rigid body. We shall

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Micro and Mini UAV Airworthiness, European and NATO Activities

Micro and Mini UAV Airworthiness, European and NATO Activities Recent Development in Unmanned Aircraft Systems Micro and Mini UAV Airworthiness, European and NATO Activities iti Fulvia Quagliotti Politecnico di Torino Department of Aerospace Engineering Torino, Italy

More information

Research Methodology Part III: Thesis Proposal. Dr. Tarek A. Tutunji Mechatronics Engineering Department Philadelphia University - Jordan

Research Methodology Part III: Thesis Proposal. Dr. Tarek A. Tutunji Mechatronics Engineering Department Philadelphia University - Jordan Research Methodology Part III: Thesis Proposal Dr. Tarek A. Tutunji Mechatronics Engineering Department Philadelphia University - Jordan Outline Thesis Phases Thesis Proposal Sections Thesis Flow Chart

More information

Author: By Siegfried Krainer and Michael Thomas, Infineon Technologies and Ronald Staerz, MCI Innsbruck

Author: By Siegfried Krainer and Michael Thomas, Infineon Technologies and Ronald Staerz, MCI Innsbruck From toys to tools Author: By Siegfried Krainer and Michael Thomas, Infineon Technologies and Ronald Staerz, MCI Innsbruck Date: 05/04/2016 Categories: Evaluation & Development Kits, Internet of things

More information

Visual Servoing using Fuzzy Controllers on an Unmanned Aerial Vehicle

Visual Servoing using Fuzzy Controllers on an Unmanned Aerial Vehicle Visual Servoing using Fuzzy Controllers on an Unmanned Aerial Vehicle Miguel A. Olivares-Méndez mig olivares@hotmail.com Pascual Campoy Cervera pascual.campoy@upm.es Iván Mondragón ivanmond@yahoo.com Carol

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Control and Navigation Framework for Quadrotor Helicopters

Control and Navigation Framework for Quadrotor Helicopters Control and Navigation Framework for Quadrotor Helicopters Amr Nagaty, Sajad Saeedi, Carl Thibault, Mae Seto and Howard Li Abstract This paper presents the development of a nonlinear quadrotor simulation

More information

An inertial haptic interface for robotic applications

An inertial haptic interface for robotic applications An inertial haptic interface for robotic applications Students: Andrea Cirillo Pasquale Cirillo Advisor: Ing. Salvatore Pirozzi Altera Innovate Italy Design Contest 2012 Objective Build a Low Cost Interface

More information

Rigid Body Dynamics (I)

Rigid Body Dynamics (I) Rigid Body Dynamics (I) COMP768: October 4, 2007 Nico Galoppo From Particles to Rigid Bodies Particles No rotations Linear velocity v only 3N DoFs Rigid bodies 6 DoFs (translation + rotation)

More information

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses

Aerospace Information Technology Topics for Internships and Bachelor s and Master s Theses Aerospace Information Technology s for Internships and Bachelor s and Master s Theses Version Nov. 2014 The Chair of Aerospace Information Technology addresses several research topics in the area of: Avionic

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M.

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M. Information regarding the Lockheed F-104 Starfighter F-104 LN-3 An article published in the Zipper Magazine #48 December-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands http://www.xs4all.nl/~chair

More information

Vibrations can have an adverse effect on the accuracy of the end effector of a

Vibrations can have an adverse effect on the accuracy of the end effector of a EGR 315 Design Project - 1 - Executive Summary Vibrations can have an adverse effect on the accuracy of the end effector of a multiple-link robot. The ability of the machine to move to precise points scattered

More information

We have just introduced a first kind of specifying change of orientation. Let s call it Axis-Angle.

We have just introduced a first kind of specifying change of orientation. Let s call it Axis-Angle. 2.1.5 Rotations in 3-D around the origin; Axis of rotation In three-dimensional space, it will not be sufficient just to indicate a center of rotation, as we did for plane kinematics. Any change of orientation

More information

Lecture 6 : Aircraft orientation in 3 dimensions

Lecture 6 : Aircraft orientation in 3 dimensions Lecture 6 : Aircraft orientation in 3 dimensions Or describing simultaneous roll, pitch and yaw 1.0 Flight Dynamics Model For flight dynamics & control, the reference frame is aligned with the aircraft

More information

Slide 10.1. Basic system Models

Slide 10.1. Basic system Models Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

VTOL UAV. Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle. Árvai László, ZMNE. Tavaszi Szél 2012 ÁRVAI LÁSZLÓ, ZMNE

VTOL UAV. Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle. Árvai László, ZMNE. Tavaszi Szél 2012 ÁRVAI LÁSZLÓ, ZMNE Design of the On-Board Flight Control Electronics of an Unmanned Aerial Vehicle Árvai László, ZMNE Contents Fejezet Témakör 1. Features of On-Board Electronics 2. Modularity 3. Functional block schematics,

More information

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR National nstitute for Space Research NPE Space Mechanics and Control Division DMC São José dos Campos, SP, Brasil MODELLNG A SATELLTE CONTROL SYSTEM SMULATOR Luiz C Gadelha Souza gadelha@dem.inpe.br rd

More information

Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles

Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles Acta Polytechnica Hungarica Vol. 4, No., 007 Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles István Harmati, Péter Várlaki Department of Chassis and Lightweight

More information

Using Xsens MTi and MTi-G in autonomous and remotely operated vehicles

Using Xsens MTi and MTi-G in autonomous and remotely operated vehicles Using Xsens MTi and MTi-G in autonomous and remotely operated vehicles Document MT0314P, Revision A, 01 Mar 2012 Xsens Technologies B.V. phone +31 88 97367 00 fax +31 88 97367 01 email info@xsens.com internet

More information

Unmanned Aerial Systems (UAS) for American Association of Port Authorities Administration and Legal Issues Seminar New Orleans, LA April 9, 2015

Unmanned Aerial Systems (UAS) for American Association of Port Authorities Administration and Legal Issues Seminar New Orleans, LA April 9, 2015 Unmanned Aerial Systems (UAS) for American Association of Port Authorities Administration and Legal Issues Seminar New Orleans, LA April 9, 2015 Briefly about Flight Guardian Our Services: Educating public

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Active Vibration Isolation of an Unbalanced Machine Spindle

Active Vibration Isolation of an Unbalanced Machine Spindle UCRL-CONF-206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States

More information

Hardware In The Loop Simulator in UAV Rapid Development Life Cycle

Hardware In The Loop Simulator in UAV Rapid Development Life Cycle Hardware In The Loop Simulator in UAV Rapid Development Life Cycle Widyawardana Adiprawita*, Adang Suwandi Ahmad = and Jaka Semibiring + *School of Electric Engineering and Informatics Institut Teknologi

More information

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering 9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book non-programmable calculator pen, pencil, drawing

More information

Mechanical Design of a 6-DOF Aerial Manipulator for assembling bar structures using UAVs

Mechanical Design of a 6-DOF Aerial Manipulator for assembling bar structures using UAVs Mechanical Design of a 6-DOF Aerial Manipulator for assembling bar structures using UAVs R. Cano*. C. Pérez* F. Pruaño* A. Ollero** G. Heredia** *Centre for Advanced Aerospace Technologies, Seville, Spain

More information

Aircraft Flight Dynamics!

Aircraft Flight Dynamics! Aircraft Flight Dynamics Robert Stengel, Princeton University, 2014 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2014 by Robert Stengel. All rights reserved. For educational

More information

Design and simulation of MEMS piezoelectric gyroscope Using COMSOL Multiphysics

Design and simulation of MEMS piezoelectric gyroscope Using COMSOL Multiphysics Design and simulation of MEMS piezoelectric gyroscope Using COMSOL Multiphysics T.Madhuranath*, R.Praharsha and Dr.K.Srinivasa Rao Department of Electronics an instrumentation Engineering Lakireddy Bali

More information

HIGH SPEED MARINE VEHICLES WITH AERODYNAMIC SURFACES: DEVELOPMENT OF A DYNAMIC MODEL FOR A NOVEL CONFIGURATION

HIGH SPEED MARINE VEHICLES WITH AERODYNAMIC SURFACES: DEVELOPMENT OF A DYNAMIC MODEL FOR A NOVEL CONFIGURATION HIGH SPEED MARINE VEHICLES WITH AERODYNAMIC SURFACES: DEVELOPMENT OF A DYNAMIC MODEL FOR A NOVEL CONFIGURATION M Collu, M H Patel, F Trarieux, Cranfield University, UK SUMMARY A research programme on high

More information

Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller

Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller Stabilizing a Gimbal Platform using Self-Tuning Fuzzy PID Controller Nourallah Ghaeminezhad Collage Of Automation Engineering Nuaa Nanjing China Wang Daobo Collage Of Automation Engineering Nuaa Nanjing

More information

Modeling and Autonomous Flight Simulation of a Small Unmanned Aerial Vehicle

Modeling and Autonomous Flight Simulation of a Small Unmanned Aerial Vehicle 13 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT- 13, May 26 28, 2009, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Textbook (Giancoli, 6 th edition): Assignment 9 Due on Thursday, November 26. 1. On page 131 of Giancoli, problem 18. 2. On page 220 of Giancoli, problem 24. 3. On page 221

More information

A Simulation Analysis of Formations for Flying Multirobot Systems

A Simulation Analysis of Formations for Flying Multirobot Systems A Simulation Analysis of Formations for Flying Multirobot Systems Francesco AMIGONI, Mauro Stefano GIANI, Sergio NAPOLITANO Dipartimento di Elettronica e Informazione, Politecnico di Milano Piazza Leonardo

More information

Mobile Robot FastSLAM with Xbox Kinect

Mobile Robot FastSLAM with Xbox Kinect Mobile Robot FastSLAM with Xbox Kinect Design Team Taylor Apgar, Sean Suri, Xiangdong Xi Design Advisor Prof. Greg Kowalski Abstract Mapping is an interesting and difficult problem in robotics. In order

More information

T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor Hover with Payload Position Disturbance

T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor Hover with Payload Position Disturbance International Journal of Applied Engineering Research ISSN 0973-4562 Volume 9, Number 22 (2014) pp. 17883-17894 Research India Publications http://www.ripublication.com T1-Fuzzy vs T2-Fuzzy Stabilize Quadrotor

More information

The Advantages of Commercial UAV Autopilots over Open Source Alternatives

The Advantages of Commercial UAV Autopilots over Open Source Alternatives The Advantages of Commercial UAV Autopilots over Open Source Alternatives White Paper by Sarah Vallely Small and large scale businesses are switching to open source software solutions (OSS) to create anything

More information

Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment

Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment AIAA Guidance, Navigation and Control Conference and Exhibit 2-23 August 27, Hilton Head, South Carolina AIAA 27-646 Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment Gabriel M. Hoffmann

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

Renishaw 2008. apply innovation TM. Calibrating 5-axis machines to improve part accuracy. 5Align

Renishaw 2008. apply innovation TM. Calibrating 5-axis machines to improve part accuracy. 5Align Calibrating 5-axis machines to improve part accuracy 5Align Productive Process Pyramid TM Understanding and tracking machine behaviour Process verification Thermal compensation In-cycle process control

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Chapter 9 Rigid Body Motion in 3D

Chapter 9 Rigid Body Motion in 3D Chapter 9 Rigid Body Motion in 3D Rigid body rotation in 3D is a complicated problem requiring the introduction of tensors. Upon completion of this chapter we will be able to describe such things as the

More information

Tire testing at real driving conditions and

Tire testing at real driving conditions and Tire testing at real driving conditions and at tthe test tstand Intelligent Tire Technology 26 28 September 2011 Darmstadt Content Motivation Measurement Equipment Approach Test description Results Conclusions

More information

Sensor Fusion and its Applications in Portable Devices. Jay Esfandyari MEMS Product Marketing Manager STMicroelectronics

Sensor Fusion and its Applications in Portable Devices. Jay Esfandyari MEMS Product Marketing Manager STMicroelectronics Sensor Fusion and its Applications in Portable Devices Jay Esfandyari MEMS Product Marketing Manager STMicroelectronics Outline What is Sensor Fusion? What Are the Components of Sensor Fusion? How Does

More information

2014, IJIRAE- All Rights Reserved Page -417

2014, IJIRAE- All Rights Reserved Page -417 Low Cost Open Source based UAV for Aerial Photography Nuryono S. Widodo * Anton Yudhana Sunardi Electrical Eng. Univ. Ahmad Dahlan, Electrical Eng. Univ. Ahmad Dahlan Electrical Eng. Univ. Ahmad Dahlan

More information