Ethanol May 1997

Size: px
Start display at page:

Download "Ethanol 93-5. May 1997"

Transcription

1 Ethanol 93-5 May 1997

2 TABLE OF CONTENTS (Continued) TABLE OF CONTENTS I SUMMARY 1 A. TECHNOLOGY 1 1. Fermentation Ethanol 1 (a) Whole Kernel Dry Milling 1 (b) Tempered Degermination 1 (c) Wet Milling 1 2. Synthetic Ethanol 2 B. NEW TECHNOLOGY AND IMPROVEMENTS 4 1. Improved Microorganisms and Enzymes 4 2. Fermentation Design 4 3. Purification 5 4. Lignocellulosic Feedstocks: Biomass to Ethanol 6 C. ECONOMICS 8 D. COMMERCIAL ANALYSIS Demand Supply 13 II TECHNOLOGY 15 A. INTRODUCTION 15 B. STARCHES TO ETHANOL Process Chemistry 15 (a) Starch Hydrolysis 15 (1) Starch Hydration 17 (2) Gelatinization 17 (3) Starch Hydrolysis 17 (b) Fermentation Theory 19 (1) General 19 (2) The Embden-Meyerhof-Parnas Scheme 20 (c) Fermentation Variables 24 (1) Yield 24 (2) Recycle Stillage Tolerance 25 (3) Yeast Nutrition 26 (4) Fermentation Rates Corn to Ethanol: Whole-Kernel Dry Milling 29 (a) Corn Receiving 30

3 TABLE OF CONTENTS (Continued) (b) Milling and Hydrolysis 39 (c) Cooking and Saccharification 41 (d) Fermentation 42 (e) Distillation 42 (f) DDGS Separation and Drying Corn-to-Ethanol: Tempered Degermination Dry Milling 47 (a) Dry Milling 49 (1) Cleaning 49 (2) Degermination 49 (3) Separation 54 (b) Fine Milling and Hydrolysis 54 (c) Yeast and Gluten Separation and Drying Corn to Ethanol: Wet Milling Continuous Centrifugal Extraction (the Biostil Process) 59 (a) Dry Milling to Saccharification 60 (b) Fermentation and Yeast Separation 60 (c) Ethanol Purification Other Starch Feedstocks 63 (a) Cassava 63 (b) Sweet Sorghum 63 (c) Potatoes and Other Tubers 63 C. OTHER FERMENTATION FEEDSTOCKS Sugars and Other Carbohydrates Municipal Solid Wastes Cheese Whey 66 D. SYNTHETIC ETHANOL Process Chemistry Process Description 67 III NEW TECHNOLOGY AND IMPROVEMENTS 70 A. IMPROVED MICROORGANISMS AND ENZYMES Yeast Properties 70 (a) Genetic Manipulation of Enzyme Activity 70 (b) Thermophilic Operation Bacterial Fermentation 71 (a) General Principles 71

4 TABLE OF CONTENTS (Continued) (b) Process Advances 72 (1) Genetic Manipulation 72 (2) Process Manipulation 73 (3) Immobilized Bacteria Cornstarch Cooking 73 B. FERMENTATION DESIGN Vacuum Fermentation Flocculating Cells (Internal Recycle) 74 C. ETHANOL PURIFICATION Alternative Distillation Processes and Heat Recovery 75 (a) Dehydration Entrainer Choice 75 (b) Mechanical Vapor Recompression 76 (c) Vacuum Distillation Extraction and Adsorption 79 (a) Molecular Sieves 79 (1) Temperature-Swing Adsorption 79 (2) Pressure-Swing Adsorption 80 (3) Concentration-Swing Adsorption 81 (b) Pervaporation 83 D. DIRECT-CONTACT EXTRACTION Liquid/Liquid Extraction Gas/Liquid Extraction 91 E. LIGNOCELLULOSIC FEEDSTOCKS Process Chemistry 97 (a) Hydrolysis 97 (b) Pentose Fermentation 99 IV COMMERCIAL ECONOMICS 101 A. FEEDSTOCK AVAILABILITY AND PRICING Corn Price Corn Availability Corn Byproducts 103 B. PROCESS ECONOMICS Corn Whole-Kernel Dry Milling 104 (a) Corn and Byproduct Pricing 104 (b) Cost Estimate 105

5 TABLE OF CONTENTS (Continued) (c) Sensitivity Analysis 108 (1) Unit Prices 108 (2) Return on Investment 108 (3) Ethanol Concentration in Fermenters Corn Tempered Degermination Dry Milling 111 (a) Cost Estimate 111 (b) Sensitivity Analysis Synthetic Ethanol 113 C. NEW TECHNOLOGY ECONOMIC IMPACT Biomass to Ethanol Thermophilic Yeast Bacterial Fermentation Vacuum Fermentation Flocculating Cells Reactor Mechanical Vapor Recompression Molecular Sieves Membranes 123 D. COMPARATIVE ECONOMICS 123 V COMMERCIAL ANALYSIS 125 A. DEMAND North America 125 (a) Chemical Uses 125 (b) Solvent Uses 127 (c) Fuel Ethanol 128 (1) Ethanol-Gasoline Blends versus Gasoline 129 (2) Ethanol and Ethanol Derivatives as Oxygenated Additives133 (3) Renewable Resource-Based Fuel Incentives Western Europe 135 (a) Chemical Uses 136 (b) Solvent Uses 137 (c) Fuel 137 (d) E.C. Subsidies and Feedstock Pricing Japan Canada South America Asia 140

6 TABLE OF CONTENTS (Continued) B. SUPPLY United States 140 (a) Synthetic Ethanol 143 (b) Fermentation Ethanol Western Europe South America 145 REFERENCES 146

7 TABLES Table I.A.1 Recommended Process Conditions for Vapor Phase Catalytic Hydration of Ethylene 2 Table I.C.1 U.S. Gulf Coast Anhydrous Ethanol Plant Investment Costs, 1st Qtr Table I.C.2 U.S. Gulf Coast Ethanol Production Costs, 1st Qtr Table I.D.1 U.S. Ethanol Demand 12 Table I.D.2 West European Ethanol Demand excluding Beverage 12 Table I.D.3 Brazilian Transportation Fuel Demand 13 Table I.D.4 U.S. Ethanol Supply, Table II.B.1 Gelatinization Ranges of Selected Starches 17 Table II.B.2 Sugar Utilization in Fermentation 25 Table II.B.3 Inhibition Effects for S. cerevisiae 25 Table II.B.4 Yeast Nutrition Requirements 27 Table II.B.5 Ethanol Tolerance Grading 28 Table II.B.6 Typical Corn Analysis 29 Table II.B.7 Safe Corn Storage Life 30 Table II.B.8 Dry Milling degermination Product Distribution 48 Table II.D.1 Recommended Process Conditions for Vapor Phase Catalytic Hydration of Ethylene 68 Table III.B.1 Fermentation Product Distribution 75 Table III.C.1 Ethanol Dehydration Entrainer Choices 76 Table III.C.2 PVA Membrane PV Data 84 Table III.C.3 Ethanol-Selective Membrane PV Data 88 Table III.E.1 Composition of Selected Agricultural Residues 97 Table IV.A.1 Average Corn Price and GDP History 102 Table IV.A.2 Corn Production and Consumption 103 Table IV.A.3 Corn and Corn Byproduct Protein Content 104 Table IV.A.4 Corn and Corn Byproduct Prices 104 Table IV.B.1 Capital Cost Estimate of Whole Kernel Dry Milling 105 Table IV.B.2 Cost Estimate of Ethanol Production via Whole Kernel Dry Milling 106 Table IV.B.3 Cost Estimate of Ethanol Production versus Fermenter Ethanol Concentration, U.S. Midwest, 1st Qtr

8 Table IV.B.4 Capital Cost Breakdown of Tempered Degermination, U.S. Midwest, 1st Qtr Table IV.B.5 Cost Estimate of Ethanol Production via Tempered Degermination Dry Milling 112 Table IV.B.6 Cost Estimate of Ethanol Production via Ethylene Hydration 116 Table IV.C.1 Capital Cost Estimate for Biomass to Ethanol, U.S. Gulf Coast, 1st Qtr 1995, 54 million gallons per year 119 Table IV.C.2 Cost Estimate of Ethanol Production via Wood Fermentation 120 Table IV.D.1 U.S. Gulf Coast Anhydrous Ethanol Plant Investment Costs, 1st Qtr Table IV.D.2 U.S. Gulf Coast Ethanol Production Costs, 1st Qtr Table V.A.1 U.S. Ethanol Demand, Table V.A.2 U.S. Chemical Ethanol Demand, Table V.A.3 U.S. Solvent Ethanol Demand, Table V.A.4 U.S. Oxygenate Supply/Demand Balance, Table V.A.5 State Ethanol Incentives 136 Table V.A.6 West European Ethanol Demand Excluding Beverage, Table V.A.7 West European Chemical Ethanol Demand, Table V.A.8 West European Solvent Ethanol Demand, Table V.A.9 Ethanol Cost Comparison, Table V.A.10 Brazilian Transportation Fuel Demand, Table V.B.1 U.S. Ethanol Supply, Table V.B.2 U.S. Fermentation Ethanol Production, Table V.B.3 U.S. Synthetic Ethanol Production, Table V.B.4 Proposed U.S. Fermentation Ethanol Expansions, Table V.B.5 West European Ethanol Production,

9 FIGURES Figure I.A.1 Wet Milling versus Dry Milling 3 Figure I.B.1 Block Flow Diagram: Ethanol from Wood 7 Figure I.C.1 Ethanol COP Sensitivity to Corn Price 10 Figure I.C.2 Ethanol COP Sensitivity to Corn Price 10 Figure I.C.3 Ethanol COP Sensitivity to Ethylene Price 11 Figure I.C.4 Ethanol COP + ROI Sensitivity to Wood Price 11 Figure II.B.1 Structural and Fischer Projections of Glucose Structures 16 Figure II.B.2 Starch Linkages 16 Figure II.B.3 Embden-Meyerhof-Parnas Scheme 21 Figure II.B.4 Corn Receiving, Sotrage, and Milling: Whole Kernel Milling 31 Figure II.B.5 Milling and Hydrolysis: Whole Kernel Milling 32 Figure II.B.6 Saccharification: Whole Kernel Milling 33 Figure II.B.7 Fermentation: Whole Kernel Milling 34 Figure II.B.8 Beer Still: Corn Dry Milling 35 Figure II.B.9 Rectifier and Dehydration: Corn Dry Milling 36 Figure II.B.10 DDGS Drying: Whole Kernel Milling 37 Figure II.B.11 Ethanol Pasteurization and Vent Recovery: Whole Kernel Milling 38 Figure II.B.12 TakaTherm-II Temperature-Activity Curves 40 Figure II.B.13 Effect of ph on TakaTherm-II 40 Figure II.B.14 Baffle Tray Design: Disk-and-Donut Configuration 44 Figure II.B.15 Nutter V-Grid Tray Configuration 45 Figure II.B.16: Dry Milling through Corn Cleaning 50 Figure II.B.17 Dry Milling through Degermination 51 Figure II.B.18 Dry Milling through Final Product Separations 52 Figure II.B.19 Fine Milling and Hydrolysis 53 Figure II.B.20 Wet Milling versus Dry Milling 58 Figure II.B.22 The Biostil Process 61 Figure II.B.23 Biostil Centrifuge 62 Figure II.C.1 Sugar Crop to Ethanol Flow Diagram 65 Figure II.D.1 Ethanol Production via Direct Ethylene Hydration: Conventional Process 69 Figure III.C.1 Mechanical Vapor Recompresssion 77 Figure III.C.2 Concentration Swing Adsorption 82 Figure III.C.3 Ethanol Dehydration via Pervaporation 85 Figure III.C.4 Ethanol Purification via Pervaporation 87 Figure III.D.1 Liquid/Liquid Extraction of Ethanol 90 Figure III.D.2 Gas Stripping Tubular Reactor 93 Figure III.E.1 Aldopentose Fermentation in Yeasts 100

10 FIGURES Figure IV.B.1 Ethanol COP versus Corn Price, Whole Kernel Dry Milling 109 Figure IV.B.2 Ethanol COP versus DDG Price, Whole Kernel Dry Milling 109 Figure IV.B.3 Ethanol COP + ROI versus ROI, Whole Kernel Dry Milling 110 Figure IV.B.4 Ethanol COP versus Corn Price, Tempered Degermination 114 Figure IV.B.5 Ethanol COP versus Gluten Meal Price, Tempered Degermination 114 Figure IV.B.6 Ethanol COP + ROI versus ROI, Tempered Degermination 115 Figure IV.B.7 Ethanol COP versus Ethylene, Synthetic Ethanol 115 Figure IV.C.1 Block Flow Diagram: Ethanol from Wood 118 Figure IV.C.2 Figure IV.C.3 Ethanol COP + ROI versus Wood Price, Wood to Ethanol Process 121 Ethanol COP + ROI versus Initial Capital Investment, Wood to Ethanol Process 121 Figure V.A.1 Effect of Ethanol on RON of Various Base Stocks 130 Figure V.A.2 Effect of Ethanol on MON of Various Base Stocks 131

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

APPLICATION SHEET. Novozymes Spirizyme products for use in saccharification and fermentation

APPLICATION SHEET. Novozymes Spirizyme products for use in saccharification and fermentation FUEL ETHANOL APPLICATION SHEET Novozymes Spirizyme products for use in saccharification and fermentation The Spirizyme product range offers a wide variety of possibilities to optimize yields, throughput,

More information

New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute

New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute BioRefine Annual Seminar November 2, 2011 Dr. Susan Jenkins, Managing Director The Energy Bioscience Institute

More information

From Biomass. NREL Leads the Way. to Biofuels

From Biomass. NREL Leads the Way. to Biofuels From Biomass NREL Leads the Way to Biofuels The Wide World of Biofuels Fuel Source Benefits Maturity Grain/Sugar Ethanol Biodiesel Corn, sorghum, and sugarcane Vegetable oils, fats, and greases Produces

More information

Dehydration. Dehydration UNIT. operations. bioprocess plants

Dehydration. Dehydration UNIT. operations. bioprocess plants Dehydration Dehydration UNIT operations bioprocess plants VOGELBUSCH MOLECULAR SIEVE DEHYDRATION PRESSURE SWING ADSORPTION PROCESS By merging specialized process know-how with existing technology Vogelbusch

More information

Butanol from Biomass

Butanol from Biomass Butanol from Biomass Klaus-Dieter Vorlop, Thomas Willke Johann Heinrich von Thünen-Institut Institute of Agricultural Technology and Biosystems Engineerging klaus.vorlop@vti.bund.de Butanol market and

More information

Using Straw and MSW for Biorefineries in Denmark Technical Developments and Demonstration Activities

Using Straw and MSW for Biorefineries in Denmark Technical Developments and Demonstration Activities FACULTY OF SCIENCE Using Straw and MSW for Biorefineries in Denmark Technical Developments and Demonstration Activities Henning Jørgensen Department of Geosciences and Nature Ressource Management Faculty

More information

WASTE TO ENERGY TECHNOLOGY.

WASTE TO ENERGY TECHNOLOGY. WASTE TO ENERGY TECHNOLOGY. Introduction. The Holistic Waste To Energy Process as portrayed on our flow sheet for the conversion of organic wastes into gaseous and liquid fuels, electrical power, fertiliser

More information

FAO Symposium on. The role of agricultural biotechnologies for production of bio-energy in developing countries"

FAO Symposium on. The role of agricultural biotechnologies for production of bio-energy in developing countries FAO Symposium on The role of agricultural biotechnologies for production of bio-energy in developing countries" ETHANOL PRODUCTION VIA ENZYMATIC HYDROLYSIS OF SUGAR-CANE BAGASSE AND STRAW Elba P. S. Bon

More information

CORN BY-PRODUCTS IN DAIRY COW RATIONS

CORN BY-PRODUCTS IN DAIRY COW RATIONS CORN BY-PRODUCTS IN DAIRY COW RATIONS Dennis Lunn, Ruminant Nutritionist Shur-Gain, Nutreco Canada Inc. CORN BY-PRODUCTS IN DAIRY COW RATIONS Dennis Lunn, Ruminant Nutritionist Shur-Gain, Nutreco Canada

More information

HYPE. High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol

HYPE. High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol October 2011 HYPE High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol Volume 1, Issue 1 Project overview Fuels from lignocellulose biomass have a high potential to reduce GHG

More information

INDUSTRIAL BIOTECHNOLOGY. Production hosts for real-life feedstock utilization

INDUSTRIAL BIOTECHNOLOGY. Production hosts for real-life feedstock utilization Selection of production hosts for real-life feedstock utilization Karl Rumbold (karl.rumbold@tno.nl) INDUSTRIAL BIOTECHNOLOGY Industrial Biotechnology is the application of biotechnology for the processing

More information

RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS

RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS RECTIFIER DESIGN FOR FUEL ETHANOL PLANTS By Daniel R. Summers, P.E. SULZER CHEMTECH USA, Inc. Presented at the AIChE Annual Meeting Advances in Distillation Equipment and Applications Paper 264b November

More information

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives The sunliquid process - cellulosic ethanol from agricultural residues Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives 2 A globally leading company in specialty chemicals 6 116 235 4 Sales

More information

World Fuel Ethanol. Analysis and Outlook. Prepared for METI. Dr. Christoph Berg, F.O. Licht

World Fuel Ethanol. Analysis and Outlook. Prepared for METI. Dr. Christoph Berg, F.O. Licht Analysis and Outlook Prepared for METI By Dr. Christoph Berg, F.O. Licht 1 Some basic concepts By production route: Fermentation vs. Synthetic By composition: Anhydrous vs. Hydrous By end-use: Beverage,

More information

Badger State Ethanol, LLC Request for Fuel Pathway Determination under the RFS Program Office of Transportation and Air Quality

Badger State Ethanol, LLC Request for Fuel Pathway Determination under the RFS Program Office of Transportation and Air Quality Badger State Ethanol, LLC Request for Fuel Pathway Determination under the RFS Program Office of Transportation and Air Quality Summary: Badger State Ethanol, LLC ( Badger State ) submitted an Efficient

More information

There are two main types of ethanol fermentation and synthetic.

There are two main types of ethanol fermentation and synthetic. ETHANOL There are two main types of ethanol fermentation and synthetic. The major outlets for industrial ethanol are as a solvent and in chemical synthesis. Some 60% of US industrial demand goes to solvent

More information

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan DOE Office of Biological & Environmental Research: Biofuels Strategic Plan I. Current Situation The vast majority of liquid transportation fuel used in the United States is derived from fossil fuels. In

More information

Fuel ethanol production

Fuel ethanol production Fuel ethanol production 1 Fuel ethanol production P.W. MADSON AND D.A. MONCEAUX KATZEN International, Inc., Cincinnati, Ohio, USA History Motor fuel grade ethanol (MFGE) is the fastest growing market for

More information

AGRICULTURE FOR FOOD AND FOR BIOENEGY: IS IT POSSIBLE?

AGRICULTURE FOR FOOD AND FOR BIOENEGY: IS IT POSSIBLE? GLOBAL SUSTAINABLE BIOENERGY PROJECT AGRICULTURE FOR FOOD AND FOR BIOENEGY: IS IT POSSIBLE? Dr. Rodolfo Quintero-Ramírez March 24 th, 2010 Sao Paulo, Brazil ? FOOD ANIMAL FEED AGRICULTURE BIOENERGY BIOPRODUCTS

More information

Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree

Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree Biorefineries International status quo and future directions Ed de Jong / Rene van Ree Contents 1. Biobased Economy 2. Biorefineries - Definition 3. Biorefineries - Categories 4. Biorefineries - Objective

More information

Process performance improvement by Hybsi nanosieve membranes for dehydration by pervaporation

Process performance improvement by Hybsi nanosieve membranes for dehydration by pervaporation Process performance improvement by Hybsi nanosieve membranes for dehydration by pervaporation H.M. van Veen A. Motelica D.P. Shanahan R. Kreiter M.D.A. Rietkerk H.L. Castricum J.E. ten Elshof J.F. Vente

More information

Control of fermentation of lignocellulosic hydrolysates

Control of fermentation of lignocellulosic hydrolysates Control of fermentation of lignocellulosic hydrolysates Anneli Nilsson Department of Chemical Engineering II, Lund University P.O. Box 124, S-221 00 Lund, Sweden In this work substrate feeding rate to

More information

Municipal Solid Waste Used as Bioethanol Sources and its Related Environmental Impacts

Municipal Solid Waste Used as Bioethanol Sources and its Related Environmental Impacts International Journal of Soil, Sediment and Water Documenting the Cutting Edge of Environmental Stewardship Volume 1 Issue 1 Article 5 7-14-2008 Municipal Solid Waste Used as Bioethanol Sources and its

More information

Products of industrial microbiology

Products of industrial microbiology Tortona, 4th April 211 MICROORGANISMS: THE REAL STARS OF THE ENERGY / CHEMICAL PRODUCTION FROM BIOMASS Favaro L., Basaglia M., Casella S. Dipartimento di Biotecnologie Agrarie Products of industrial microbiology

More information

Industrial Symbiosis in Biofuel Industries: A case for improved environmental and economical performance Michael Martin

Industrial Symbiosis in Biofuel Industries: A case for improved environmental and economical performance Michael Martin Industrial Symbiosis in Biofuel Industries: A case for improved environmental and economical performance Michael Martin Environmental Technology and Management Michael.Martin@liu.se What do you know about

More information

Pocket Guide to ETHANOL 2015

Pocket Guide to ETHANOL 2015 Pocket Guide to ETHANOL 2015 x ETHANOL BASICS Ethanol is a biodegradable, high-octane motor fuel derived from the sugars, starches, and cellulosic matter found in plants. It has been used as a fuel or

More information

3/97 Food And Agricultural Industry 9.12.3-1

3/97 Food And Agricultural Industry 9.12.3-1 9.12.3 Distilled Spirits 9.12.3.1 General 1-2 The distilled spirits industry includes the production of whisky, gin, vodka, rum, and brandy. The production of brandy is discussed in AP-42 Section 9.12.2,

More information

Bioethanol Technology and Future Opportunities

Bioethanol Technology and Future Opportunities Bioethanol Technology and Future Opportunities Nhuan P. Nghiem Eastern Regional Research Center, ARS/USDA 600 E. Mermaid Lane Wyndmoor, PA 19038 John.Nghiem@ars.usda.gov CREL Annual Meeting Washington

More information

How To Model Biomass

How To Model Biomass Development of BIOMASS Supply and Demand in the PRIMES Energy Model 1. Introduction The work performed so far has involved the following tasks: 1. Specification of the biomass module 2. Development of

More information

Product sustainability in the water based polymers industry

Product sustainability in the water based polymers industry Product sustainability in the water based polymers industry The VINAVIL case Marco Cerra Vinavil S.p.A. R&S ITALIAN SITUATION : IMAGE OF CHEMISTRY Chemistry is not perceived today as sustainable for three

More information

Brigham Young University is fully accredited by the Northwest Association of Schools and Colleges.

Brigham Young University is fully accredited by the Northwest Association of Schools and Colleges. Accreditation Overview Accreditation is a nongovernmental process conducted by representatives of postsecondary institutions and professional groups, and focuses on the quality of institutions of higher

More information

Describe the molecules involved in photosynthesis and used as biofuels.

Describe the molecules involved in photosynthesis and used as biofuels. Dry Activities Activity 4A - Making biofuel molecules Learning objectives: By the end of the session students should be able to: Construct some simple molecules. Describe the molecules involved in photosynthesis

More information

How To Gasify Wood And Agriculture Biomass

How To Gasify Wood And Agriculture Biomass Gasification: An Old Technology for a New Use Sponsored by: Joel Tallaksen, Biomass Coordinator West Central Research & Outreach Center, University of Minnesota Fueling the Future: The Role of Woody and

More information

Driving Towards Sustainable Mobility: GM s Role in Biofuels Development and View on E20 Dr. Candace S. Wheeler

Driving Towards Sustainable Mobility: GM s Role in Biofuels Development and View on E20 Dr. Candace S. Wheeler Driving Towards Sustainable Mobility: GM s Role in Biofuels Development and View on E20 Dr. Candace S. Wheeler Global Energy Systems Center General Motors Corporation 1 Key Message General Motors believes

More information

BIOBASED MATERIALS ISSUES AND CHALLENGES

BIOBASED MATERIALS ISSUES AND CHALLENGES BIOBASED MATERIALS ISSUES AND CHALLENGES Giovanni CAMINO Politecnico of Torino, Alessandria Campus giovanni.camino@polito.it CONTENTS Biosourcing definition and measurement Sustainability and Life Cycle

More information

Second generation bioethanol: challenges and perspectives. Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG

Second generation bioethanol: challenges and perspectives. Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG Second generation bioethanol: challenges and perspectives Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG Wien, October 15, 2009 Seite 1 For over 150 years Süd-Chemie observe sustainable

More information

GDChVCW Konferenz February 28, 2013

GDChVCW Konferenz February 28, 2013 GDChVCW Konferenz February 28, 2013 VON MEGATRENDS ZU INNOVATIVER CHEMIE Public Martin Vollmer Group Technology Services 28.02.2013 2 Table of Contents Facts & Figures, Clariant s Businesses 3 Megatrends

More information

Cellulosic Ethanol Investment Opportunity. January 2015

Cellulosic Ethanol Investment Opportunity. January 2015 Cellulosic Ethanol Investment Opportunity January 2015 Transaction Overview BP Biofuels North America LLC (the Company, BP Biofuels or BP ) is soliciting potential interest in the acquisition of the Company

More information

RISK FACTORS IN ETHANOL PRODUCTION

RISK FACTORS IN ETHANOL PRODUCTION RISK FACTORS IN ETHANOL PRODUCTION David Coltrain Extension Assistant, Department of Agricultural Economics Kansas Cooperative Development Center Kansas State University Manhattan, KS 66506 785-532-1523

More information

The etuber - A Very High Yielding, Sustainable Feedstock for ABF Biofuels, Plastics and High Value Co-Products

The etuber - A Very High Yielding, Sustainable Feedstock for ABF Biofuels, Plastics and High Value Co-Products The etuber - A Very High Yielding, Sustainable Feedstock for ABF Biofuels, Plastics and High Value Co-Products CAREnergy of SC: Dr. Janice Ryan- Bohac, PhD BIO World Congress 2015 EE-Tuber Allows Expansion

More information

Sustainable production of biogas and bioethanol from waste

Sustainable production of biogas and bioethanol from waste Sustainable production of biogas and bioethanol from waste Waste - Resources on the wrong way Jens Ejbye Schmidt Head of programme NRG Biomass & Bioenergy Biosystem Division Risø The Technical University

More information

Crosswalk - 2013 CCNE Standards & 2012 NTF Criteria

Crosswalk - 2013 CCNE Standards & 2012 NTF Criteria CROSSWALK TABLE Commission on Collegiate Nursing Education s (CCNE) Standards for Accreditation of Baccalaureate and Graduate Nursing Programs (2013) & National Task Force on Quality Nurse Practitioner

More information

How to build a comprehensive knowledge platform in Norway Opportunities through cooperation Potential for a "Norwegian BIC"

How to build a comprehensive knowledge platform in Norway Opportunities through cooperation Potential for a Norwegian BIC Biorefinery / Biobased Economy How to build a comprehensive knowledge platform in Norway Opportunities through cooperation Potential for a "Norwegian BIC" Realising the potential of Biorefinery related

More information

Papapostolou 1, E. Kondili 1, J.K. Kaldellis 2

Papapostolou 1, E. Kondili 1, J.K. Kaldellis 2 Technological and Environmental Impacts Evaluation of Biomass and Biofuels Supply Chain Papapostolou 1, E. Kondili 1, J.K. Kaldellis 2 1 Optimisation of Production Systems Lab 2 Soft Energy Applications

More information

ABENGOA. Second-Generation Biofuels: Ready for Take-off. Analyst and Investor Day. Javier Salgado Leirado Executive VP

ABENGOA. Second-Generation Biofuels: Ready for Take-off. Analyst and Investor Day. Javier Salgado Leirado Executive VP Innovative Solutions for Sustainability ABENGOA Second-Generation Biofuels: Ready for Take-off Javier Salgado Leirado Executive VP Analyst and Investor Day April 2011 Forward-looking Statement This presentation

More information

Biofuels and Renewable Energy

Biofuels and Renewable Energy Biofuels and Renewable Energy Transforming resources into value From Power Generation to Transportation Fuels and Chemicals, KBR offers its customer outstanding Technology Development, Plant Scale-Up,

More information

Lesson: Alternative Fuels

Lesson: Alternative Fuels Drexel-SDP GK-12 LESSON Lesson: Alternative Fuels Subject Area(s) Environment, alternative fuels, fuels, automobile pollution Associated Unit Environments, module 4 Lesson Title Grade Level 6 (4-8) Lesson

More information

Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals

Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals 37 Biomass Syngas Production Technology by Gasification for Liquid Fuel and Other Chemicals MASASHI HISHIDA *1 KATSUHIKO SHINODA *2 TOSHIYA AKIBA *3 TAKESHI AMARI *4 TAKASHI YAMAMOTO *5 KEIGO MATSUMOTO

More information

The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway -

The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway - The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway - Nasjonalt Seminar Industriell Bioteknologi, Oslo, 06.06.2013 Karin Øyaas, Kai Toven 1, Ingvild

More information

Biorefinery concepts in the paper industry

Biorefinery concepts in the paper industry Biorefinery concepts in the paper industry Graziano Elegir, Tullia Maifreni, Daniele Bussini Innovhub, Paper Division Azienda Speciale della Camera di Commercio di Milano OUTLINE General aspects on the

More information

20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology

20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology 20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology The SEKAB Group www.sekab.com SEKAB E-Technology SEKAB BioFuel Industries SEKAB BioFuels and Chemicals

More information

CONTROLLING MICROBIAL GROWTH IN WINE

CONTROLLING MICROBIAL GROWTH IN WINE CONTROLLING MICROBIAL GROWTH IN WINE Section 3. Alcohol The alcohol content of wines is an important parameter in limiting microbial growth for only some of the enologically important organisms. The relative

More information

for 2nd Generation Biofuel Technology (Proven Equipment = Easy ScaleS

for 2nd Generation Biofuel Technology (Proven Equipment = Easy ScaleS Fiber and Chemical Division, BusinessB usiness Unit nit BioFuel BioFuel Equipment - derived from Pulp & Fiberboard applications for 2nd Generation Biofuel Technology (Proven Equipment = Easy ScaleS cale-up)

More information

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies

THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies THE PRACTICAL, PROVEN PATH TO GREEN ENERGY. RTP rapid thermal processing from Envergent Technologies RTP CONVERTS BIOMASS TO PYROLYSIS OIL FAST. Less than two seconds. That s all the time it takes to convert

More information

Biomass Issues. John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007

Biomass Issues. John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007 Biomass Issues John Christopher Madole Associates, Inc. presentation to the Minnesota Department of Commerce September 12, 2007 Biomass Issues Feedstocks-- Harvesting, Transporation & Storage Process Technology

More information

Fig A 9 Environmental, social and economic aspect from biofuels production Source: IEA (2011)(International Energy Agency, 2011)

Fig A 9 Environmental, social and economic aspect from biofuels production Source: IEA (2011)(International Energy Agency, 2011) Second and third generation of biofuels i 1. Introduction Biofuels can be classified into 3 generations: First, second and third generation The 2 nd generation biodiesel includes liquid fuels derived from

More information

Biotechnological processes for conversion of corn into ethanol

Biotechnological processes for conversion of corn into ethanol Appl Microbiol Biotechnol (2005) 67: 19 25 DOI 10.1007/s00253-004-1819-8 MINI-REVIEW R. J. Bothast. M. A. Schlicher Biotechnological processes for conversion of corn into ethanol Received: 15 July 2004

More information

Integrating a Renewable Energy Degree into an Existing Mechanical Engineering Program

Integrating a Renewable Energy Degree into an Existing Mechanical Engineering Program Integrating a Renewable Energy Degree into an Existing Mechanical Engineering Program Corey Jones, Robert Rogers, John Anderson Department of Mechanical Engineering Oregon Institute of Technology Klamath

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Study Guide. Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other

Study Guide. Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other Study Guide Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other Advantages and disadvantages of the different fuels (methanol, ethanol, bioethanol, and biodiesel) and

More information

CHOREN. Development of integrated biomass supply chains in South East Asia. Tsukuba, 28 rd of October 2009

CHOREN. Development of integrated biomass supply chains in South East Asia. Tsukuba, 28 rd of October 2009 CHOREN Development of integrated biomass supply chains in South East Asia Michael Deutmeyer general manager CHOREN Biomass Task 40: Sustainable International Bioenergy trade Tsukuba, 28 rd of October 2009

More information

Woody Biomass Supply and Demand 1

Woody Biomass Supply and Demand 1 Woody Biomass Supply and Demand 1 Bryce Stokes, Ph.D. Senior Advisor Navarro Research & Engineering, Inc. Department of Energy, Golden Field Office Golden, CO Introduction Forest biomass is one of the

More information

Ethanol from lignocellulose overview. Neue Krafstoffe Berlin, 6. Mai 2008

Ethanol from lignocellulose overview. Neue Krafstoffe Berlin, 6. Mai 2008 Ethanol from lignocellulose overview Neue Krafstoffe Berlin, 6. Mai 2008 Content I. Introduction II. Ethanol from lignocellulosic feedstocks i. Pretreatment ii. Enzymatic hydrolysis iii. Fermentation III.

More information

Liquid Biofuels for Transport

Liquid Biofuels for Transport page 1/11 Scientific Facts on Liquid Biofuels for Transport Prospects, risks and opportunities Source document: FAO (2008) Summary & Details: GreenFacts Context - Serious questions are being raised about

More information

Energy in 2020: Assessing the Economic Effects of Commercialization of Cellulosic Ethanol

Energy in 2020: Assessing the Economic Effects of Commercialization of Cellulosic Ethanol Energy in 2020: Assessing the Economic Effects of Commercialization of Cellulosic Ethanol by Stefan Osborne Office of Competition and Economic Analysis Executive Summary U.S. dependence on imports of crude

More information

Starch-based ethanol Liquefaction of starch for fuel ethanol production

Starch-based ethanol Liquefaction of starch for fuel ethanol production Starch-based ethanol Liquefaction of starch for fuel ethanol production Application sheet To effectively process the starch in dry-milled grains for the production of ethanol, alphaamylases are needed

More information

Consumer Products Made with Industrial Biotechnology

Consumer Products Made with Industrial Biotechnology s Made with Industrial Biotechnology Consumer Bread Potassium bromate, a suspected cancer-causing agent at certain levels, added as a preservative and a dough strengthening agent microorganisms produces

More information

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE

UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE REPORT ON A TEST EXECUTED ON A KDV DEPOLYMERIZATION PLANT ON JAN 19TH 2012 IN THE ORION ECOSOLUTIONS DEMONSTRATION

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food The food involved in respiration is usually Internal respiration is controlled by which allow energy to be released in The

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

Michigan Tech s Wood to Wheels Initiative. David D. Reed, Ph.D. Vice President for Research

Michigan Tech s Wood to Wheels Initiative. David D. Reed, Ph.D. Vice President for Research Michigan Tech s Wood to Wheels Initiative David D. Reed, Ph.D. Vice President for Research Wood-to-Wheels (W2W) Bioprocessing Sustainable Decisions CO 2 Biomass Development Engines/Vehicles W2W Mission

More information

Pilot Project Rockstedt

Pilot Project Rockstedt Pilot Project Rockstedt Decentralised Production of Bioethanol Energetic Process Optimisation Dr.-Ing. Gerhard Schories ttz - Bremerhaven 4. European Bioethanol Technology Meeting Detmold 15. 16. April

More information

Techno-economic and ecological evaluation of a wood biorefinery

Techno-economic and ecological evaluation of a wood biorefinery Techno-economic and ecological evaluation of a wood biorefinery Martina Haase 1, Magnus Fröhling 1, Jörg Schweinle 2, Birgit Himmelreich 3 1) Industrial Production, Universität Karlsruhe (TH) 2) Johann

More information

Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies

Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies BUILDING A COST EFFECTIVE INFRASTRUCTURE WITH GREEN HYDROGEN Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies a division of Energy Technologies, Inc. 233 Park Avenue East Mansfield,

More information

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013

MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE. Tomáš Rohal, Business Development CEEI 10-Oct-2013 MODERN TECHNOLOGIES FOR ENERGY AND MATERIAL RECOVERY FROM WASTE Tomáš Rohal, Business Development CEEI 10-Oct-2013 1 Who We Are Central Europe Engineering & Investment (CEEI) offers the state-of-the-art

More information

MAKING & FERMENTING THE MASH

MAKING & FERMENTING THE MASH MAKING & FERMENTING THE MASH Contents 1. Table of Ingredients for the Mash 2. About Myths 3. Making and Fermenting Mash from Whole Corn or Directly from Corn Meal 4. For Starters in Distillation 5. Sugar

More information

Introduction to our Business in Valmet. Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014

Introduction to our Business in Valmet. Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014 Introduction to our Business in Valmet Marita Niemelä VP, Strategy Pulp & Energy 20 August 2014 Valmet in brief Metso Demerger Two independent stock listed companies Metso is a global supplier of technology

More information

Molasses Based Ethanol / Rectified Spirit Plant. Molasses Based Fuel Ethanol (Bio-Fuel) Plant

Molasses Based Ethanol / Rectified Spirit Plant. Molasses Based Fuel Ethanol (Bio-Fuel) Plant Sector Agro and Food Processing Sub - sector Agro Processing Industry Project No. AF-34 Project Title Molasses Based Fuel Ethanol (Bio-Fuel) Plant Project Description The proposed project envisages setting

More information

Forward. Contents. Bioenergy Development Plan

Forward. Contents. Bioenergy Development Plan Forward Energy supply security and reduction of greenhouse gas emission are important issues in the ASEAN region where bioenergy is realized as one of the highest potential renewable energies. Thailand

More information

TIGAS Topsøe s s Improved Gasoline Synthesis

TIGAS Topsøe s s Improved Gasoline Synthesis TIGAS Topsøe s s Improved Gasoline Synthesis 30 October - 1 November 2013 Shangri-La Hotel, Singapore Henrik Udesen Presentation outline Brief introduction to TIGAS history Techncial features Marked considerations

More information

Introduction on Glycerol as co-product from biodiesel plants

Introduction on Glycerol as co-product from biodiesel plants Introduction on Glycerol as co-product from biodiesel plants Dr. Ir. Wim De Greyt, R&D Manager Desmet Ballestra Group, Zaventem, Belgium 1 GENERAL OUTLINE OF THE PRESENTATION 1. GENERAL ASPECTS - Production,

More information

INTRODUCTION TO THE ETHANOL SUPPLEMENT

INTRODUCTION TO THE ETHANOL SUPPLEMENT INTRODUCTION TO THE Program planning for export market development must take into account the diversity of market development programs, geographic realities, economic conditions, the nature of constraints

More information

How Much Energy Does It Take to Make a Gallon of Ethanol?

How Much Energy Does It Take to Make a Gallon of Ethanol? How Much Energy Does It Take to Make a Gallon of Ethanol? David Lorenz David Morris Revised and Updated August 1995 How Much Energy Does It Take To Make A Gallon of Ethanol was originally authored by David

More information

Chuck Neece Director Research and Development FUMPA BioFuels

Chuck Neece Director Research and Development FUMPA BioFuels Chuck Neece Director Research and Development FUMPA BioFuels What is Biodiesel? Just give me the Facts! Biodiesel is Not! Just filtered grease or oil in your tank This would not be chemically changed to

More information

Alcohol to Jet (ATJ) June 2013 Glenn Johnston. 2012 Gevo, Inc. 1

Alcohol to Jet (ATJ) June 2013 Glenn Johnston. 2012 Gevo, Inc. 1 Alcohol to Jet (ATJ) June 2013 Glenn Johnston 2012 Gevo, Inc. 1 Forward-Looking Statements Certain statements within this presentation may constitute forward-looking statements within the meaning of the

More information

BBI JU Calls 2015 Strategic priorities, content and timing. Agata PIENIADZ BBI JU Project Manager Info Day, 26 June 2015

BBI JU Calls 2015 Strategic priorities, content and timing. Agata PIENIADZ BBI JU Project Manager Info Day, 26 June 2015 BBI JU Calls 2015 Strategic priorities, content and timing Agata PIENIADZ BBI JU Project Manager Info Day, 26 June 2015 Content Introduction Value Chains, Priorities, Types of Actions Flagship Call (2015.1)

More information

Name Section Lab 5 Photosynthesis, Respiration and Fermentation

Name Section Lab 5 Photosynthesis, Respiration and Fermentation Name Section Lab 5 Photosynthesis, Respiration and Fermentation Plants are photosynthetic, which means that they produce their own food from atmospheric CO 2 using light energy from the sun. This process

More information

Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol

Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol Detmold, April 25-26, 2006 Johan van Groenestijn & Doede Binnema 3 projects Ethanol from starch

More information

How To Improve Energy Efficiency In The Paper Industry

How To Improve Energy Efficiency In The Paper Industry Presentation 3.1: Report on energy efficient technologies and CO 2 reduction potentials in the pulp and paper industry Thore S. Berntsson Professor Chalmers University of Technology, Gothenburg, Sweden

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Biogas as transportation fuel

Biogas as transportation fuel Biogas as transportation fuel Summary Biogas is used as transportation fuel in a number of countries, but in Europe it has only reached a major breakthrough in Sweden. All of the biogas plants in Sweden

More information

Chair of Chemistry of Biogenic Resources TU München - R&D activities -

Chair of Chemistry of Biogenic Resources TU München - R&D activities - Chair of Chemistry of Biogenic Resources TU München - R&D activities - Chair of Chemistry of Biogenic Resources Schulgasse 18, 94315 Straubing, Germany Sieber@tum.de www.rohstoffwandel.de Locations Freising

More information

How To Learn To Be A Successful Engineer

How To Learn To Be A Successful Engineer PAPER SCIENCE & ENGINEERING BACCALAUREATE PROGRAM This program leads to the degree, Bachelor of Science in Paper Science & Engineering (Accredited by the Engineering Accreditation Commission of ABET) SCHOOL

More information

DSM Position on Sustainable Biomass

DSM Position on Sustainable Biomass Corporate Public Affairs Het Overloon 1, 6411 TE Heerlen, the Netherlands www.dsm.com April 2012 DSM Position on Sustainable Biomass Key messages DSM is a leading Life Sciences and Materials Sciences company

More information

Lesson 6. BioMara gratefully acknowledges the following funders: Content Section - How Algae can be used to produce Biofuel.

Lesson 6. BioMara gratefully acknowledges the following funders: Content Section - How Algae can be used to produce Biofuel. Lesson 6 Content Section - How Algae can be used to produce Biofuel. From lesson 5 you have discovered that there are many uses for algae. You also have discovered that algae can be used to produce biofuels.

More information

California Energy Commission California Perspective on Biofuels and Energy

California Energy Commission California Perspective on Biofuels and Energy California Energy Commission California Perspective on Biofuels and Energy USDA/USDOE Biomass Research and Development Technical Advisory Committee Meeting November 19, 2015 Emeryville, California Tim

More information

CONTRIBUTION OF THE ETHANOL INDUSTRY TO THE ECONOMY OF THE UNITED STATES IN 2014

CONTRIBUTION OF THE ETHANOL INDUSTRY TO THE ECONOMY OF THE UNITED STATES IN 2014 CONTRIBUTION OF THE ETHANOL INDUSTRY TO THE ECONOMY OF THE UNITED STATES IN 2014 Prepared for the Renewable Fuels Association by John M. Urbanchuk Managing Partner February 2015 The U.S. ethanol industry

More information

Production of Butanol from Switchgrass using a Novel Detoxification Process

Production of Butanol from Switchgrass using a Novel Detoxification Process Production of Butanol from Switchgrass using a Novel Detoxification Process Niblack Research Scholar B.S. in Biosystems Engineering, Oklahoma State University Graduation Date: May 09, 2015 jonathan.overton@okstate.edu

More information