INDUSTRIAL BIOTECHNOLOGY. Production hosts for real-life feedstock utilization

Size: px
Start display at page:

Download "INDUSTRIAL BIOTECHNOLOGY. Production hosts for real-life feedstock utilization"

Transcription

1 Selection of production hosts for real-life feedstock utilization Karl Rumbold INDUSTRIAL BIOTECHNOLOGY Industrial Biotechnology is the application of biotechnology for the processing and production of chemicals, materials and fuels It uses enzymes, micro-organisms and cell lines to make products in sectors such as chemistry, pharma, food and feed, paper and pulp, textiles and energy, materials and polymers Interest from pharma was always present Recent: keen interest from Chemical Industry: Better process economy Better product green company image : climate change Further growth is predicted 0% of sales in 00 The development and production of novel, innovative products and processes in a cost- and eco-efficient manner, using increasingly renewable raw materials The discovery and optimization of strains and biocatalysts TNO Kwaliteit van Leven, 0 october 007

2 INDUSTRIAL BIOTECHNOLOGY AT TNO Feedstock Engineering Fungal Biotechnology Metabolomics TNO Kwaliteit van Leven, 0 october 007 FEEDSTOCK ENGINEERING / BIOPROCESSING Feedstock engineering Bioprocessing I. Sucrose, Starch II. Lignocellulose Carbohydrate Feedstock Enzymes Biofuels Bulk chemicals Fine chemicals TNO Kwaliteit van Leven, 0 october 007

3 Wheat straw Sugar cane bagasse Cheaper Abundant Green Corn stover Wood chips dirty glycerol TNO Kwaliteit van Leven, 0 october 007 PRODUCTION OF FERMETABLE SUGARS - TWO WAYS Thermozyme process Heat Biosulfurol process Sulphuric acid SO Membrane H S oxidator H S gas Sulphuric acid reactor Hydrolysis neutralisation Impregnation Fermentation process Anaerobic wastewater treatment Waste water Lignocellulosic Lignin Sulphate Membrane biomass Recycle water 6 TNO Kwaliteit van Leven, 0 october 007

4 ISSUES WITH REAL-LIFE FEEDSTOCKS Mixture of sugars (C6 and C) Growth Inhibitors (Furfural, acetic acid) ph (high and low) High salt concentrations ( dirty glycerol) LITTLE TO NO KNOWLEGDE ON COMPARATIVE FERMENTATION PERFORMANCE ON REAL-LIFE FEEDSTOCKS 7 TNO Kwaliteit van Leven, 0 october 007 SELECTION OF PRODUCTION HOSTS - CURRENT STATE-OF-THE-ART Ad hoc, arbitrary Experience with certain favorite microorganisms Well characterized microorganism Genetic accessibility (E. coli and S. cerevisiae) plug-bugs - microbial production platforms THERE IS NO TEST STAND AVAILABLE FOR BENCHMARKING MICROORGANISMS 8 TNO Kwaliteit van Leven, 0 october 007

5 SELECTION OF PRODUCTION HOSTS - GOALS Which microorganisms - for which feedstocks BENCHMARKING Carbon source (C, C6, glycerol) Resistance to inhibitors Performance on real-life feedstocks TEST ORGANISMS Escherichia coli Corynebacterium glutamicum Saccharomyces cerevisiae Pichia stipitis Trichoderma reesei Aspergillus niger 9 TNO Kwaliteit van Leven, 0 october 007 Results Fermentation parameters Controlled aerobic fermentation on minimal medium with glucose, xylose or glycerol as only carbon source Xylose is not used by S. cerevisiae C. glutamicum Glycerol is not used by Enormous differences in growth rates, substrate uptake rates, biomass yield, carbon dioxide production and oxygen uptake rates Samples were taken for exometabolome analysis 0 TNO Kwaliteit van Leven, 0 october 007

6 Results Resistance 00 S. cerevisiae P. stipitis E. coli C. glutamicum T. reesei A. niger % CO production rate / specific growth rate 0 0 g/l furfural g/l furfural 0, g/l furfural g/l HMF g/l HMF g/l HMF 0, g/l HMF 0 g/l acetate 0 g/l acetate g/l acetate g/l acetate 80 g/l magnesium sulfate 60 g/l magnesium sulfate 0 g/l magnesium sulfate 0 g/l magnesium sulfate 00 g/l sodium chloride 70 g/l sodium chloride 0 g/l sodium chloride 0 g/l sodium chloride g/l sodium chloride TNO Kwaliteit van Leven, 0 october 007 Results Resistance On-line determination of growth rate / CO production rate Resistance against high salt concentrations Resistance against high acetate concentrations C. glutamicum Resistance against inhibitors HMF > furfural TNO Kwaliteit van Leven, 0 october 007

7 Results Fermentations on real-life feedstocks Shake flask fermentation on minimal medium using feedstock hydrolysates and glycerol as carbon sources Performance indicators: ph Carbon source utilization Biomass yield (g/g) Protein production Fermentation at low ph S. cerevisiae Fermentation at high ph C. glutamicum C6 / C utilization E. coli Glycerol utilization S. cerevisiae Feedstock versatility TNO Kwaliteit van Leven, 0 october 007 Results Metabolite and protein production potential S. cerevisiae. lactic acid. alanine. glutamic acid. pyruvate. lactic acid 6. malic acid 7. citric acid. gluconic acid. oxalic acid. citric acid. mannitol. arabitol 6. xylulose 7. pyruvate E. coli. succinic acid. lactic acid. orotic acid. alpha-ketoglutaric acid. citric acid 6. glutamic acid 7. -aminobenzoic acid. pyruvate. unknown (specific for P. stipitis). butanediol. arabitol or isomer. lactic acid 6. disaccharide 7. glycolic acid. mannitol. malic acid. arabitol or isomer. succinic acid. citric acid 6. disaccharide 7. mannitol C. glutamicum. lactic acid. disaccharide. glutamic acid. succinic acid. glycine 6. alanine 7. orotic acid TNO Kwaliteit van Leven, 0 october 007

8 Bechmarking study thermozyme biosulfurol doubling time C-source uptake rate Biomass yield Mixed sugars fermentation acetic acid resistance HMF resistance furfural resistance NaCl resistance MgSO resistance Protein production low ph Diauxy GLU-XYL Growth on bagasse Growth on wheat straw Growth on corn stover Growth on bagasse Growth on wheat straw Growth on corn stover Growth on wood Growth on dirty glycerol GLU XYL GLY GLU XYL GLY GLU XYL GLY Feedstock versatility Genetic acessibility Adaptation to lignocellulosic substrates (literature) Performance on lignocellulosic substrate S. cerevisiae P. stipitis NO A. niger YES T. reesei YES E. coli YES C. glutamicum Total TNO Kwaliteit van Leven, 0 october 007 Conclusions ALL 6 MICROORGANISMS TESTED CAN GROW ON TESTED FEEDSTOCKS (GLYCEROL) PICHIA AND ASPERGILLUS SCORE HIGHEST IN THE BENCHMARKING STUDY MOST POPULAR S. CEREVISIAE POOR XYLOSE METABOLISM AND RESISTANCE - ORGANISM OF CHOICE? BENCHMARKING MICROORGANISM PERFORMANCE - FUTURE STRATEGY FOR MPP FEEDSTOCK ENGINEERING AND FUNGAL BIOTECHNOLOGY REAL-LIFE FEEDSTOCKS ARE GOOD SUBSTRATES FOR MANY BIOPROCESSES BIOSULFUROL ALSO VERY PROMISING FOR CLOSTRIDIUM AND BACILLUS 6 TNO Kwaliteit van Leven, 0 october 007

Control of fermentation of lignocellulosic hydrolysates

Control of fermentation of lignocellulosic hydrolysates Control of fermentation of lignocellulosic hydrolysates Anneli Nilsson Department of Chemical Engineering II, Lund University P.O. Box 124, S-221 00 Lund, Sweden In this work substrate feeding rate to

More information

Sustainable Production and Products KETJU Research Programme Academy of Finland Opening Seminar

Sustainable Production and Products KETJU Research Programme Academy of Finland Opening Seminar Sustainable Production and Products KETJU Research Programme Academy of Finland Opening Seminar 17.1.2007 IMPROVEMENT OF XYLOSE UTILISATION FOR BIOPROCESSES Laura Ruohonen Improvement of xylose utilisation

More information

Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol

Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol Efficient conversion of starch and cellulose from co-products of food industry and agriculture to ethanol Detmold, April 25-26, 2006 Johan van Groenestijn & Doede Binnema 3 projects Ethanol from starch

More information

Bacterial Contaminants of Fuel Ethanol Production

Bacterial Contaminants of Fuel Ethanol Production USDA - ARS - National Center for Agricultural Utilization Research Bacterial Contaminants of Fuel Ethanol Production Kenneth M. Bischoff Bioproducts and Biocatalysis Research Bacterial Contaminants of

More information

FE308- Fermentation Technology Spring Lecture 1-2 Basic Principles of Food Fermentations Lecturer:Dr. Çisem Bulut Albayrak

FE308- Fermentation Technology Spring Lecture 1-2 Basic Principles of Food Fermentations Lecturer:Dr. Çisem Bulut Albayrak FE308- Fermentation Technology Spring 2016 Lecture 1-2 Basic Principles of Food Fermentations Lecturer:Dr. Çisem Bulut Albayrak Basic Principles of Food Fermentation Introduction Fermentation and Fermenting

More information

FAO Symposium on. The role of agricultural biotechnologies for production of bio-energy in developing countries"

FAO Symposium on. The role of agricultural biotechnologies for production of bio-energy in developing countries FAO Symposium on The role of agricultural biotechnologies for production of bio-energy in developing countries" ETHANOL PRODUCTION VIA ENZYMATIC HYDROLYSIS OF SUGAR-CANE BAGASSE AND STRAW Elba P. S. Bon

More information

Second generation bioethanol: challenges and perspectives. Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG

Second generation bioethanol: challenges and perspectives. Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG Second generation bioethanol: challenges and perspectives Dr. Andre Koltermann, Group Vice President, Central R&D, Süd-Chemie AG Wien, October 15, 2009 Seite 1 For over 150 years Süd-Chemie observe sustainable

More information

The Processes of Life. Bicester Community College Science Department

The Processes of Life. Bicester Community College Science Department B4 The Processes of Life B4 Key Questions How do chemical reactions take place in living things? How do plants make food? How do living organisms obtain energy? How do chemical reactions take place in

More information

Study Guide. Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other

Study Guide. Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other Study Guide Biofuel vs Petroleum-based fuel Exam questions will relate the lectures to each other Advantages and disadvantages of the different fuels (methanol, ethanol, bioethanol, and biodiesel) and

More information

HYPE. High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol

HYPE. High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol October 2011 HYPE High Efficiency Consolidated Bioprocess Technology for Lignocellulose Ethanol Volume 1, Issue 1 Project overview Fuels from lignocellulose biomass have a high potential to reduce GHG

More information

THE COST OF LIGNOCELLULOSIC SUGAR FOR COMMODITY CHEMICAL PRODUCTION. Mark F. Ruth, Robert J. Wooley

THE COST OF LIGNOCELLULOSIC SUGAR FOR COMMODITY CHEMICAL PRODUCTION. Mark F. Ruth, Robert J. Wooley THE COST OF LIGNOCELLULOSIC SUGAR FOR COMMODITY CHEMICAL PRODUCTION Mark F. Ruth, Robert J. Wooley National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 ABSTRACT Currently, some commodity

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Slide 1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Global business from research in the BioRefine and Water areas. Dr. Heidi Fagerholm Chief Technology Officer

Global business from research in the BioRefine and Water areas. Dr. Heidi Fagerholm Chief Technology Officer Global business from research in the BioRefine and Water areas Dr. Heidi Fagerholm Chief Technology Officer November 26 th, 2012 Our purpose: Reducing the gap between global water demand and supply 2 A

More information

Production of 2nd generation bioethanol from lucerne with optimized hydrothermal pretreatment

Production of 2nd generation bioethanol from lucerne with optimized hydrothermal pretreatment Downloaded from orbit.dtu.dk on: Feb 03, 2016 Production of 2nd generation bioethanol from lucerne with optimized hydrothermal pretreatment Thomsen, Sune Tjalfe; Ambye-Jensen, Morten; Schmidt, Jens Ejbye

More information

20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology

20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology 20 TWh biodrivmedel genom jäsning - bioteknik. 2011-10-26 KSLA Seminarium Jan Lindstedt SEKAB E-Technology The SEKAB Group www.sekab.com SEKAB E-Technology SEKAB BioFuel Industries SEKAB BioFuels and Chemicals

More information

Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy)

Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy) Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy) Consider the energy released by a burning peanut How is this like cellular respiration? Hyperlink What happened

More information

Ethanol from lignocellulose overview. Neue Krafstoffe Berlin, 6. Mai 2008

Ethanol from lignocellulose overview. Neue Krafstoffe Berlin, 6. Mai 2008 Ethanol from lignocellulose overview Neue Krafstoffe Berlin, 6. Mai 2008 Content I. Introduction II. Ethanol from lignocellulosic feedstocks i. Pretreatment ii. Enzymatic hydrolysis iii. Fermentation III.

More information

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives The sunliquid process - cellulosic ethanol from agricultural residues Dr. Markus Rarbach Group Biotechnology Biofuels & Derivatives 2 A globally leading company in specialty chemicals 6 116 235 4 Sales

More information

Integrated Process for Production of Succinic Acid from Biomass

Integrated Process for Production of Succinic Acid from Biomass Integrated Process for Production of Succinic Acid from Biomass BIO World Congress June 17, 2013 Allen Julian Chief Business Officer, MBI Who we are: Not-for-profit, founded in 1981, subsidiary of MSU

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food The food involved in respiration is usually Internal respiration is controlled by which allow energy to be released in The

More information

BIOBASED MATERIALS ISSUES AND CHALLENGES

BIOBASED MATERIALS ISSUES AND CHALLENGES BIOBASED MATERIALS ISSUES AND CHALLENGES Giovanni CAMINO Politecnico of Torino, Alessandria Campus giovanni.camino@polito.it CONTENTS Biosourcing definition and measurement Sustainability and Life Cycle

More information

Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY!

Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY! Biology I Cellular Respiration Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY! Now, we need a place to disassemble the molecule

More information

Biocatalysis Position In Green Chemistry

Biocatalysis Position In Green Chemistry Biocatalysis Position In Green Chemistry http://www.nature.com/scitable/topicpage/cell-metabolism-14026182 How Green is Biocatalysis? To Calculate is To know Yan Ni, Dirk Holtmann and Frank Hollmann ChemcatChem

More information

monosaccharides fatty acids amino acids

monosaccharides fatty acids amino acids Cellular Energy In order to sustain life (steady state), cells constantly expend energy in the form of ATP hydrolysis the hydrolysis of ATP yields a molecule of ADP (adenosine diphosphate) and a Phosphate

More information

production combination is ethanol (low value) and succinic acid (high value), together with acetic acid and electricity as co-products.

production combination is ethanol (low value) and succinic acid (high value), together with acetic acid and electricity as co-products. Summary The increasing world energy demand, depletion and unequal distribution of fossil resources, and the dangers caused by climate change are the driving forces for the development of alternative energy

More information

GCSE Additional Science

GCSE Additional Science GCSE Additional Science Module B4 The processes of life: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber:

More information

Process evaluation of industrial strains

Process evaluation of industrial strains BioREFINE-2G Workshop: Bioplastics from 2nd Generation Biorefineries York, June 5, 2015 Process evaluation of industrial strains Gunnar Lidén, Lund University This project is co-funded by the European

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Carbon Balance, Respiration and Environment. K. Raja Reddy

Carbon Balance, Respiration and Environment. K. Raja Reddy Carbon Balance, Respiration and Environment K. Raja Reddy Krreddy@pss.msstate.edu Carbon Balance, Respiration and Environment Goals and learning objectives are to: Understand the respiration costs associated

More information

FERMENTATION INHIBITORS

FERMENTATION INHIBITORS A NOVOZYMES SHORT REPORT: FERMENTATION INHIBITORS KATE BRANDON SUTTON ASSOCIATE SCIENTIST Novozymes Tel. +4544460000 Krogshøjvej 36 2880 Bagsværd Denmark bioenergy@novozymes.com Novozymes is the world

More information

Cellular Respiration Part V: Anaerobic Respiration and Fermentation

Cellular Respiration Part V: Anaerobic Respiration and Fermentation Cellular Respiration Part V: Anaerobic Respiration and Fermentation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate

More information

DuPont Renewably Sourced Materials

DuPont Renewably Sourced Materials DuPont Renewably Sourced Materials The Renewably Sourced Process DuPont is bringing nature and science together to convert agricultural crop to high performance materials and fuels. Microbes transform

More information

LAB EXERCISE: Fermentation

LAB EXERCISE: Fermentation LAB EXERCISE: Fermentation Laboratory Objectives After completing this lab topic, you should be able to: 1. Describe alcoholic fermentation, naming reactants and products. 2. Propose hypotheses and make

More information

Chapter 9 CELLULAR RESPIRATION

Chapter 9 CELLULAR RESPIRATION Chapter 9 CELLULAR RESPIRATION HARVESTING FREE ENERGY Photosynthesis takes free energy and puts it into carbohydrates/sugars Carbohydrates can be stored for later use; light can not and neither can ATP

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan

DOE Office of Biological & Environmental Research: Biofuels Strategic Plan DOE Office of Biological & Environmental Research: Biofuels Strategic Plan I. Current Situation The vast majority of liquid transportation fuel used in the United States is derived from fossil fuels. In

More information

Sustainable production of biogas and bioethanol from waste

Sustainable production of biogas and bioethanol from waste Sustainable production of biogas and bioethanol from waste Waste - Resources on the wrong way Jens Ejbye Schmidt Head of programme NRG Biomass & Bioenergy Biosystem Division Risø The Technical University

More information

Cellulosic ethanol Novozymes Cellic CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic

Cellulosic ethanol Novozymes Cellic CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic Cellulosic ethanol Novozymes Cellic CTec2 and HTec2 - Enzymes for hydrolysis of lignocellulosic Application sheet Conversion of lignocellulosic biomass to ethanol involves the liberation of sugars from

More information

Cellular Respiration

Cellular Respiration Cellular Respiration INTRODUCTION TO CELLULAR RESPIRATION Nearly all the cells in our body break down sugars for ATP production Most cells of most organisms harvest energy aerobically The aerobic harvesting

More information

The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway -

The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway - The LignoRef project; - A national research initiative to enhance biorefinery process developments in Norway - Nasjonalt Seminar Industriell Bioteknologi, Oslo, 06.06.2013 Karin Øyaas, Kai Toven 1, Ingvild

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular Respiration Have you ever wondered why exactly you need to breathe? What happens when you stop breathing? Cellular respiration is the set of the metabolic reactions and processes

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Consumer Products Made with Industrial Biotechnology

Consumer Products Made with Industrial Biotechnology s Made with Industrial Biotechnology Consumer Bread Potassium bromate, a suspected cancer-causing agent at certain levels, added as a preservative and a dough strengthening agent microorganisms produces

More information

WASTE TO ENERGY TECHNOLOGY.

WASTE TO ENERGY TECHNOLOGY. WASTE TO ENERGY TECHNOLOGY. Introduction. The Holistic Waste To Energy Process as portrayed on our flow sheet for the conversion of organic wastes into gaseous and liquid fuels, electrical power, fertiliser

More information

Our Creation. Federal: 1997 Farm Bill, $14 million appropriation under the Research Title.

Our Creation. Federal: 1997 Farm Bill, $14 million appropriation under the Research Title. Our Creation Federal: 1997 Farm Bill, $14 million appropriation under the Research Title. State: 1997, Capital Grant of $7 million, administered by Illinois Department of Commerce & Economic Opportunity.

More information

Carbohydrates: Sugars and starches they serve as energy and food source compounds Made of carbon and hydrogen and oxygen

Carbohydrates: Sugars and starches they serve as energy and food source compounds Made of carbon and hydrogen and oxygen Cell Processes (chemistry and respiration) Organic compounds they always contain carbon 4 types that you need to know: Lipids (fats, oils and waxes), Carbohydrates, Proteins and nucleic acids Inorganic

More information

Preliminary Design for Cellulosic Ethanol Production Facility Capable of Producing 50 MMgal/yr

Preliminary Design for Cellulosic Ethanol Production Facility Capable of Producing 50 MMgal/yr Preliminary Design for Cellulosic Ethanol Production Facility Capable of Producing 50 MMgal/yr The goal of this project was to develop a complete preliminary design for a cellulosic ethanol facility with

More information

New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute

New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute New Energy Solutions from Biosciences: Research Activities at the Energy Biosciences Institute BioRefine Annual Seminar November 2, 2011 Dr. Susan Jenkins, Managing Director The Energy Bioscience Institute

More information

GDChVCW Konferenz February 28, 2013

GDChVCW Konferenz February 28, 2013 GDChVCW Konferenz February 28, 2013 VON MEGATRENDS ZU INNOVATIVER CHEMIE Public Martin Vollmer Group Technology Services 28.02.2013 2 Table of Contents Facts & Figures, Clariant s Businesses 3 Megatrends

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

9-1 Notes. Chemical Pathways

9-1 Notes. Chemical Pathways 9-1 Notes Chemical Pathways Chemical Energy & Food Food provides living things with the chemical building blocks to grow and reproduce. One gram of the sugar glucose releases 3811 calories of heat energy.

More information

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis Cellular Respiration The backwards and slightly more complicated version of photosynthesis Learning Outcomes I will. - Explain how glycolysis and the Kreb s cycle work and describe where these processes

More information

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section C: Related Metabolic Processes

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section C: Related Metabolic Processes CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section C: Related Metabolic Processes 1. Fermentation allows some cells to produce ATP without the help of oxygen 2. Glycolysis and the Krebs

More information

Ethanol production by Mucor indicus using the fungal autolysate as a nutrient supplement

Ethanol production by Mucor indicus using the fungal autolysate as a nutrient supplement Department Ethanol production by Mucor indicus using the fungal autolysate as a nutrient supplement 1 Reihaneh Asachi 1,* 1 2, Keikhosro Karimi, Mohammad J. Taherzadeh of Chemical Engineering, Isfahan

More information

Major concepts: Notes: Capturing Cell Energy

Major concepts: Notes: Capturing Cell Energy 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Exercise X. IMViC Tests

Exercise X. IMViC Tests Exercise X IMViC Tests IMViC tests are used to study the physiological characteristics of bacteria from the Family Enterobacteriaceae, especially Escherichia and Enterobacter. The biochemical characteristics

More information

Cellular Respiration Page 9

Cellular Respiration Page 9 Cellular Respiration Page 9 I. The Importance of Food A. Food provides living things with the chemical building blocks they need to grow and reproduce. B. Food serves as a source of for the cells of the

More information

Aerobic organisms obtain energy from oxidation of food molecules

Aerobic organisms obtain energy from oxidation of food molecules Experiment: Time-course of water and oxygen uptake, and seed germination Aerobic organisms obtain energy from oxidation of food molecules Pradet et al 1968; 1981) Interpret results Becker et al. Third

More information

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules Introduction Chapter 6 In eukaryotes, cellular respiration harvests energy from food, yields large amounts of, and Uses to drive cellular work. A similar process takes place in many prokaryotic organisms.

More information

Methods of Grading S/N Style of grading Percentage Score 1 Attendance, class work and assignment 10 2 Test 20 3 Examination 70 Total 100

Methods of Grading S/N Style of grading Percentage Score 1 Attendance, class work and assignment 10 2 Test 20 3 Examination 70 Total 100 COURSE: MIB 303 Microbial Physiology and Metabolism (3 Units- Compulsory) Course Duration: Three hours per week for 15 weeks (45 hours). Lecturer: Jimoh, S.O. B.Sc., M.Sc, Ph.D Microbiology (ABU, Zaria)

More information

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration Have you ever wondered why you need oxygen? The Process that releases energy by breaking down food molecules in the presence of oxygen That energy goes to make ATP. What does it all mean? C 6 H 12 O 6

More information

Renewables-based Chemicals

Renewables-based Chemicals Renewables-based Chemicals From raw material opportunities to increased performance Markus Piepenbrink, Global New Business Development, Chemical Intermediates BASF BASF We create chemistry Our chemistry

More information

1. Define and give an example of the following:

1. Define and give an example of the following: Name: KEY Date: / / HR: Section 1 Chemistry of Life CHAPTER 3 CELL PROCESSES REVIEW 1. Define and give an example of the following: a. Atoms invisible particles that make up all mater; made from protons,

More information

Ethanol 93-5. May 1997

Ethanol 93-5. May 1997 Ethanol 93-5 May 1997 TABLE OF CONTENTS (Continued) TABLE OF CONTENTS I SUMMARY 1 A. TECHNOLOGY 1 1. Fermentation Ethanol 1 (a) Whole Kernel Dry Milling 1 (b) Tempered Degermination 1 (c) Wet Milling 1

More information

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP 1. Glycolysis leads to the production of and two molecules of ATP. In the absence of oxygen, fermentation leads to the production of. Glycolysis plus the citric acid cycle can convert the carbons of glucose

More information

Energized. Enzyme ADP. Enzyme ATP. Adenosine triphosphate: body s energy currency. Respiration: Metabolism carbohydrate (sugar) ATP + heat

Energized. Enzyme ADP. Enzyme ATP. Adenosine triphosphate: body s energy currency. Respiration: Metabolism carbohydrate (sugar) ATP + heat Goals: Be able to Describe the purpose, inputs, and products of respiration, and why it releases energy. Differentiate between aerobic respiration and anaerobic (fermentation). Compare and contrast bread

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Upgrading of Biomass to Animal Feed

Upgrading of Biomass to Animal Feed Upgrading of Biomass to Animal Feed Peter de Bot Training Course Biorefinery International Biomass Valorisation Congress 13 september, 2010 AMSTERDAM Background Subsidiary Cehave Landbouwbelang u.a. Core

More information

THE CELLULAR RESPIRATION SAGA: Glycolysis, Fermentation & Pyruvate Oxidation

THE CELLULAR RESPIRATION SAGA: Glycolysis, Fermentation & Pyruvate Oxidation THE CELLULAR RESIRATION SAGA: Glycolysis, Fermentation & yruvate Oxidation 1 HOW DO WE GET AT? AT is a product of cellular respiration O Breathing CO Breath in O O diffuses into bloodstream Lungs O diffuses

More information

Microbiology - Problem Drill 05: Microbial Metabolism

Microbiology - Problem Drill 05: Microbial Metabolism Microbiology - Problem Drill 05: Microbial Metabolism No. 1 of 10 1. Anabolism is a metabolic process where are turned into molecules. (A) Complex, simple (B) Simple, ATP (C) Simple, ATP (D) Simple, complex

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy I. Introduction A. In eukaryotes, cellular respiration 1. harvests energy from food 2. yields large amounts of ATP 3. B. A similar process takes place in many prokaryotic

More information

TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY

TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY TECHNICAL UNIVERSITY OF MOMBASA Faculty of ENGINEERING & TECHNOLOGY DEPARTMENT OF MEDICAL SCIENCES FACULTY OF APPLIED AND HEALTH SCIENCES BMLS 13M MID ENTRY ABT 4202 : BIOCHEMISTRY II INSTRUCTIONS: END

More information

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Aerobic cellular respiration requires

More information

CELLULAR RESPIRATION 29 MAY 2013

CELLULAR RESPIRATION 29 MAY 2013 CELLULAR RESPIRATION 29 MAY 2013 Lesson Description In this lesson, we: Define cellular respiration Define aerobic respiration o The role of glycolysis in aerobic respiration o The role of the Kreb s cycle

More information

Biorefineries and Biomass: Options for the Chemical Industry

Biorefineries and Biomass: Options for the Chemical Industry Biorefineries and Biomass: Options for the Chemical Industry German Association of Biotechnology Industries within the German Chemical Industry Association Frankfurt am Main, Germany DIB Profile DEUTSCHE

More information

Bioethanol Technology and Future Opportunities

Bioethanol Technology and Future Opportunities Bioethanol Technology and Future Opportunities Nhuan P. Nghiem Eastern Regional Research Center, ARS/USDA 600 E. Mermaid Lane Wyndmoor, PA 19038 John.Nghiem@ars.usda.gov CREL Annual Meeting Washington

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues

Process Technology. Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues Process Technology Advanced bioethanol production and renewable energy generation from ligno-cellulosic materials, biomass waste and residues The INEOS Bio process technology produces carbon-neutral bioethanol

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION

HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION Junping Zhuang, Ying Liu, Zhen Wu, Yong Sun, and Lu Lin * Xylitol can be obtained from wheat straw hemicellulose

More information

Production of Butanol from Switchgrass using a Novel Detoxification Process

Production of Butanol from Switchgrass using a Novel Detoxification Process Production of Butanol from Switchgrass using a Novel Detoxification Process Niblack Research Scholar B.S. in Biosystems Engineering, Oklahoma State University Graduation Date: May 09, 2015 jonathan.overton@okstate.edu

More information

INDUSTRIAL ETHANOL PRODUCTION USING JUICE OF DATES IN A FIXED CELL PROCESS. Raad AL Bassam

INDUSTRIAL ETHANOL PRODUCTION USING JUICE OF DATES IN A FIXED CELL PROCESS. Raad AL Bassam INDUSTRIAL ETHANOL PRODUCTION USING JUICE OF DATES IN A FIXED CELL PROCESS Raad AL Bassam Emirates Dates Factory -AI Saad. P.0. BOX 18454 AI Ain. U.A.E ABSTRACT The ability of two strains of Saccharomyces

More information

Glycolysis & Respiration

Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Ethanol Production Using Organic Waste

Ethanol Production Using Organic Waste Ethanol Production Using Organic Waste Daewon Pak, Jun Cheol Lee, Jae Hyung Kim Graduate School of Energy and Environment Seoul National University of Technology Research Background Bioethanol in Korea

More information

Use of Biodiesel Waste Glycerol in the Bacterial Production of Polyhydroxyalkanoate (PHA) Biodegradable Plastic

Use of Biodiesel Waste Glycerol in the Bacterial Production of Polyhydroxyalkanoate (PHA) Biodegradable Plastic Use of Biodiesel Waste Glycerol in the Bacterial Production of Polyhydroxyalkanoate (PHA) Biodegradable Plastic Daniel Nicholson Graduate Student, Department of Paper & Bioprocess Engineering Dickinson

More information

Future production of biomass for fuels and chemicals. Claus Felby Faculty of Life Sciences University of Copenhagen

Future production of biomass for fuels and chemicals. Claus Felby Faculty of Life Sciences University of Copenhagen Future production of biomass for fuels and chemicals Claus Felby Faculty of Life Sciences University of Copenhagen Biomass instead of oil? Biomass for energy is our current largest source of renewable

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Factors Effecting Ethanol Fermentation Via Simultaneous Saccharification and Fermentation

Factors Effecting Ethanol Fermentation Via Simultaneous Saccharification and Fermentation Factors Effecting Ethanol Fermentation Via Simultaneous Saccharification and Fermentation A study to determine the optimal operating conditions to convert cellulosic biomass into ethanol during enzymatic

More information

Carbohydrates, Lipids, and Proteins 3.2

Carbohydrates, Lipids, and Proteins 3.2 Carbohydrates, Lipids, and Proteins 3.2 Organic vs. Inorganic compounds Organic compounds contain carbon and are found in living organisms Exceptions: hydrocarbonates, carbonates, oxides of carbon. Inorganic

More information

The Second Generation of Fuel-ethanol ethanol Production Technology. April 2009

The Second Generation of Fuel-ethanol ethanol Production Technology. April 2009 The Second Generation of Fuel-ethanol ethanol Production Technology April 2009 1 Category of Ethanol Raw Material Sugar Cane Cassava Corn Wheat Bagasse Molasses Starch Cellulose Application Beverage ETHANOL

More information

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Name PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Cell Structure Identify animal, plant, fungal and bacterial cell ultrastructure and know the structures functions. Plant cell Animal cell

More information

Is ATP worth the investment?

Is ATP worth the investment? Is ATP worth the investment? ATP (adenosine tri-phosphate) can be thought of as the currency of the cell. Most cellular metabolic processes cost a certain amount of ATP in order to happen. Furthermore,

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

Chapter 7. How Cells Release Chemical energy

Chapter 7. How Cells Release Chemical energy Chapter 7 How Cells Release Chemical energy Overview of Carbohydrate Breakdown Pathway Plants and all other photoautotrophs get energy from the sun, heterotrophs get by eating plants and one another ATP

More information

Cellular Respiration

Cellular Respiration Cellular Respiration How is energy transferred and transformed in living systems? Why? Living organisms display the property of metabolism, which is a general term to describe the processes carried out

More information

An Overview of Metabolism

An Overview of Metabolism An Overview of Metabolism metabolism total of all chemical reactions occurring in cell catabolism breakdown of larger, more complex molecules into smaller, simpler ones energy is released and some is trapped

More information

New Technologies Fuel Ethanol

New Technologies Fuel Ethanol New Technologies Fuel Ethanol Dr. Scott Kohl White Energy Increasing Ethanol Yield by Lowering Glycerol Production 2 Agenda Reasons for glycerol production Growth requires NAD/NADH rebalance Compatible

More information

Get It Right. Answers. Chapter 1: The Science of Life. A biologist studies all living things.

Get It Right. Answers. Chapter 1: The Science of Life. A biologist studies all living things. Discover Biology 'N' Level Science Chapter 1 Chapter 1: The Science of Life A biologist studies all living things. In order to carry out the scientific method, we need to ask questions. Discover Biology

More information