LABORATORY TWO Plate Tectonics and the Origin of Magma

Size: px
Start display at page:

Download "LABORATORY TWO Plate Tectonics and the Origin of Magma"

Transcription

1 LABORATORY TWO Plate Tectonics and the Origin of Magma OBJECTIVES AND ACTIVITIES A. Infer whether expanding-earth or shrinking-earth hypotheses could explain plate tectonics and how mantle convection plays a role in causing plate tectonics. ACTIVITY 2.1: Is Plate Tectonics Caused by a Change in Earth s Size? (p , 43-44) ACTIVITY 2.2: Evaluate a Lava Lamp Model of Earth (p , 45-46) B. Understand how plate boundaries are identified and be able to measure and calculate some plate tectonic processes. ACTIVITY 2.3: Using Earthquakes to Identify Plate Boundaries (p. 35, 47-48) ACTIVITY 2.4: Analysis of Atlantic Seafloor Spreading (p. 35, 49-50) ACTIVITY 2.5: Plate Motions Along the San Andreas Fault (p. 35, 51-52) ACTIVITY 2.6: The Hawaiian Hot Spot and Pacific Plate Motion (p. 35, 53) ACTIVITY 2.7: Plate Tectonics of the Northwest United States (p. 35, 54) C. Use physical and graphical models of rock melting to infer how magma forms in relation to pressure, temperature, water, and plate tectonics. ACTIVITY 2.8: The Origin of Magma (p , 55-56) STUDENT MATERIALS (Remind students to bring items you check below.) laboratory manual laboratory notebook pencil with eraser metric ruler (cut from GeoTools sheet 1 or 2) calculator colored pencils (red and blue) visual estimation of percent chart (cut from GeoTools sheet 1 or 2) : : 14

2 INSTRUCTOR MATERIALS (Check off items you will need to provide.) ACTIVITY 2.1: Is Plate Tectonics Caused by a Change in Earth s Size? (p , 43-44) extra metric rulers (for students who forgot them but want to use one) ACTIVITY 2.2: Evaluate a Lava Lamp Model of Earth (p , 45-46) extra blue pencils (for students who forgot them) extra red pencils (for students who forgot them) lava lamp (turned on at least 1 hour ahead of time) and/or lava lamp video clip on IRC-DVD ACTIVITY 2.3: Using Earthquakes to Identify Plate Boundaries (p. 35, 47-48) extra metric rulers (for students who forgot them) extra red pencils or pens (for students who forgot them) ACTIVITY 2.4: Analysis of Atlantic Seafloor Spreading (p. 35, 49-50) extra metric rulers (for students who forgot them) extra blue pencils or pens (for students who forgot them) extra red pencils or pens (for students who forgot them) ACTIVITY 2.5: Plate Motions Along the San Andreas Fault (p. 35, 51-52) extra metric rulers (for students who forgot them) ACTIVITY 2.6: The Hawaiian Hot Spot and Pacific Plate Motion (p. 35, 53) extra metric rulers (for students who forgot them) ACTIVITY 2.7: Plate Tectonics of the Northwest United States (p. 35, 54) extra metric rulers (for students who forgot them) ACTIVITY 2.8: The Origin of Magma (p , 55-56) extra metric rulers (for students who forgot them) hot plate (one per group of students) sugar cubes (two per group of students) dropper with water or dropper bottle (one per group of students) aluminum foil (one sheet per group of students) or foil baking cups (two per group of students) crucible tongs (one per group of students) permanent felt-tip marker (one per group of students) 15

3 INSTRUCTOR NOTES AND REFERENCES 1. Refer to Laboratory 2 on the Internet site at for additional information and links related to all parts of this laboratory. 2. Metric and International System of Units (SI): refer to laboratory manual page x. 3. Mathematical conversions: refer to laboratory manual page xi. 4. To model Kinetic Theory, place small plastic or glass marbles in a clear plastic box or tray on an overhead projector. Hold the model still and elevated at one end, so the marbles form a close-packed array resembling a crystalline solid structure. Vibrate the model slightly to model a rise in kinetic energy and to start moving the marbles apart, as if melting is initiating. Vibrate the model more to model a greater rise in kinetic energy and to cause all of the marbles to move about independently, as if total melting or vaporization has occurred. (To model crystallization by decreasing kinetic energy, repeat these tasks in reverse.) Note: be sure to remind students that plumes of Earth s mantle are rock, not liquid magma or lava. 5. One lava lamp, or two, or three? Most lava lamps must be lighted for at least 1 hour before they exhibit active and obvious convection. It helps to have two or more lamps that have been turned on at different times, so the lava (wax) has varying amounts of kinetic energy. This helps students understand kinetic theory and how unequal amounts of heating affect the development and rate of convection. A lava lamp video clip is provided on the IRC-DVD. Note: be sure to remind students that Earth s mantle is rock, not liquid magma or lava. 6. Decompression melting. To help students visualize decompression melting, have them mix corn starch and water to make a corn starch suspension. Then have them try to roll some of the suspension into a ball and watch the suspension flow through their fingers. So long as the suspension is under pressure (i.e., while it is being rolled into a ball), it remains in a solid-like state. When the suspension is not under pressure (i.e., when a ball of suspension is placed on the palm of a hand), it flows in a liquid state. This is NOT decompression melting, but it helps students understand that pressure can prevent flowing even in materials that are normally fluid. 7. To model mantle plumes and hot spots, make a model of Earth s compositional layering first by placing clear corn syrup in a clear plastic cup (to represent Earth s mantle) and then by adding a few mm of water on top of it (to represent Earth s crust). To prepare material for a mantle plume, heat a small amount of corn syrup (with a few drops of red food coloring) on a hot plate. Fill a dropper with the hot red corn syrup, then squeeze some of it out onto the bottom of the plastic cup containing the cool syrup and water. Watch as the hot red corn syrup rises through the cooler corn syrup to form a long narrow plume and a pool of red syrup just beneath the water (crust). This is especially useful for having students entertain ideas about the origin of hot spots. 16

4 8. Flux melting. In the smelting industry, the term flux refers to materials such as fluxstone that are added to raw ore in order to lower the fusion (melting) temperature and produce slag. Experimental petrology has demonstrated that water lowers the fusion temperature of some minerals commonly found in granite, basalt, and peridotite; thereby initiating partial melting at lower, wet solidus temperatures. 9. Water in Earth's mantle. For information on recycling of water into Earth's mantle, refer to: C. Meade and R. Jeanloz Deep-focus earthquakes and recycling of water into Earth's mantle. Science 252: San Andreas fault slip rate. For a published estimate of the recurrence interval for very large earthquakes along the San Andreas fault north of San Francisco (221 +/- 40 yr) see: T.M. Niemi and N.T. Hall Late Holocene slip rate and recurrence of great earthquakes on the San Andreas fault in northern California. Geology 20: During the recurrence interval, the accumulated strain would be about 3.2 m (10 ft). However, Niemi and Hall (1992) also estimated that the Late Holocene rate of movement on the fault is about 2.4 cm/yr. For a published estimate of the recurrence interval for very large earthquakes along the San Andreas fault zone 70 km northeast of Los Angeles, California, see: T.E. Fumal, S.K. Pezzopane R.J. Weldon II, and D.P. Schwartz A 100-Year Average Recurrence Interval for the San Andreas Fault at Wrightwood, California. Science 259: They calculated a recurrence interval of about 100 years, a slip rate of about 2.5 cm per year, and a slip per very large earthquake of about 4 meters. ACTIVITY 2.1 ANSWERS AND EXPLANATIONS 2.1A. 17

5 2.1B. 2.1C. Students must be able to recognize divergent plate boundaries (red), transform plate boundaries (dashed, usually between segments of red divergent boundaries, but also including the San Andreas fault), and convergent boundaries (black with triangular teeth). Student estimations will vary, so it is good to have students share their estimates and obtain a class generalization. Most students correctly make the following visual estimation: 1. about 33% of Earth s plate boundaries are transform plate boundaries. 2. about 33% of Earth s plate boundaries are divergent plate boundaries. 3. about 33% of Earth s plate boundaries are convergent plate boundaries. 2.1D. Based on the answers to questions above, there is evidence for equal amounts of crustal compression, tension, and shear. Thus, it seems reasonable that Earth s size is not changing (i.e., Earth is staying about the same). 2.1E. As Earth's size does not seem to be changing (answer 2.1D), plate tectonics cannot be caused by a change in Earth's size. For Earth to remain the same size, it is moret likely that lithosphere is created at divergent boundaries, recycled back into the mantle at convergent boundaries, and neither created nor recycled at transform boundaries. ACTIVITY 2.2 ANSWERS AND EXPLANATIONS 2.2A. Students must observe a convecting lava lamp (that has been heating at least one hour) or a movie clip of a convecting lava lamp to answer these questions. 1. The lava moves from the base of the lamp to the top of the lamp, where it sits temporarily before sinking back to the bottom of the lamp. 2. Lava at the base of the lamp is heated by the light bulb. As the lava is heated, its kinetic energy level rises, which causes the lava to expand to a slightly greater volume and lower density. When the density of lava is less than the surrounding fluid, the lava rises. 3. Lava at the top of the lamp is cooling. As it cools, its kinetic energy level decreases, which causes the lava to contract into slightly less volume and higher density. When the density of lava is greater than the surrounding fluid, the lava sinks. 4. convection 18

6 2.2B. 1. Earth s mantle is like a lava lamp, because: mantle rocks are unequally heated like lava in the lava lamp. mantle rocks are heated at the base of the mantle, like lava in a lava lamp is heated at the base of the lava lamp. it has warmer rocks that rise like lava in a lava lamp. it has cooler rocks that sit atop the mantle or sink back into the mantle, like the masses of cooling lava at the top of the lava lamp. 2. Earth s mantle is different from a lava lamp, because: the mantle is rock, not lava or wax. the mantle is heated by Earth s outer core, but the lava lamp is heated by a light bulb. the mantle convects more slowly (i.e., cm/year) than the lava lamp (cm/second or cm/minute). 2.2C. By comparing lab manual Figures 2.4 and 2.3, students should observe that: 1. the warmer, less dense mantle rocks (red in Figure 2.4) mostly occur beneath divergent plate boundaries and hot spots. 2. the cooler, denser mantle rocks (blue in Figure 2.4) mostly occur beneath continents. 2.2D. The nature and detail of student cross sections will vary, but it should be at least a labeled, simple sketch like the one below. 19

7 ACTIVITY 2.3 ANSWERS AND EXPLANATIONS 2.3A. 2.3B 1. convergent 2. See black line (solid and dashed) on graph. 3. Lithospheric earthquakes occur above the line of the to surface of the subducting plate km 20

8 ACTIVITY 2.4 ANSWERS AND EXPLANATIONS 2.4A. 2.4B. Although points B and C were together 145 million years ago, they did not spread apart at exactly the same rate on opposite sides of the mid-ocean ridge. You can tell this because distance A-B is greater than distance A-C. 2.4C. How far apart are points B and C today? ~ 4000 km km 145 million years = 27.6 km/m.y. 2. There are 1000 m/km and 1000 mm/m, so there are 1,000,000 mm/km km 1,000,000 mm/km = 27,600,000 mm 27,600,000 mm 145,000,000 yr = 0.19 mm/yr 2.4D. When Africa and North America were together as part of one continent, points D and E were at the same location. They are now about 5400 to 5500 km apart (depending on how students measure the distance) km 27.6 km/m.y. = 195 m.y. AND 5500 km 27.6 km/m.y. = 199 m.y., so students should determine that Africa and North America were part of the same continent about m.y. ago (Early part of the Jurassic Period according to Figure 1.3 on page 4 of the Lab Manual). 2.4E = 235 yr AND 235 yr 0.19 mm/yr = 44.6 mm So, 44.6 mm m/mm = m Students should calculate that Africa and North America have moved apart by only a small fraction of one meter since the United States formed in

9 ACTIVITY 2.5 ANSWERS AND EXPLANATIONS 2.5A. 1. If the rock body formed 25 million years ago, and faulting displaced parts of it from 320 km (the minimum separation in Figure 1.10) to 380 km (the maximum separation in Figure 1.10), then the rate of motion is from 320 km /25 m.y. to 380 km/25 m.y., or 32,000,000 cm/25,000,000 yr to 38,000,000 cm./25,000,000 yr, or 32 cm/25 yr to 38 cm/25 yr, which equals: 1.2 to 1.5 cm/yr. 2. Students have already found that offset along the fault is about km, or 320, ,000 meters. So 320, ,000 meters 5 meters/offset equals 64,000 76,000 earthquakes with 5 meter offsets in the past 25 million years. 64,000 to 76,000 earthquakes/25,000,000 years = 64 to 76 earthquakes/25,000 yr, or one 5m earthquake every 390 to 329 years. 2.5B. 1. The North American Plate (north of the red San Andreas Fault) is moving about 20 mm/yr. The Pacific Plate (south of the red San Andreas Fault) is moving about 40 mm/yr. So, the Pacific Plate is moving about twice (2 times) as fast as the Pacific Plate here. 2. Note half arrows on map (showing the relative motion of the fault). 22

10 ACTIVITY 2.6 ANSWERS AND EXPLANATIONS 2.6A. 1. From million years ago the plate moved about 300 km west-northwest. This is a rate of: 30,000,000 cm 3,100,000 yr = 9.7 cm/yr west-northwest 2. From 1.6 million years ago to now, the plate has moved about 255 km almost due northwest (as measured from the easternmost volcano on Molokai to Kilauea volcano on Hawaii). This is a rate of: 25,500,000 cm 1,600,000 yr = 15.9 cm/yr due northwest 3. The Pacific Plate has moved about 1.6 times faster (and in a more northerly direction) over the past 1.6 million years than it moved from million years ago. 4. The Emperor Seamount chain and the Hawaiian Island chain seem to be one long chain of volcanic islands. The Emperor Seamount chain seems to be an older chain of islands that formed like the Hawaiian Island chain did from volcanic activity beneath the Pacific Plate as the plate moved over the Hawaiian Hot Spot in the mantle. Note: You can simulate how a hot spot burns a line of volcanoes into a plate moving over it. Remove the cover from a very large (poster size) permanent black felt-tip pen and place it tip-up on a table. Hold the pen while you slowly slide a piece of white paper over the pen tip. The ink from the pen will bleed through the paper. If you do this with a very slow motion and stop periodically, then you will create a pattern of islands separated by lines. 5. From 60 million to 40 million years ago, the Pacific Plate moved almost due north over the Hawaiian Hot Spot. Since 40 Ma, the Pacific Plate has moved nearly due northwest over the Hawaiian Hot Spot (with minor variations as noted in Question 15c above). ACTIVITY 2.7 ANSWERS AND EXPLANATIONS 2.7A. 1. The circular deformation zones that formed over the Yellowstone Hot Spot have ages ranging from 13.8 million years old in the southeast to 0.5 million years old in the northeast part of the chain. Therefore, the oldest deformation zone must have formed and moved southwest away from the hot spot. The North American Plate is, therefore, moving southwest over the Yellowstone Hot Spot. 2. The North American Plate has moved about km over the past 11 million years, so its average rate of motion has been: 35,000,000 to 40,000,000 cm 11,000,000 yr = 3.2 to 3.6 cm/yr 23

11 2.7B 1. The plate east of the ridge has moved about 230 km over the past 8 million years, so the average rate of seafloor spreading east of the ridge has been 23,000,000 cm 8,000,000 yr = 2.9 cm/yr. 2. The seafloor rocks that should be present along line segment C-D must have subducted beneath the North American Plate as it moved westward (southwestward). 3. The plate boundary along the red line in Figure 2.12 must be a convergent plate boundary with a subduction zone. 4. As seafloor subducts along line segment C-D it undergoes heating along the geothermal gradient. The water acts as a flux to superjacent rocks of the mantle wedge and eventually causes them to undergo hydration and partial melting (flux melting). The resulting magma rises to form the Cascade Range of volcanic mountains. ACTIVITY 2.8 ANSWERS AND EXPLANATIONS 2.8A. 1. about 750 C 2. about 1000 C 3. solid (It is left of the solidus in the field labeled 100% solid peridotite rock.) 4. It would partially melt. If you move point X to the right until it is below the temperature of 1750 C, then it is located in the field of partial melting, between the solidus and liquidus. 5. It would melt completely because it would be located in the field to the right of the liquidus, which is labeled 100% liquid magma. 2.8B. 1. about 40 km and 13,000 atm 2. decompression melting 3. Decompression melting could occur where a plume of hot mantle peridotite (red in Figure 2.6) rises to a shallower depth and lower pressure where melting can occur. This may be happening along divergent plate boundaries (like ocean ridges and rifts) and at hot spots. 2.8C. To begin partial melting, the peridotite at point X in Figure 2.7 must be uplifted to a depth of about 40 km (and a pressure of about 13,000 atm) or else it must be heated to about 1450 C. 2.8D. 1. The wet sugar cube melted first. 2. water 3. The solidus, liquidus, and all fields would move to the left (to lower temperatures). 4. subduction zones 24

12 2.8E. 1. divergent plate boundary 2. decompression melting 3. A mass/plume of hot mantle peridotite rises close to Earth s surface, where it encounters lower pressure and melts to form basaltic magma. The magma erupts along the oceanic ridge, where it pushes the existing rock plate apart. This pushes the plates and starts the process of seafloor spreading. 2.8F. 1. convergent plate boundary 2. flux melting 3. Wet seafloor basalt subducts beneath the less dense continental edge of an adjacent plate. The basalt dehydrates and hydrates the base of the continental crust. Flux melting causes formation of magma, which rises to form a line of volcanoes (volcanic arc). 25

Plate Tectonics. Introduction. Boundaries between crustal plates

Plate Tectonics. Introduction. Boundaries between crustal plates Plate Tectonics KEY WORDS: continental drift, seafloor spreading, plate tectonics, mid ocean ridge (MOR) system, spreading center, rise, divergent plate boundary, subduction zone, convergent plate boundary,

More information

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT

The Dynamic Crust 2) EVIDENCE FOR CRUSTAL MOVEMENT The Dynamic Crust 1) Virtually everything you need to know about the interior of the earth can be found on page 10 of your reference tables. Take the time to become familiar with page 10 and everything

More information

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II

Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II Geol 101: Physical Geology PAST EXAM QUESTIONS LECTURE 4: PLATE TECTONICS II 4. Which of the following statements about paleomagnetism at spreading ridges is FALSE? A. there is a clear pattern of paleomagnetic

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

Plate Tectonics Lab Assignment

Plate Tectonics Lab Assignment Plate Tectonics Lab Assignment After reading the introduction to the Plate Tectonics exercises in the lab manual, complete the questions on a hard copy of this Lab Assignment. When finished, transfer your

More information

4. Plate Tectonics II (p. 46-67)

4. Plate Tectonics II (p. 46-67) 4. Plate Tectonics II (p. 46-67) Seafloor Spreading In the early 1960s, samples of basaltic ocean crust were dredged up from various locations across the ocean basins. The samples were then analyzed to

More information

Hot Spots & Plate Tectonics

Hot Spots & Plate Tectonics Hot Spots & Plate Tectonics Activity I: Hawaiian Islands Procedures: Use the map and the following information to determine the rate of motion of the Pacific Plate over the Hawaiian hot spot. The volcano

More information

Tectonic plates have different boundaries.

Tectonic plates have different boundaries. KEY CONCEPT Plates move apart. BEFORE, you learned The continents join and break apart The sea floor provides evidence that tectonic plates move The theory of plate tectonics helps explain how the plates

More information

TECTONICS ASSESSMENT

TECTONICS ASSESSMENT Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?

More information

Chapter 8: Plate Tectonics -- Multi-format Test

Chapter 8: Plate Tectonics -- Multi-format Test Name: Class: Date: ID: A Chapter 8: Plate Tectonics -- Multi-format Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the

More information

Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates.

Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates. Notes on Plate Tectonics Plate tectonics states that the Earth's crust and upper mantle are broken into sections, called plates. These plates move around the mantle. Plates are composed of the crust and

More information

Tectonic plates push together at convergent boundaries.

Tectonic plates push together at convergent boundaries. KEY CONCEPT Plates converge or scrape past each other. BEFORE, you learned Plates move apart at divergent boundaries In the oceans, divergent boundaries mark where the sea floor spreads apart On land,

More information

FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES FOURTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FOURTH GRADE VOLCANOES WEEK 1. PRE: Comparing different structures of volcanoes. LAB: Modeling three types

More information

DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes

DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes DYNAMIC CRUST: Unit 4 Exam Plate Tectonics and Earthquakes NAME: BLOCK: DATE: 1. Base your answer to the following question on The block diagram below shows the boundary between two tectonic plates. Which

More information

Plate Tectonics. Plate Tectonics The unifying concept of the Earth sciences. Continental Drift

Plate Tectonics. Plate Tectonics The unifying concept of the Earth sciences. Continental Drift Plate Tectonics The unifying concept of the Earth sciences. The outer portion of the Earth is made up of about 20 distinct plates (~ 100 km thick), which move relative to each other This motion is what

More information

Interactive Plate Tectonics

Interactive Plate Tectonics Interactive Plate Tectonics Directions: Go to the following website and complete the questions below. http://www.learner.org/interactives/dynamicearth/index.html How do scientists learn about the interior

More information

Plate Tectonics Web-Quest

Plate Tectonics Web-Quest Plate Tectonics Web-Quest Part I: Earth s Structure. Use the following link to find these answers: http://www.learner.org/interactives/dynamicearth/structure.html 1. Label the layers of Earth in the diagram

More information

ES Chapter 10 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

ES Chapter 10 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ES Chapter 10 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Scientists used the pattern of alternating normal and reversed

More information

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I. PLATE TECTONICS ACTIVITY The purpose of this lab is to introduce the concept of plate tectonics and the formation of mountains. Students will discuss the properties of the earth s crust and plate tectonics.

More information

SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF SECOND GRADE VOLCANOES WEEK 1. PRE: Investigating the parts of a volcano. LAB: Comparing the parts of a

More information

Plate Tectonics: Big Ideas. Plate Tectonics. Plate Tectonics. The unifying concept of the Earth sciences.

Plate Tectonics: Big Ideas. Plate Tectonics. Plate Tectonics. The unifying concept of the Earth sciences. Plate Tectonics: Big Ideas Our understanding of Earth is continuously refined. Earth s systems are dynamic; they continually react to changing influences from geological, hydrological, physical, chemical,

More information

Regents Questions: Plate Tectonics

Regents Questions: Plate Tectonics Earth Science Regents Questions: Plate Tectonics Name: Date: Period: August 2013 Due Date: 17 Compared to the oceanic crust, the continental crust is (1) less dense and more basaltic (3) more dense and

More information

Transform Boundaries

Transform Boundaries Lecture 7 Plates and Mantle Plumes Transform Boundaries Transform boundaries occur where one segment of rigid lithosphere slides horizontally past another in response to stresses in the lithosphere. The

More information

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes

6.E.2.2 Plate Tectonics, Earthquakes and Volcanoes Name: Date: 1. The road shown below was suddenly broken by a natural event. 3. The convergence of two continental plates would produce Which natural event most likely caused the crack in the road? island

More information

Lesson 13: Plate Tectonics I

Lesson 13: Plate Tectonics I Standards Addressed Lesson 13: Plate Tectonics I Overview Lesson 13 introduces students to geological oceanography by presenting the basic structure of the Earth and the properties of Earth s primary layers.

More information

Step 2: Learn where the nearest divergent boundaries are located.

Step 2: Learn where the nearest divergent boundaries are located. What happens when plates diverge? Plates spread apart, or diverge, from each other at divergent boundaries. At these boundaries new ocean crust is added to the Earth s surface and ocean basins are created.

More information

Plate Tectonics Practice Questions and Answers Revised August 2007

Plate Tectonics Practice Questions and Answers Revised August 2007 Plate Tectonics Practice Questions and Answers Revised August 2007 1. Please fill in the missing labels. 2. Please fill in the missing labels. 3. How many large plates form the outer shell of the earth?

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 9B: Tracking the Hawaiian Islands: How Fast Does the Pacific Plate Move?

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 9B: Tracking the Hawaiian Islands: How Fast Does the Pacific Plate Move? GENERAL SCIENCE LABORATORY 1110L Lab Experiment 9B: Tracking the Hawaiian Islands: How Fast Does the Pacific Plate Move? Background You know that the Earth s crustal plates are always moving, but how fast?

More information

Plate Tectonics Chapter 2

Plate Tectonics Chapter 2 Plate Tectonics Chapter 2 Does not include complete lecture notes. Continental drift: An idea before its time Alfred Wegener First proposed his continental drift hypothesis in 1915 Published The Origin

More information

Unit 4 Lesson 2 Plate Tectonics. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 2 Plate Tectonics. Copyright Houghton Mifflin Harcourt Publishing Company Puzzling Evidence What evidence suggests that continents move? In the late 1800s, Alfred Wegener proposed his hypothesis of continental drift. According to this hypothesis, the continents once formed a

More information

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: Geology: Inside the Earth (Approximate Time: 7 Weeks)

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: Geology: Inside the Earth (Approximate Time: 7 Weeks) The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES FIFTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIFTH GRADE VOLCANOES WEEK 1. PRE: Exploring the rocks produced by volcanoes. LAB: Comparing igneous rocks.

More information

Rocks and Plate Tectonics

Rocks and Plate Tectonics Name: Class: _ Date: _ Rocks and Plate Tectonics Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is a naturally occurring, solid mass of mineral or

More information

Investigation 6: What happens when plates collide?

Investigation 6: What happens when plates collide? Tectonics Investigation 6: Teacher Guide Investigation 6: What happens when plates collide? In this activity, students will use the distribution of earthquakes and volcanoes in a Web GIS to learn about

More information

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on:

Continental Drift. Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Plate Tectonics and Continental Drift Continental Drift Alfred Wegener (1880-1930) Proposed that all of the continents were once part of a large supercontinent - Pangaea Based on: Similarities in shorelines

More information

1. The diagram below shows a cross section of sedimentary rock layers.

1. The diagram below shows a cross section of sedimentary rock layers. 1. The diagram below shows a cross section of sedimentary rock layers. Which statement about the deposition of the sediments best explains why these layers have the curved shape shown? 1) Sediments were

More information

Plate Tectonics Lab. Continental Drift. The Birth of Plate Tectonics

Plate Tectonics Lab. Continental Drift. The Birth of Plate Tectonics Plate Tectonics Lab Continental Drift Take a look at a globe sometime and observe the remarkable fit between South America and Africa. Could they have, in fact, been connected? During the 19th and early

More information

PLATE TECTONICS EXERCISE (Modified from North Seattle Community College online exercise)

PLATE TECTONICS EXERCISE (Modified from North Seattle Community College online exercise) PLATE TECTONICS EXERCISE (Modified from North Seattle Community College online exercise) Introduction: As discussed in our textbook, the speed at which tectonic plates move has been calculated in several

More information

Students explore the mechanism behind plate motion as they investigate convection currents. KEY CONCEPTS AND PROCESS SKILLS

Students explore the mechanism behind plate motion as they investigate convection currents. KEY CONCEPTS AND PROCESS SKILLS Convection Currents 40- to 1 50-minute session ACTIVITY OVERVIEW 46 L A B O R AT O R Y Students explore the mechanism behind plate motion as they investigate convection currents. KEY CONCEPTS AND PROCESS

More information

Plate Tectonics Short Study Guide

Plate Tectonics Short Study Guide Name: Class: Date: Plate Tectonics Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The existence of coal beds in Antarctica

More information

Continental Drift, Sea Floor Spreading and Plate Tectonics

Continental Drift, Sea Floor Spreading and Plate Tectonics Page 1 of 13 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Continental Drift, Sea Floor Spreading and Plate Tectonics This page last updated on 26-Aug-2015 Plate Tectonics is a theory

More information

Plate Tectonics. Earth, 9 th edition Chapter 2

Plate Tectonics. Earth, 9 th edition Chapter 2 1 Plate Tectonics Earth, 9 th edition Chapter 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Plate Tectonics: summary in haiku form Alfred Wegener gave us Continental Drift. Fifty years later... Continental Drift

More information

Name: Period: # Plate Tectonics. Journey to the center of the Earth

Name: Period: # Plate Tectonics. Journey to the center of the Earth Plate Tectonics Journey to the center of the Earth Use pages 124 129 to answer the following questions. Exploring Inside Earth (p. 125-126) 1. What are the two main types of evidence that Geologist use

More information

FIRST GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIRST GRADE VOLCANOES WEEK 1. PRE: Learning the shapes of volcanoes. LAB: Experimenting with "lava." POST:

More information

Volcanoes Erupt Grade 6

Volcanoes Erupt Grade 6 TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Volcanoes Erupt Grade 6 Created by: Debra McKey (Mountain Vista Middle School); Valerie Duncan (Upper Lake Middle School); and Lynn Chick (Coyote Valley

More information

II. Earth Science (Geology) Section (9/18/2013)

II. Earth Science (Geology) Section (9/18/2013) EAPS 100 Planet Earth Lecture Topics Brief Outlines II. Earth Science (Geology) Section (9/18/2013) 1. Interior of the Earth Learning objectives: Understand the structure of the Earth s interior crust,

More information

Name Score /225. (Make sure you identify each key concept by identifying the section [1.1, 1.2, etc.].]

Name Score /225. (Make sure you identify each key concept by identifying the section [1.1, 1.2, etc.].] Name Score /225 Changing Earth Chapter 1 Worksheet Before reading Chapter 1 (pages 9 37). On a separate sheet of paper, make two columns. Title the first column Before I Read. Title the second column After

More information

Earth Science Grade 4 Minerals

Earth Science Grade 4 Minerals Earth Science Grade 4 Minerals Standards: Identifies the physical properties of minerals Teacher Background Minerals are pure substances and mix together to make rocks. Rocks have a cycle and different

More information

Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel

Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel Earthquakes and Plate Boundaries Deborah Jordan and Samuel Spiegel Jordan, Deborah and Spiegel, Samuel: Learning Research Development Center, University of Pittsburgh. Earthquakes and Plate Boundaries.

More information

Study Guide Questions Earth Structure and Plate Tectonics

Study Guide Questions Earth Structure and Plate Tectonics Study Guide Questions Earth Structure and Plate Tectonics What evidence did Alfred Wegener present in 1912 to support the idea of continental drift? Why did most geologists at the time dismiss Wegener

More information

Student Exploration: Plate Tectonics

Student Exploration: Plate Tectonics Name: Date: Student Exploration: Plate Tectonics Vocabulary: collisional boundary, convergent boundary, crust, divergent boundary, earthquake, lithosphere, mantle, plate, plate tectonics, transform boundary,

More information

Exploring Plate Tectonics

Exploring Plate Tectonics Unit 2 Exploring Plate Tectonics In this unit, you will Calculate the rate of spreading of the Atlantic Ocean. Investigate whether plate spreading rates change with time or vary across the globe. Predict

More information

Chapter 2. Plate Tectonics. Plate Tectonics: Learning Goals

Chapter 2. Plate Tectonics. Plate Tectonics: Learning Goals Plate Tectonics Chapter 2 Interactions at depend on the direction of relative plate motion and the type of crust. Which kind of plate boundary is associated with Earthquake activity? A. Divergent Boundary

More information

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics}

[Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics} [Geology Layers of the Earth] [Basic: Grade 2-3] [Advanced: Grade 5: Introduction to Plate Tectonics} BACKGROUND Scientists and geologists have been able to do some drilling on Earth. They are also able

More information

FIRST GRADE VOLCANOES 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE VOLCANOES 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE VOLCANOES 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF FIRST GRADE VOLCANOES WEEK 1. PRE: Learning the shapes of volcanoes. LAB: Experimenting with "lava." POST: Comparing

More information

The interior of the Earth is divided into layers based on chemical and physical properties.

The interior of the Earth is divided into layers based on chemical and physical properties. Plate Tectonics Lecture Notes: Slide 1. Title Slide Slide 2. The interior of the Earth is divided into layers based on chemical and physical properties. The Earth has an outer silica-rich, solid crust,

More information

Exploring Plate Tectonics

Exploring Plate Tectonics Unit 2 Exploring Plate Tectonics In this unit, you will Calculate the rate of spreading of the Atlantic Ocean. Investigate whether plate spreading rates change with time or vary across the globe. Predict

More information

Geodynamics Lecture 2 Kinematics of plate tectonics

Geodynamics Lecture 2 Kinematics of plate tectonics Geodynamics Lecture 2 Kinematics of plate tectonics Lecturer: David Whipp david.whipp@helsinki.fi! 4.9.2013 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Present the three types of plate

More information

Plate Tectonics: Ridges, Transform Faults and Subduction Zones

Plate Tectonics: Ridges, Transform Faults and Subduction Zones Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean

More information

Continents join together and split apart.

Continents join together and split apart. KEY CONCEPT Continents change position over time. BEFORE, you learned Earth s main layers are the core, the mantle, and the crust The lithosphere and asthenosphere are the topmost layers of Earth The lithosphere

More information

Georgia Performance Standards Framework for Shaky Ground 6 th Grade

Georgia Performance Standards Framework for Shaky Ground 6 th Grade The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Using Google Earth to Explore Plate Tectonics

Using Google Earth to Explore Plate Tectonics Using Google Earth to Explore Plate Tectonics Laurel Goodell, Department of Geosciences, Princeton University, Princeton, NJ 08544 laurel@princeton.edu Inspired by, and borrows from, the GIS-based Exploring

More information

Plate Tectonics. Hi, I am Zed and I am going to take you on a trip learning about Plate Tectonics. And I am Buddy Zed s mascot

Plate Tectonics. Hi, I am Zed and I am going to take you on a trip learning about Plate Tectonics. And I am Buddy Zed s mascot Plate Tectonics Hi, I am Zed and I am going to take you on a trip learning about Plate Tectonics And I am Buddy Zed s mascot Continental Drift Alfred Wegener proposed that continents were not always where

More information

Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics. Wegener in Greenland about 1912. He froze to death there in 1930.

Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics. Wegener in Greenland about 1912. He froze to death there in 1930. Alfred Wegener s Theory of Continental Drift Became Modern Plate Tectonics Wegener in Greenland about 1912. He froze to death there in 1930. Science is self correcting. The Scientific Method The history

More information

1 Exploring Earth s Interior

1 Exploring Earth s Interior 1 Exploring Earth s Interior Crust Mantle Outer Core Crust-to-Mantle Inner Core Cross Section From Surface to Center SCIENCE EXPLORER Focus on Earth Science Prentice-Hall, Inc. 2 Evidence for Continental

More information

Assignment #3: Plate Tectonics

Assignment #3: Plate Tectonics Assignment #3: Plate Tectonics Overview: In this assignment we will examine the ideas of continental drift and of sea-floor spreading that lead to the Theory of Plate Tectonics. This assignment is in two

More information

Earth Egg Model Teacher Notes

Earth Egg Model Teacher Notes Ancient Greeks tried to explain earthquakes and volcanic activity by saying that a massive bull lay underground and the land shook when it became angry. Modern theories rely on an understanding of what

More information

Inside Earth Chapter 3

Inside Earth Chapter 3 Name Hour Due Date Inside Earth Chapter Page 1 Volcanoes and Plate Tectonics Page 2 Volcanic Activity Page - Mapping Earthquakes and Volcanoes Page 4 Mapping Earthquakes and Volcanoes table Page 5 - Mapping

More information

Layers of the Earth and Plate Tectonics

Layers of the Earth and Plate Tectonics Layers of the Earth and Plate Tectonics Objectives: explain various ways the earth can be changed by natural forces define the term Geology define the terms Crust, Mantle, Outer Core and Inner Core classify

More information

Engaging Students Through Interactive Activities In General Education Classes

Engaging Students Through Interactive Activities In General Education Classes Engaging Students Through Interactive Activities In General Education Classes On the Cutting Edge: Early Career Geoscience Faculty Workshop 14-18 June 2009 Presented by Randy Richardson Department of Geosciences,

More information

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas

Igneous Geochemistry. What is magma? What is polymerization? Average compositions (% by weight) and liquidus temperatures of different magmas 1 Igneous Geochemistry What is magma phases, compositions, properties Major igneous processes Making magma how and where Major-element variations Classification using a whole-rock analysis Fractional crystallization

More information

Plate Tectonics. Learning Guide. Pacific Plate. Pacific Ocean. Divergent boundaries

Plate Tectonics. Learning Guide. Pacific Plate. Pacific Ocean. Divergent boundaries Plate Tectonics Learning Guide North American Plate Eurasian Plate Arabian Plate Pacific Plate Atlantic Ocean Pacific Ocean Cocos Plate Nazca Plate South American Plate African Plate Convergent boundary

More information

SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF SIXTH GRADE VOLCANOES WEEK 1. PRE: Comparing the structure of different types of volcanoes. LAB: Plotting

More information

Earth Science Chapter 14 Section 2 Review

Earth Science Chapter 14 Section 2 Review Name: Class: Date: Earth Science Chapter 14 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is NOT one of the three

More information

Essential Question: How did the theory of Plate Tectonics evolve?

Essential Question: How did the theory of Plate Tectonics evolve? Essential Question: How did the theory of Plate Tectonics evolve? 1. Look at a globe or a map of the Earth. Name the continents. (7 points) 2. How many continents are there? (3 points) 3. On a sheet of

More information

Plate Tectonics PuzzleMap User Guide

Plate Tectonics PuzzleMap User Guide About this Product: Plate tectonics is a key standards-based topic taught in earth science classrooms throughout the United States. The purpose of this map is to help educators (teachers, museum tour guides,

More information

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth

Earth Materials: Intro to rocks & Igneous rocks. The three major categories of rocks Fig 3.1 Understanding Earth Earth Materials: 1 The three major categories of rocks Fig 3.1 Understanding Earth 2 Intro to rocks & Igneous rocks Three main categories of rocks: Igneous Sedimentary Metamorphic The most common minerals

More information

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics

Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics Suggested Activities Processes that Shape the Earth: Earth s Structure and Plate Tectonics From Harcourt Science Teacher Ed. Source (Grade Level) Title Pages Concept Harcourt Science (4) The Layers of

More information

Rapid Changes in Earth s Surface

Rapid Changes in Earth s Surface TEKS investigate rapid changes in Earth s surface such as volcanic eruptions, earthquakes, and landslides Rapid Changes in Earth s Surface Constant Changes Earth s surface is constantly changing. Wind,

More information

Introduction and Origin of the Earth

Introduction and Origin of the Earth Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of

More information

Plate Tectonics Visual Glossary and Atlas How to use this app in your classroom

Plate Tectonics Visual Glossary and Atlas How to use this app in your classroom Plate Tectonics Visual Glossary and Atlas How to use this app in your classroom In addition to providing a comprehensive list of terms, definitions, illustrations, and animations related to plate tectonics,

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Layers of the Earth s Interior

Layers of the Earth s Interior Layers of the Earth s Interior 1 Focus Question How is the Earth like an ogre? 2 Objectives Explain how geologists have learned about the interior of the Earth. Describe the layers of the Earth s interior.

More information

KINDERGARTEN PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN PLATE TECTONICS 1 WEEK LESSON PLANS AND ACTIVITIES PLATE TECTONIC CYCLE OVERVIEW OF KINDERGARTEN VOLCANOES WEEK 1. PRE: Learning that all mountains are not volcanoes. LAB: Investigating rocks

More information

Viscosity and Volcano Types

Viscosity and Volcano Types 20 LESSON Viscosity and Volcano Types This photo, taken in 1943 in Paricutin, Mexico, shows an eruption of the Paricutin volcano at night. Glowing hot, broken rocks outline the shape of the volcano, called

More information

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces Chapter Overview CHAPTER 3 Marine Provinces The study of bathymetry charts ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools. Most ocean floor features

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

Unit Plan: Plate Tectonics Shannon B. Carpenter TE 804 1/25/02

Unit Plan: Plate Tectonics Shannon B. Carpenter TE 804 1/25/02 Unit Plan: Plate Tectonics Shannon B. Carpenter TE 804 1/25/02 This unit plan is intended to cover about seven weeks and would be appropriate for a middle school general science class or an introductory

More information

Glossary. continental crust: the sections of crust, the outermost layer of the earth, that include the continents

Glossary. continental crust: the sections of crust, the outermost layer of the earth, that include the continents aftershock: an earthquake that follows a larger earthquake or main shock and originates in or near the rupture zone of the larger earthquake. Generally, major earthquakes are followed by a number of aftershocks

More information

Chapter 9 Plate Tectonics

Chapter 9 Plate Tectonics Chapter 9 Plate Tectonics Section 1 Continental Drift Key Concepts What is the hypothesis of continental drift? What evidence supported continental drift? Vocabulary continental drift Pangaea An Idea Before

More information

BASIC LESSON Objective(s)

BASIC LESSON Objective(s) [Geology - Landforms] [K-1: Basic] [Grades 2-3: Advanced] BACKGROUND Landforms are natural features of the Earth's surface. They are created by the movement of ice or water, earthquakes, lava flows, volcanoes,

More information

11A Plate Tectonics. What is plate tectonics? Setting up. Materials

11A Plate Tectonics. What is plate tectonics? Setting up. Materials 11A Plate Tectonics What is plate tectonics? Earth s crust plus the upper mantle forms the lithosphere. Earth s lithosphere is broken in a number of different pieces. How these pieces move and interact

More information

A Collection of Curricula for the STARLAB Plate Tectonics Cylinder

A Collection of Curricula for the STARLAB Plate Tectonics Cylinder A Collection of Curricula for the STARLAB Plate Tectonics Cylinder Including: The Changing Earth by Gerald L. Mallon, Ed.D. v. 616-2008 by Science First /STARLAB, 86475 Gene Lasserre Blvd., Yulee, FL.

More information

Igneous Rocks. Geology 200 Geology for Environmental Scientists

Igneous Rocks. Geology 200 Geology for Environmental Scientists Igneous Rocks Geology 200 Geology for Environmental Scientists Magma Compositions Ultramafic - composition of mantle Mafic - composition of basalt, e.g. oceanic crust. 900-1200 o C, 50% SiO 2 Intermediate

More information

Exploring Our World with GIS Lesson Plans Engage

Exploring Our World with GIS Lesson Plans Engage Exploring Our World with GIS Lesson Plans Engage Title: Exploring Our Nation 20 minutes *Have students complete group work prior to going to the computer lab. 2.List of themes 3. Computer lab 4. Student

More information

Some Processes that Change the Earth s Surface

Some Processes that Change the Earth s Surface PART ONE Some Processes that Change the Earth s Surface Science standards To prepare students to understand the Essential Academic Learning Requirements (EALRs) introduced at middle school, this series

More information

Ring of Fire. (15 minutes) Earthquakes and volcanoes occur in relationship to each other.

Ring of Fire. (15 minutes) Earthquakes and volcanoes occur in relationship to each other. Ring of Fire Lesson Concept Link Earthquakes and volcanoes occur in relationship to each other. Lesson 6.12 develops concepts about preparation for earthquakes in terms of home or school damage or lack

More information

Volcano in the lab: a wax volcano in action: teacher s notes

Volcano in the lab: a wax volcano in action: teacher s notes Volcano in the lab: a wax volcano in action: teacher s notes Level This activity is designed for students aged 11-14, as a simple demonstration of igneous activity. English National Curriculum reference

More information

Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere

Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere Lab Activity on Air Pressure, Wind and Air Circulation Caused by Heating of the Atmosphere 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico *

More information

Multiple Choice For questions 1-10, circle only one answer.

Multiple Choice For questions 1-10, circle only one answer. Test Bank - Chapter 1 The questions in the test bank cover the concepts from the lessons in Chapter 1. Select questions from any of the categories that match the content you covered with students. The

More information