Electrical Conductivity

Size: px
Start display at page:

Download "Electrical Conductivity"

Transcription

1 Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003

2 CONTENTS 1 Contents 1 Introduction 2 2 Basic concepts Crystalline metals Semiconductors Superconductors Amorphous metals Experimental setup The cryostat Liquid helium Temperature controller Tasks 7 5 Important Note 7

3 1 INTRODUCTION 2 1 Introduction The electrical conductivity of solids shows among other properties depending on temperature very interesting effects, which can be used technically, too. In this course you will get an overview over various materials revealing different temperature dependencies of their electrical conductivitiy. Practically, you will determine the electrical resistivity of various samples as function of temperature. The experimental setup enables you to measure all samples simultaneously over a large temperature range. This seems to be very efficient, because the coolant (liquid helium) used to achieve low temperatures ( 4K) requires a complex equipment. Temperature control and data aquisition are handled by means of a computer system. This allows you to write all data to a hard drive giving you the opportunity to easily perform data processing on any computer (you can use, e.g., the system provided by the practical). 2 Basic concepts This section only gives a short outline of some basic models for the electrical conductivity. More detailed aspects as well as an accurate quantum-mechanical derivation for crystalline metals, semiconductors, superconductors, and disordered metals can be found in the literature (e.g.[1] [2], [3]. 2.1 Crystalline metals The conductivity of crystalline simple metals can be described using the model originally proposed by Drude and Lorentz. This model assumes that each atom allows its valence electrons to travel through the solid (the so called conduction electrons). This leads to a high charge-carrier density (10 23 electrons per cm 3 )which can be treated as a free electron gas. Within the Drude theory the electrical resistance results from scattering processes of the electrons while travelling through the solid. Here the distance, over which an electron can move on average without any collision, will be denoted as inelastic mean free path. In an ideal crystal these collisions are caused by thermally induced collective vibrations of the atoms (phonons). This leads to an increase of the electrical resistance with rising temperature, caused by an increasing amplitude of the lattice vibrations (phonon scattering). Due to these considerations the resistivity of an ideal crystal will disappear at zero temperature (T = 0K). Because, in a real crystal, we always find imperfections like defects, impurities, grain boundaries, the resistivity at zero temperature does not vanish but reaches a finite (non-zero) value the so-called. This value is often found to be temperature independent allowing to describe the total resistance as the superposition of two terms: ρ = ρ 0 + ρ(t ). At higher temperatures the temperature-dependent part ρ(t ) approaches a linear behaviour. The platinum sample used in the experiment is a polycrystalline specimen. This means, that crystallites ranging in size from typically 10nm to 100nm are present. The individual crystallites are randomly oriented, separated from each other by so called grain boundaries. The latter act

4 2 BASIC CONCEPTS 3 as additional scattering centers for electrons and therefore contribute to the total resistivity (grain boundary scattering). In the case of samples whose dimensions are large as compared to the inelastic mean free path of the conduction electrons, the resistivity mainly results from scattering at phonons, grain boundaries and impurities. For very thin films (thickness of the order of the inelastic mean free path within the corresponding bulk material) additional contributions arise from an increased scattering at the sample surface ( size -effects). Quantum-mechanics allows to accurately calculate the behaviour of the electrons by means of the Schrödinger equation. Taking into account that electrons are described by means of the Fermi-Dirac distribution function, the temperature dependent contribution to the resistivity can be determined. This again leads to a linear behaviour of the resistivity at higher temperatures but to a T 5 dependence at low temperatures described by the Bloch-Grüneisen equation: ( ) 5 Θ T T ρ(t ) = A Θ D 0 x 5 dx (1) (e x 1)(1 e x ) where A is a material parameter and Θ D the Debye temperature. The following relations can be used ρ(t ) T for T > Θ 2 ρ(t ) T 5 for T < Θ 10 (2) (3) Hence for platinum (Θ D,P t = 229K) a linear resistivity can be expected at room temperature and a T 5 -behaviour can be expected for temperatures T < 20K. 2.2 Semiconductors The conductivity of semiconductors can be understood within the energy band model. At T = 0K the valence band is completely filled and the conduction band is left empty. Hence, no free charge carriers are available, which can be accelerated by an applied electrical field. Thus, at zero temperature, semiconductors are insulators. At finite temperature, electrons can be excited from the valence band to the conduction band by absorption of thermal energy, now being able to be accelerated by an external electrical field. At the same time, electrons missing in the valence band by excitation of electrons to the conduction band can act a positive charges (hole states) which also contribute to the total conductivity. As compared to metals, for semiconductors the density N of free charge carriers shows a distinct dependence on temperature: with rising T the density of electrons in the conduction band (correspondingly: holes in the valence band) increases exponentially (why?). In order to determine the total conductivity the mobility of different types of charge carriers (electrons, holes) must be considered, which can be different from each other. In the case of polycrystalline carbon one finally obtains for the conductivity

5 2 BASIC CONCEPTS 4 σ(t ) e Egap 2 k B T (4) with E gab representing the activation energy and k B the Boltzmann constant. 2.3 Superconductors Zero resistivity below a critical temperature (but still at finite temperatures!) in the superconducting metals is explained by the occupation of the same quantum mechanical state by a macroscopic amount of charge carriers (BCS theory; Bardeen, Cooper and Schrieffer got the Nobel price for this model). Because electrons as fermions have to fulfill the Pauli exclusion principle they are not allowed to occupy the same quantum mechanical state. To overcome this problem, Bardeen, Cooper and Schrieffer proposed that two single electrons (fermions) can couple to a pair (Cooper-pair) below a critical temperature which behaves like a boson and, therefore, can occupy the ground state together with other Cooper-pairs. The coupling is mediated by phonons (lattice distortions)as illustrated in figures 1 and 2 within a simple mechanical model by two spheres on a membrane: The distortion of the membrane represents a phonon, the sphere reflects an electron. Two electrons can form a Cooper pair, since it can be energetically more favorable, if two electrons interact over the same lattice distortion, as if the electrons distort the crystal lattice by two separated phonons. From the interaction with the same phonon an attractive interaction between the two contributing electrons may result, which leads to a coupling of these electrons. The formation of Cooper pairs is enabled by electron phonon interaction). Figure 1: Attraction of spheres on a flexible membrane. The configuration a is unstable and changes into b To repeat: While electrons as spin 1 -particles must follow the Fermi Dirac distribution function 2 f F D (ε, T ) = 1 ( ) ε ε exp F k B + 1 T (5) and thus fulfill the Pauli exclusion principle, Cooper pairs as particles with whole-numbered spins are bosons and follow the Bose-Einstein statistics f BE (ε, T ) = ( exp 1 ω k B T ) 1 (6)

6 2 BASIC CONCEPTS 5 Figure 2: Distortion of the lattice of the atomic core by electrons This distribution function enables the macroscopic occupation of the same quantum state, in which transport quantities e.g. the resistivity or the thermoelectric power disappear. Above the transition temperature TC the Cooper pairs are broken by thermal excitation kb T. Therefore, by exceeding the transition temperature during annealing, the superconducting phase (the Cooper pairs) will disappear and normal electrons will carry the electrical current. 2.4 Amorphous metals Amorphous or glassy metals (typically alloys) generally show resistivities which are about one to two orders of magnitude larger than the values known for their crystalline counterparts. These metals often show a nearly temperature-independent resistivity, which is dominated by electron mean free paths of the order of the interatomic distance. Thus, electron scattering at the disordered atomic structure exceeds the scattering induced by phonons. Amorphous metals can show both, small positive as well small negative temperature coefficaints for the resistivity, respectively. While a small increase in resistivity with temperature can easily be understood by means of an increasing scattering induced by phonons, the negative temperature coefficient can only be understood by means of the Ziman formula [3] Z 2kF 3π N 1 Q3 S(Q, T ) u(q) 2 dq (7) ρ= 2 e ~vf 2 V 4kF 4 0 Here vf is the velocity of electrons with Fermi momentum, N is the charge-carrier density. kf V is the Fermi momentum, Q the momentum transfer caused by scattering processes. S(Q, T ) is the structure factor and u(q) 2 the matrix element of the scattering process. Details of the latter phenomenon will be explained be your adviser!

7 3 EXPERIMENTAL SETUP 6 3 Experimental setup The experimental setup (see fig. 3) mainly consists of four components: Cryostat, samples, control unit and recording device. The main components are described in more detail in the following subsections. Figure 3: Schematic sketch of the experimental setup 3.1 The cryostat The cryostat (gr. cryo: low temperature; gr. statos: maintain, retain) is a container, which is used for thermal isolation to achieve low-temperature. The setup is divided into the following parts Vacuum isolation Liquid nitrogen cooling shield (T S = 77.3K)

8 4 TASKS 7 Second vacuum isolation Reservoir for liquid helium (the actual refrigerant) Sample zone 3.2 Temperature controller The temperature controlling device offers a comfortable possibility to easily vary the sample temperature. Using a silicon diode (range: 1.4K to 475K) which is in good thermal contact with the sample holder, the controller repeatedly measures the actual sample temperature. In case of any deviation from the desired temperature the controller adjusts the value of a heater current (heat transfer to the sample holder). On the other hand, there is a constant cooling rate provided by the continuous evaporation of liquid Helium (heat transfer from the sample holder). Since there is constant cooling but variable heating, the controller can adjust any desired temperature of the sample. 4 Tasks Measure the resistivities of Pt, Cu 60 Ni 40, carbon, a-feb, and MgB 2 between 4 and 90K. Discuss the different phenomena leading to the observed dependencies of the resistivity on temperature. Determine the transition temperature T C of the superconducting sample. 5 Important Note ATTENTION: ALL MANIPULATIONS OF THE VACUUM SYSTEM/ COOLING SYSTEM HAVE TO BE EXPLAINED BY YOUR ADVISER BEFORE YOU ARE ALLOWED TO CHANGE ANYTHING!! References [1] C. Kittel, Introduction to Solid State Physics. [2] W. Buckel, Superconductivity [3] J. M. Ziman, Models of disorder.

9 REFERENCES 8 Figure 4: Scetch of the cryostat.

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors. Dr. Katarzyna Skorupska Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

More information

Tunnel Diode. - in a heavily doped p-n junction the depletion region is very small (~ 10 nm)

Tunnel Diode. - in a heavily doped p-n junction the depletion region is very small (~ 10 nm) Tunnel Diode - in a heavily doped p-n junction the depletion region is very small (~ 10 nm) - the bottom of the n-side conduction band overlaps the p-side valence band, see (a) - with a small forward bias

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

- in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas

More information

5.6 Isobaric thermal expansion and isothermal compression (Hiroshi Matsuoka)

5.6 Isobaric thermal expansion and isothermal compression (Hiroshi Matsuoka) 5.6 Isobaric thermal expansion and isothermal compression Hiroshi Matsuoka 1 5.6.2 he coefficient of thermal expansion as a response function to a temperature change he coefficient of thermal expansion

More information

Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 5612 India Chapter 15. Thermal properties Engineering materials are important

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Fall 2004 Ali Shakouri

Fall 2004 Ali Shakouri University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity

More information

MCEN Fall 2003.

MCEN Fall 2003. Basic types of solid materials. Overview The theory of bands provides a basis for understanding the classification and physical properties of solid materials such as electrical conductivity, optical behavior

More information

University of Toronto Department of Electrical and Computer Engineering. ECE 330F SEMICONDUCTOR PHYSICS Eng. Annex 305

University of Toronto Department of Electrical and Computer Engineering. ECE 330F SEMICONDUCTOR PHYSICS Eng. Annex 305 University of Toronto Department of Electrical and Computer Engineering ECE 330F SEMICONDUCTOR PHYSICS Eng. Annex 305 Experiment # 1 RESISTIVITY AND BAND GAP OF GERMANIUM TA: Iraklis Nikolalakos OBJECTIVE

More information

Resistivity. V A = R = L ρ (1)

Resistivity. V A = R = L ρ (1) Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras. Lecture - 36 Semiconductors

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras. Lecture - 36 Semiconductors Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 36 Semiconductors We will start a discussion of semiconductors one of the most important

More information

Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Properties of Solids

Properties of Solids Properties of Solids Condensed Matter Physics Condensed matter physics: The study of the electronic properties of solids. Crystal structure: The atoms are arranged in extremely regular, periodic patterns.

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1,

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1, Chapter 3 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >>, which defines the degenerate Fermi gas. In

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Imperfections in atomic arrangements

Imperfections in atomic arrangements MME131: Lecture 8 Imperfections in atomic arrangements Part 1: 0D Defects A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Occurrence and importance of crystal defects Classification

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

9 Electrical conductivity

9 Electrical conductivity 9 Electrical conductivity of metals, semiconductors, and superconductors Basic knowledge: Boltzmann and Fermi-Dirac-statistics, band structure for metals, undoped and doped semiconductors, basic models

More information

L5. P1. Lecture 5. Solids. The free electron gas

L5. P1. Lecture 5. Solids. The free electron gas Lecture 5 Page 1 Lecture 5 L5. P1 Solids The free electron gas In a solid state, a few loosely bound valence (outermost and not in completely filled shells) elections become detached from atoms and move

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

Basic laws and electrical properties of metals (I) Electrical properties. Basic laws and electrical properties of metals (II)

Basic laws and electrical properties of metals (I) Electrical properties. Basic laws and electrical properties of metals (II) Electrical properties Electrical conduction How many moveable electrons are there in a material (carrier density)? How easily do they move (mobility)? Semiconductivity Electrons and holes Intrinsic and

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors

Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES Lecture 34 : Intrinsic Semiconductors Objectives In this course you will learn the following Intrinsic and extrinsic semiconductors. Fermi level in a semiconductor.

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Semiconductors, Insulators and Metals

Semiconductors, Insulators and Metals CHAPTER 2 ENERGY BANDS AND EFFECTIVE MASS Semiconductors, insulators and metals Semiconductors Insulators Metals The concept of effective mass Prof. Dr. Beşire GÖNÜL Semiconductors, Insulators and Metals

More information

THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry

THE WAY TO SOMEWHERE. Sub-topics. Diffusion Diffusion processes in industry THE WAY TO SOMEWHERE Sub-topics 1 Diffusion Diffusion processes in industry RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation

More information

Size effects. Lecture 6 OUTLINE

Size effects. Lecture 6 OUTLINE Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

More information

Semiconductor Physics

Semiconductor Physics 10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

More information

Semiconductors Band Formation & direct and indirect gaps. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Semiconductors Band Formation & direct and indirect gaps. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Semiconductors Band Formation & direct and indirect gaps 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Review of Energy Bands (1)

More information

Boltzmann Distribution Law

Boltzmann Distribution Law Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce

More information

Transport of heat and electricity in metals and semiconductors

Transport of heat and electricity in metals and semiconductors Handout 10 Transport of heat and electricity in metals and semiconductors 10.1 Thermal and electrical conductivity of metals 10.1.1 The Kinetic theory of electron transport We now apply our knowledge of

More information

This is the 11th lecture of this course and the last lecture on the topic of Equilibrium Carrier Concentration.

This is the 11th lecture of this course and the last lecture on the topic of Equilibrium Carrier Concentration. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 11 Equilibrium Carrier Concentration (Contd.) This is the 11th

More information

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11 INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

More information

Supplementary Information for. copper nanowire 37996, USA

Supplementary Information for. copper nanowire 37996, USA Supplementary Information for Large discrete resistance jump at boundary in copper nanowire Tae-Hwan Kim, Xiao-Guang Zhang, Don M. Nicholson, Boyd M. Evans, Nagraj S. Kulkarni, B. Radhakrishnan, Edward

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18,

More information

Aerogel an excellent thermal insulator (known as frozen smoke)

Aerogel an excellent thermal insulator (known as frozen smoke) Aerogel an excellent thermal insulator (known as frozen smoke) 2 Thermal images of a dog (top) and a snake wrapped around a human arm (bottom) Thermal Properties (1) Heat Capacity Heat Capacity When heated,

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

University of Cambridge, Materials Science & Metallurgy. Dilatometry

University of Cambridge, Materials Science & Metallurgy. Dilatometry University of Cambridge, Materials Science & Metallurgy H. K. D. H. Bhadeshia Dilatometry The dilatometric method utilises either transformation strains or thermal strains; the basic data generated are

More information

Atomic Structure. The study of atomic structure is of considerable importance for electronics engineering. 48 Principles of Electronics

Atomic Structure. The study of atomic structure is of considerable importance for electronics engineering. 48 Principles of Electronics 48 Principles of Electronics 4 Atomic Structure 4.1 Bohr s Atomic Model 4.2 Energy Levels 4.3 Energy Bands 4.4 Important Energy Bands in Solids 4.5 Classification of Solids and Energy Bands 4.6 Silicon

More information

Statistical and Low Temperature Physics (PHYS393)

Statistical and Low Temperature Physics (PHYS393) Statistical and Low Temperature Physics (PHYS393) 7. Cooling techniques and liquid helium Dr Kai Hock University of Liverpool 7. Cooling techniques and liquid helium 7.1 Introduction 7.2 Liquids at low

More information

1.5 Light absorption by solids

1.5 Light absorption by solids 1.5 Light absorption by solids Bloch-Brilloin model L e + + + + + allowed energy bands band gaps p x In a unidimensional approximation, electrons in a solid experience a periodic potential due to the positively

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

More information

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

More information

Superconductivity by Joe Khachan and Stephen Bosi

Superconductivity by Joe Khachan and Stephen Bosi Superconductivity by Joe Khachan and Stephen Bosi The discovery of superconductors The phenomenon of superconductivity, in which the electrical resistance of certain materials completely vanishes at low

More information

Definition : Characteristics of Metals :

Definition : Characteristics of Metals : Metallic Bond Definition : It may be defined as, 1. The force that binds a metal ion to a number of electrons with in its sphere of influence. 2. The attractive force which holds the atoms of two or more

More information

Free Electron Fermi Gas

Free Electron Fermi Gas ch06.qxd 8/13/04 4:20 PM Page 131 6 Free Electron Fermi Gas ENERGY LEVELS IN ONE DIMENSION 134 EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION 136 FREE ELECTRON GAS IN THREE DIMENSIONS 137 HEAT CAPACITY

More information

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator

Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator Thermal unobtainiums? The perfect thermal conductor and the perfect thermal insulator David G. Cahill Materials Research Lab and Department of Materials Science and Engineering, U. of Illinois Gratefully

More information

(Refer Slide Time: 02:55)

(Refer Slide Time: 02:55) Maxwell-Boltzmann Distribution vs Fermi-Dirac Distribution Prof. Dr.Prathap Haridoss Department of Metallurgical and Materials Engineering Indian Institute of Technology, Chennai Lecture No. # 20 Hello,

More information

The Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann Distribution The Maxwell-Boltzmann Distribution Gases are composed of atoms or molecules. These atoms or molecules do not really interact with each other except through collisions. In many cases, we may think of a

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield

Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Ni-base superalloys.

More information

Chapter 2 Low-Temperature Materials Properties

Chapter 2 Low-Temperature Materials Properties Chapter 2 Low-Temperature Materials Properties Before delving into the fluids and processes associated with helium cryogenics, it is important to first have a working knowledge of the relevant properties

More information

Module 2. Atomic Bonds. Lecture 2. Atomic Bonds. NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering

Module 2. Atomic Bonds. Lecture 2. Atomic Bonds. NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering Module Atomic Bonds Lecture Atomic Bonds 1 Keywords: Electronic configuration of atoms & types of atomic bond, Metallic bond: Free electron models of metal, Electron mobility & conductivity, Limitation

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

What Causes Superconductivity?

What Causes Superconductivity? 6 What Causes Superconductivity? Following Kamerlingh Onnes discovery of zero resistance, it took a very long time to understand how superconducting electrons can move without hindrance through a metal.

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

More information

A8 Thermal properties of materials

A8 Thermal properties of materials A8 Thermal properties of materials Thermal properties the melting temperature, T m, and the glass temperature (temperatura de transição vítrea), T g, relate directly to the strength of the bonds in the

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

CHAPTER 4: QUANTUM STATISTICS. 4.1 The classical thermodynamic distribution function

CHAPTER 4: QUANTUM STATISTICS. 4.1 The classical thermodynamic distribution function CHAPTER 4: QUANTUM STATISTICS LECTURE 0 The material in this chapter is covered in section 9- of the text. After studying the chapter you will be able to: describe the Maxwell-Boltzmann distribution function

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

Heat Transfer and Energy

Heat Transfer and Energy What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q - W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?

More information

An organic semiconductor is an organic compound that possesses similar

An organic semiconductor is an organic compound that possesses similar MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

- the total energy of the system is found by summing up (integrating) over all particles n(ε) at different energies ε

- the total energy of the system is found by summing up (integrating) over all particles n(ε) at different energies ε Average Particle Energy in an Ideal Gas - the total energy of the system is found by summing up (integrating) over all particles n(ε) at different energies ε - with the integral - we find - note: - the

More information

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons) Energy band diagrams In the atoms, the larger the radius, the higher the electron potential energy Hence, electron position can be described either by radius or by its potential energy In the semiconductor

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 Anharmonicity and Weak

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1

CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 CONSTANT ELECTRIC CURRENT AND THE DISTRIBUTION OF SURFACE CHARGES 1 Hermann Härtel Guest scientist at Institute for Theoretical Physics and Astrophysics University Kiel ABSTRACT Surface charges are present,

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

Magnetism and Magnetic Materials K. Inomata

Magnetism and Magnetic Materials K. Inomata Magnetism and Magnetic Materials K. Inomata 1. Origin of magnetism 1.1 Magnetism of free atoms and ions 1.2 Magnetism for localized electrons 1.3 Itinerant electron magnetism 2. Magnetic properties of

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Seminar Topological Insulators

Seminar Topological Insulators Seminar Topological Insulators The Su-Schrieffer-Heeger model 1 These slides are based on A Short Course on Topological Insulators by J. K. Asbóth, L. Oroszlány, A. Pályi; arxiv:1509.02295v1 2 Outline

More information

The Fundamentals of Thermoelectrics

The Fundamentals of Thermoelectrics The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements..................

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Material Science Centre Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Material Science Centre Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Material Science Centre Indian Institute of Technology, Kharagpur Lecture - 27 Characterization II Let us define the following parameters for

More information

Chapter 9 Statistical Mechanics

Chapter 9 Statistical Mechanics Chapter 9 Statistical Mechanics 9. Statistical Distributions This first section is just an overview. Statistical mechanics deals with the behavior of systems of a large number of particles. It does this

More information

- thus the electrons are free to change their energies within the 3s band

- thus the electrons are free to change their energies within the 3s band Allowed and Forbidden Energy Bands - allowed energy bands associated with different atomic orbitals may overlap, as in (a) - the regions between allowed energy bands are called forbidden bands or band

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Some Features of the Transport of Charge Carriers in the Grain Boundaries of Polycrystalline Silicon

Some Features of the Transport of Charge Carriers in the Grain Boundaries of Polycrystalline Silicon International Journal of Advanced Research in Physical Science (IJARPS) Volume 1, Issue 6, October 2014, PP 12-17 ISSN 2349-7874 (Print) & ISSN 2349-7882 (Online) www.arcjournals.org Some Features of the

More information