Bonus-malus systems and Markov chains

Size: px
Start display at page:

Download "Bonus-malus systems and Markov chains"

Transcription

1 Bonus-malus systems and Markov chains Dutch car insurance bonus-malus system class % increase new class after # claims > New insurants enter at stage 100%. The second column represents the percentage increase / decrease of the basic premium (based on rating factors like price of the car, horsepower of the car, etc.). Definition and basic properties of Markov chains Definition: A stochastic process X = {X t, t } in discrete time is called a (first order) Markov chain if P (X t+1 = j X t = i, X t 1 = i t 1,..., X 0 = i 0 ) = P (X t+1 = j X t = i) for all j, i, i t 1,..., i 0 E, where E is the state space of the Markov chain. The probability p ij (t) = P (X t+1 = j X t = i) is called (one step) transition probability. The matrix P (t) = (p ij (t)) 1

2 is called transition matrix or matrix of transition probabilities. It is a stochastic matrix, since all rows sum to one. If p ij (t) p ij (and therefore P (t) P ), the Markov chain is called homogeneous. The probabilities p (h) ij (t) = P (X t+h = j X t = i) are called h-step transition probabilities, in particular, p ij (t) p ij (t, 1). Similarly, the matrix is called h-step transition matrix. P (h) (t) = (p (h) ij (t)) The distribution of X t+1 is conditionally independent from the past, given the current value X t. The above definition is only valid for discrete valued random variables, i.e. if the state space E is countable. We will only consider discrete Markov chains. Markov chains can be generalised to continuous time and are then called (discrete) Markov processes. Distribution of a Markov chain: Given the transition probabilities p ij and a starting distribution p (0) i of a Markov chain is uniquely determined. = P (X 0 = i), the distribution The h-step transition probabilities are determined by the Chapman-Kolmogorov equations: and therefore P (h) = P h = P... P. P (h+l) = P (h) P (l) For the transition probabilities the Chapman-Kolmogorov equations can be expressed as p (h+l) ij = k E p (h) ik p(l) kj. Based on the h-step transition probabilities, we obtain P (X tn = i n, X tn 1 = i n 1,..., X t1 = i 1, X 0 = i 0 ) = p (0) i 0 p (t 1) i 0 i 1 p (t 2 t 1 ) i 1 i 2... p (tn t n 1) i n 1 i n Example: Bonus-Malus system Bonus-Malus systems can be considered as homogeneous Markov chains with a finite state space E of bonus malus classes. Suppose that the l classes are ordered such that the corresponding premiums are decreasing, i.e. π 1 π 2... π l. The first class is sometimes called super malus class and the last class super bonus class. 2

3 Frequently a Poisson distribution is used to model the transition probabilities within a bonusmalus system. To be more specific, the Poisson distribution describes the number of claims for an individual and the transition probabilities are determined from this claim frequency distribution. class German bonus-malus system (up to 2002) premium new class after # claims rate >

4 4 where 1.. = 0 Transition matrix for the German bonus-malus system (up to 2002) i/j {0}..... {1}... {2}. {3}.... {4, 5,...} 2 {0}..... {1}... {2}. {3}.... {4, 5,...} 3. {0}..... {1}.. {2}. {3}.... {4, 5,...} 4.. {0}..... {1}. {2}. {3}.... {4, 5,...} 5... {0}..... {1}. {2} {3}.... {4, 5,...} {0}..... {1}. {2} {3}... {4, 5,...} {0}.... {1}. {2} {3}... {4, 5,...} {0}... {1}. {2} {3}... {4, 5,...} {0}.. {1}. {2} {3}... {4, 5,...} {0}.. {1} {2} {3}... {4, 5,...} {0}.. {1} {2}. {3}. {4, 5,...} {0}. {1} {2}. {3}. {4, 5,...} {0}. {1}. {2} {3} {4, 5,...} {0}.. {1} {2} {3, 4,...} {0}.. {1} {2} {3, 4,...} {0}... {1} {2, 3,...} {0}.... {1, 2,...} {0}.... {1, 2,...} 2. {k} = p k = λk k! e λ. 3. {k, k + 1,...} = i=k p i Supplementary material (Risk Theory) Summer term 2007

5 1. The classes with premium rate 100% are called bonus classes, the classes with premium rate > 100% are malus classes. 2. In the German bonus-malus system, the classes are called Schadenfreiheitsklassen. 3. Since 2003 Germany has a new bonus-malus system with 23 bonus classes and 3 malus classes (and reversed order as in the Dutch example from above). Stationary distribution of a Markov chain Under regularity conditions on the transition matrix P, the linear systems of equations µ = µp has a unique, strictly non-zero solution µ, where µ = (µ j, j E). This solution µ is called the stationary distribution of the Markov chain, since µ j = lim p (t) ij, t and for any starting distribution. lim t p(0) P t = p (0) P = µ 1. If p (0) = µ, then P p (0) = µ, i.e. the state probabilities are time-constant. This is the reason why µ is called stationary distribution. 2. The stationary distribution can be obtained as µ = (I P + Q) 1 where = (1,..., 1), I is the identity matrix and Q = In a bonus-malus system, the stationary distribution represents the percentage of drivers in the different classes after the bonus-malus system has been run for a long time. 5

THE BONUS-MALUS SYSTEM MODELLING USING THE TRANSITION MATRIX

THE BONUS-MALUS SYSTEM MODELLING USING THE TRANSITION MATRIX 1502 Challenges of the Knowledge Society Economics THE BONUS-MALUS SYSTEM MODELLING USING THE TRANSITION MATRIX SANDRA TEODORESCU * Abstract The motor insurance is an important branch of non-life insurance

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

Markov Chain Monte Carlo Simulation Made Simple

Markov Chain Monte Carlo Simulation Made Simple Markov Chain Monte Carlo Simulation Made Simple Alastair Smith Department of Politics New York University April2,2003 1 Markov Chain Monte Carlo (MCMC) simualtion is a powerful technique to perform numerical

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Performance Analysis of a Telephone System with both Patient and Impatient Customers

Performance Analysis of a Telephone System with both Patient and Impatient Customers Performance Analysis of a Telephone System with both Patient and Impatient Customers Yiqiang Quennel Zhao Department of Mathematics and Statistics University of Winnipeg Winnipeg, Manitoba Canada R3B 2E9

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

CHAPTER 7 STOCHASTIC ANALYSIS OF MANPOWER LEVELS AFFECTING BUSINESS 7.1 Introduction

CHAPTER 7 STOCHASTIC ANALYSIS OF MANPOWER LEVELS AFFECTING BUSINESS 7.1 Introduction CHAPTER 7 STOCHASTIC ANALYSIS OF MANPOWER LEVELS AFFECTING BUSINESS 7.1 Introduction Consider in this chapter a business organization under fluctuating conditions of availability of manpower and business

More information

D-Policy for a Production Inventory System with Perishable Items

D-Policy for a Production Inventory System with Perishable Items Chapter 6 D-Policy for a Production Inventory System with Perishable Items 6.1 Introduction So far we were concentrating on invenory with positive (random) service time. In this chapter we concentrate

More information

3.2 Roulette and Markov Chains

3.2 Roulette and Markov Chains 238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani. EPEW 2014, Florence

Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani. EPEW 2014, Florence Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani EPEW 2014, Florence Scenario How many cloud instances should be hired? Requests Host hiring servers The number of active servers is controlled

More information

A linear algebraic method for pricing temporary life annuities

A linear algebraic method for pricing temporary life annuities A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Exam Introduction Mathematical Finance and Insurance

Exam Introduction Mathematical Finance and Insurance Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closed-book exam. The exam does not use scrap cards. Simple calculators are allowed. The questions

More information

Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

Notes on Probability Theory

Notes on Probability Theory Notes on Probability Theory Christopher King Department of Mathematics Northeastern University July 31, 2009 Abstract These notes are intended to give a solid introduction to Probability Theory with a

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

A Markovian Model for Investment Analysis in Advertising

A Markovian Model for Investment Analysis in Advertising Proceedings of the Seventh Young Statisticians Meeting Andrej Mrvar (Editor) Metodološki zvezki, 21, Ljubljana: FDV, 2003 A Markovian Model for Investment Analysis in Advertising Eugenio Novelli 1 Abstract

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

A DISCRETE TIME MARKOV CHAIN MODEL IN SUPERMARKETS FOR A PERIODIC INVENTORY SYSTEM WITH ONE WAY SUBSTITUTION

A DISCRETE TIME MARKOV CHAIN MODEL IN SUPERMARKETS FOR A PERIODIC INVENTORY SYSTEM WITH ONE WAY SUBSTITUTION A DISCRETE TIME MARKOV CHAIN MODEL IN SUPERMARKETS FOR A PERIODIC INVENTORY SYSTEM WITH ONE WAY SUBSTITUTION A Class Project for MATH 768: Applied Stochastic Processes Fall 2014 By Chudamani Poudyal &

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

From the probabilities that the company uses to move drivers from state to state the next year, we get the following transition matrix:

From the probabilities that the company uses to move drivers from state to state the next year, we get the following transition matrix: MAT 121 Solutions to Take-Home Exam 2 Problem 1 Car Insurance a) The 3 states in this Markov Chain correspond to the 3 groups used by the insurance company to classify their drivers: G 0, G 1, and G 2

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

More information

Application of Markov chain analysis to trend prediction of stock indices Milan Svoboda 1, Ladislav Lukáš 2

Application of Markov chain analysis to trend prediction of stock indices Milan Svoboda 1, Ladislav Lukáš 2 Proceedings of 3th International Conference Mathematical Methods in Economics 1 Introduction Application of Markov chain analysis to trend prediction of stock indices Milan Svoboda 1, Ladislav Lukáš 2

More information

Simple Markovian Queueing Systems

Simple Markovian Queueing Systems Chapter 4 Simple Markovian Queueing Systems Poisson arrivals and exponential service make queueing models Markovian that are easy to analyze and get usable results. Historically, these are also the models

More information

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS

IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)

More information

STABILITY OF LU-KUMAR NETWORKS UNDER LONGEST-QUEUE AND LONGEST-DOMINATING-QUEUE SCHEDULING

STABILITY OF LU-KUMAR NETWORKS UNDER LONGEST-QUEUE AND LONGEST-DOMINATING-QUEUE SCHEDULING Applied Probability Trust (28 December 2012) STABILITY OF LU-KUMAR NETWORKS UNDER LONGEST-QUEUE AND LONGEST-DOMINATING-QUEUE SCHEDULING RAMTIN PEDARSANI and JEAN WALRAND, University of California, Berkeley

More information

Fitting the Belgian Bonus-Malus System

Fitting the Belgian Bonus-Malus System Fitting the Belgian Bonus-Malus System S. Pitrebois 1, M. Denuit 2 and J.F. Walhin 3 Abstract. We show in this paper how to obtain the relativities of the Belgian Bonus-Malus System, including the special

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Markov Chains. Chapter 4. 4.1 Stochastic Processes

Markov Chains. Chapter 4. 4.1 Stochastic Processes Chapter 4 Markov Chains 4 Stochastic Processes Often, we need to estimate probabilities using a collection of random variables For example, an actuary may be interested in estimating the probability that

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIX-EXPONENTIAL DISTRIBUTIONS

SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL REPRESENTATIONS FOR PHASE TYPE DISTRIBUTIONS AND MATRIX-EXPONENTIAL DISTRIBUTIONS Stochastic Models, 22:289 317, 2006 Copyright Taylor & Francis Group, LLC ISSN: 1532-6349 print/1532-4214 online DOI: 10.1080/15326340600649045 SPECTRAL POLYNOMIAL ALGORITHMS FOR COMPUTING BI-DIAGONAL

More information

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni

Web-based Supplementary Materials for Bayesian Effect Estimation. Accounting for Adjustment Uncertainty by Chi Wang, Giovanni 1 Web-based Supplementary Materials for Bayesian Effect Estimation Accounting for Adjustment Uncertainty by Chi Wang, Giovanni Parmigiani, and Francesca Dominici In Web Appendix A, we provide detailed

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié.

Random access protocols for channel access. Markov chains and their stability. Laurent Massoulié. Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines

More information

Multi-state transition models with actuarial applications c

Multi-state transition models with actuarial applications c Multi-state transition models with actuarial applications c by James W. Daniel c Copyright 2004 by James W. Daniel Reprinted by the Casualty Actuarial Society and the Society of Actuaries by permission

More information

UNCOUPLING THE PERRON EIGENVECTOR PROBLEM

UNCOUPLING THE PERRON EIGENVECTOR PROBLEM UNCOUPLING THE PERRON EIGENVECTOR PROBLEM Carl D Meyer INTRODUCTION Foranonnegative irreducible matrix m m with spectral radius ρ,afundamental problem concerns the determination of the unique normalized

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

Single item inventory control under periodic review and a minimum order quantity

Single item inventory control under periodic review and a minimum order quantity Single item inventory control under periodic review and a minimum order quantity G. P. Kiesmüller, A.G. de Kok, S. Dabia Faculty of Technology Management, Technische Universiteit Eindhoven, P.O. Box 513,

More information

UNIT 2 QUEUING THEORY

UNIT 2 QUEUING THEORY UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Credit Risk Models: An Overview

Credit Risk Models: An Overview Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Big Data Technology Motivating NoSQL Databases: Computing Page Importance Metrics at Crawl Time

Big Data Technology Motivating NoSQL Databases: Computing Page Importance Metrics at Crawl Time Big Data Technology Motivating NoSQL Databases: Computing Page Importance Metrics at Crawl Time Edward Bortnikov & Ronny Lempel Yahoo! Labs, Haifa Class Outline Link-based page importance measures Why

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

THE $25,000,000,000 EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE

THE $25,000,000,000 EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE THE $5,,, EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE KURT BRYAN AND TANYA LEISE Abstract. Google s success derives in large part from its PageRank algorithm, which ranks the importance of webpages according

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

INTEGRATED OPTIMIZATION OF SAFETY STOCK

INTEGRATED OPTIMIZATION OF SAFETY STOCK INTEGRATED OPTIMIZATION OF SAFETY STOCK AND TRANSPORTATION CAPACITY Horst Tempelmeier Department of Production Management University of Cologne Albertus-Magnus-Platz D-50932 Koeln, Germany http://www.spw.uni-koeln.de/

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Lectures on Stochastic Processes. William G. Faris

Lectures on Stochastic Processes. William G. Faris Lectures on Stochastic Processes William G. Faris November 8, 2001 2 Contents 1 Random walk 7 1.1 Symmetric simple random walk................... 7 1.2 Simple random walk......................... 9 1.3

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Martin Lauer AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg martin.lauer@kit.edu

More information

4.1 Introduction and underlying setup

4.1 Introduction and underlying setup Chapter 4 Semi-Markov processes in labor market theory 4.1 Introduction and underlying setup Semi-Markov processes are, like all stochastic processes, models of systems or behavior. As extensions of Markov

More information

An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach

An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach Intro B, W, M, & R SPDE/GMRF Example End An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach Finn Lindgren 1 Håvard Rue 1 Johan

More information

4. Life Insurance Payments

4. Life Insurance Payments 4. Life Insurance Payments A life insurance premium must take into account the following factors 1. The amount to be paid upon the death of the insured person and its present value. 2. The distribution

More information

Dependence in non-life insurance

Dependence in non-life insurance Dependence in non-life insurance Hanna Arvidsson and Sofie Francke U.U.D.M. Project Report 2007:23 Examensarbete i matematisk statistik, 20 poäng Handledare och examinator: Ingemar Kaj Juni 2007 Department

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Markov Chains for the RISK Board Game Revisited. Introduction. The Markov Chain. Jason A. Osborne North Carolina State University Raleigh, NC 27695

Markov Chains for the RISK Board Game Revisited. Introduction. The Markov Chain. Jason A. Osborne North Carolina State University Raleigh, NC 27695 Markov Chains for the RISK Board Game Revisited Jason A. Osborne North Carolina State University Raleigh, NC 27695 Introduction Probabilistic reasoning goes a long way in many popular board games. Abbott

More information

Chapter 2 Discrete-Time Markov Models

Chapter 2 Discrete-Time Markov Models Chapter Discrete-Time Markov Models.1 Discrete-Time Markov Chains Consider a system that is observed at times 0;1;;:::: Let X n be the state of the system at time n for n D 0;1;;:::: Suppose we are currently

More information

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

More information

Tools for the analysis and design of communication networks with Markovian dynamics

Tools for the analysis and design of communication networks with Markovian dynamics 1 Tools for the analysis and design of communication networks with Markovian dynamics Arie Leizarowitz, Robert Shorten, Rade Stanoević Abstract In this paper we analyze the stochastic properties of a class

More information

BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

More information

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Bounding of Performance Measures for Threshold-Based Queuing Systems: Theory and Application to Dynamic Resource Management in Video-on-Demand Servers

Bounding of Performance Measures for Threshold-Based Queuing Systems: Theory and Application to Dynamic Resource Management in Video-on-Demand Servers IEEE TRANSACTIONS ON COMPUTERS, VOL 51, NO 3, MARCH 2002 1 Bounding of Performance Measures for Threshold-Based Queuing Systems: Theory and Application to Dynamic Resource Management in Video-on-Demand

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning LU 2 - Markov Decision Problems and Dynamic Programming Dr. Joschka Bödecker AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg jboedeck@informatik.uni-freiburg.de

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Optimal Charging Strategies for Electrical Vehicles under Real Time Pricing

Optimal Charging Strategies for Electrical Vehicles under Real Time Pricing 1 Optimal Charging Strategies for Electrical Vehicles under Real Time Pricing Mohammad M. Karbasioun, Ioannis Lambadaris, Gennady Shaikhet, Evangelos Kranakis Carleton University, Ottawa, ON, Canada E-mails:

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Fluid models in performance analysis

Fluid models in performance analysis Fluid models in performance analysis Marco Gribaudo 1, Miklós Telek 2 1 Dip. di Informatica, Università di Torino, marcog@di.unito.it 2 Dept. of Telecom., Technical University of Budapest telek@hitbme.hu

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010 Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable

More information