α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More informationit = α + β i + γ 1 t + γ 2 t + γ 3 t +λ 1 ( i ) + λ 2 ( i ) + λ 3 ( i ) +δx i + ϵ it, it i i t t t i λ 1 λ 3 t t t i = α + β i + δx i + ϵ i i i i 12 Harrison Cleveland McKinley Roosevelt 10 8 6

More information### 2. Illustration of the Nikkei 225 option data

1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =

More information### Full and Complete Binary Trees

Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information### The University of Kansas

All Greek Summary Rank Chapter Name Total Membership Chapter GPA 1 Beta Theta Pi 3.57 2 Chi Omega 3.42 3 Kappa Alpha Theta 3.36 4 Kappa Kappa Gamma 3.28 *5 Pi Beta Phi 3.27 *5 Gamma Phi Beta 3.27 *7 Alpha

More information### PRESENTATION OF DATA AVAILABLE

Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing ABSTRACT KEYWORDS INTRODUCTION PRESENTATION OF DATA AVAILABLE Figure 1

More information### Fraternity & Sorority Academic Report Spring 2016

Fraternity & Sorority Academic Report Organization Overall GPA Triangle 17-17 1 Delta Chi 88 12 100 2 Alpha Epsilon Pi 77 3 80 3 Alpha Delta Chi 28 4 32 4 Alpha Delta Pi 190-190 4 Phi Gamma Delta 85 3

More information### The University of Kansas

Fall 2011 Scholarship Report All Greek Summary Rank Chapter Name Chapter GPA 1 Beta Theta Pi 3.57 2 Chi Omega 3.42 3 Kappa Alpha Theta 3.36 *4 Gamma Phi Beta 3.28 4 Kappa Kappa Gamma 3.28 6 Pi Beta Phi

More information### ! 2!!$ ,)!$- %$0. Baskı-2 ! "! #$ % #$#!&'! '! (&&)!! &!! #.! &)!$#$! /&)!!! 0! &)!$!.!! 0$! #! &)!$ &.!!#$!! 3!&!#!!3! #&!'! &! 4!!

" $ % $&' ' (&&) & )*,)$-.&&) &. &)$$ /&) 0 &)$. 0$ &)$ + 2$,)$3&) &.$ 3& 3 &' & 43 '' %$ / %$0 (%(%3 ' '& 4& 40%3 0$& (% 3 *& 0&3$ 5 %40% 4 4 4 7 8&, 40% :&&* 6 9 4-7 "& % 4 )$ 4 & &)$, %&$ ; 8&7&4 3

More information### Fraternity & Sorority Academic Report Fall 2015

Fraternity & Sorority Academic Report Organization Lambda Upsilon Lambda 1-1 1 Delta Chi 77 19 96 2 Alpha Delta Chi 30 1 31 3 Alpha Delta Pi 134 62 196 4 Alpha Sigma Phi 37 13 50 5 Sigma Alpha Epsilon

More information### {apolin},{mcampos}@ieee.org

{apolin},{mcampos}@ieee.org x( ) 2 x( ) x( ) = ( ) x = [ ( ) x ı x + ( ) y ( ) y ( ) z ı y + ( ) z ] T ı z 2 x ( ) = 2 ( ) x + 2 ( ) 2 y + 2 ( ) 2 z 2 2 E = 1 2 E c 2 t 2 s(x,t) 2 s x + 2 s 2 y + 2

More information### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information### (k 1)! e (m 1)/N v(k). (k 1)!

m N 1/N k v : N R m k 1 k B(k 1, m 1; 1/N) = ( ) ( m 1 1 k 1 N ) k 1 ( ) m k N 1. N m N (m 1)/N P ((m 1)/N; k 1) = 1 (k 1)! m EV (m) = k=1 1 (k 1)! ( ) k 1 m 1 e (m 1)/N. N ( ) k 1 m 1 e (m 1)/N v(k).

More information### Review of Scientific Notation and Significant Figures

II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information### American Criminal Justice Association Lambda Alpha Epsilon Psi Omega. Judicial Board Guidelines

American Criminal Justice Association Lambda Alpha Epsilon Psi Omega Judicial Board Guidelines Created Submitted by: Sergeant- At- Arms Anthony Bouchard 2 The Sergeant-at-Arms shall be the chairperson

More informationx o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

More information### A few algorithmic issues in data centers Adam Wierman Caltech

A few algorithmic issues in data centers Adam Wierman Caltech A significant theory literature on green computing has emerged over the last decade BUT theory has yet to have significant impact in practice.

More information### University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information### Binomial random variables

Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information### BYG DTU. Thermal properties of window frame Type 1 Sheet: 1. Type: Side, top and bottom profile. Source file: Format: dwg/dxf bmp

Thermal properties of window frame Type 1 Sheet: 1 Type: Side, top and bottom profile Profile: Frame profile made of wood and a GRP profile mounted with a sealed triple glazing unit. Materials: Wood GRP

More information### 4. Life Insurance Payments

4. Life Insurance Payments A life insurance premium must take into account the following factors 1. The amount to be paid upon the death of the insured person and its present value. 2. The distribution

More information### MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information### 1. How to install CDM driver on PC for Lambda devices

1. How to install CDM driver on PC for Lambda devices This installation guide is based on Window XP. Different systems may require different actions on some steps. All Lambda devices (Lambda 10-3, 10B,

More information### Week 2: Exponential Functions

Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:

More information### LAB #11: RESONANCE IN AIR COLUMNS

OBJECTIVES: LAB #11: RESONANCE IN AIR COLUMNS To determine the speed of sound in air by using the resonances of air columns. EQUIPMENT: Equipment Needed Qty Equipment Needed Qty Resonance Tube Apparatus

More information### 3.1 Photoelectricity AS13. 3.1 Photo-electricity 2

Photo-electricity Einstein s quantum explanation of the photoelectric effect - Einstein used Planck s quantum theory of radiation, (see Revision Card AS1), to explain photoelectric emission. He assumed

More information### MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information### Integer Programming: Algorithms - 3

Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information### v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information### Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

More information### MANAGEMENT INFORMATION SYSTEMS

MANAGEMENT INFORMATION SYSTEMS 1. Which one of the following must be conducted first in the implementation and roll out stage? a. create production environment b. train users c. install the applications

More information### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information### OpenJDK Infrastructure Status Mohan Pakkurti August 16th, 2011. 2010 Oracle Corporation

OpenJDK Infrastructure Status Mohan Pakkurti August 16th, 2011 2010 Oracle Corporation Infrastructure Scope! Areas that are currently working to provide Infrastructure for OpenJDK Bug system Code review

More information### IU Fraternity & Sorority Spring 2012 Grade Report

SORORITY CHAPTER RANKINGS 1 Chi Delta Phi 3.550 2 Alpha Omicron Pi 3.470 3 Kappa Delta 3.447 4 Alpha Gamma Delta 3.440 5 Delta Gamma 3.431 6 Alpha Chi Omega 3.427 7 Phi Mu 3.391 8 Chi Omega 3.372 8 Kappa

More information### SPSS Bivariate Statistics

SPSS Bivariate Statistics Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objectives In this tutorial

More information### Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani. EPEW 2014, Florence

Optimal Hiring of Cloud Servers A. Stephen McGough, Isi Mitrani EPEW 2014, Florence Scenario How many cloud instances should be hired? Requests Host hiring servers The number of active servers is controlled

More information### Name: ID: Discussion Section:

Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:

More information### Binomial random variables (Review)

Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

More information### SPRING 2011 FRATERNITY/SORORITY GRADE REPORT SORORITY CHAPTER RANKINGS

SPRING 2011 FRATERNITY/SORORITY GRADE REPORT SORORITY CHAPTER RANKINGS 1 Kappa Alpha Theta 3.4643 2 Phi Mu 3.4273 3 Kappa Delta 3.4260 4 Alpha Omicron Pi 3.4072 5 Delta Gamma 3.4072 6 Alpha Chi Omega 3.3989

More information### NPTEL STRUCTURAL RELIABILITY

NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:

More information### 1a 1b Total /10 pts /10 pts /20 pts

Instructions 1. This is an open-notes, open-book, open-computer, open-internet exam. 2. The exam is due in class on November 10, 2008. 3. You can work on this exam as much as you like. There is no time

More information### Applied Linear Algebra

Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL

More information### Pr(X = x) = f(x) = λe λx

Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information### AP CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Answer the following problems about gases. AP CHEMISTRY 2007 SCORING GUIDELINES (Form B) Question 2 (a) The average atomic mass of naturally occurring neon is 20.18 amu. There are two common isotopes of

More information### 3scale Plus Amazon API Gateway Equals Full Complement API Program Management

Plus Equals Full Complement Program Management Deployment Options Include Lambda or Any External Endpoint, Plus and Extensions s supports the unique requirements of delivering s on the Web impressive ROI.

More information### Building Structures 1. Antonín Lupíšek

Building Structures 1 #4 Antonín Lupíšek Task No. 2: Load bearing system Objectives: 2 variants of structural system (scale 1:100) description of systems, materials and technology advantages and disadvantages

More information### AP CHEMISTRY 2006 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2006 SCORING GUIDELINES (Form B) Question 5 5. A student carries out an experiment to determine the equilibrium constant for a reaction by colorimetric (spectrophotometric) analysis. The production

More information### P(X = x k ) = 1 = k=1

74 CHAPTER 6. IMPORTANT DISTRIBUTIONS AND DENSITIES 6.2 Problems 5.1.1 Which are modeled with a unifm distribution? (a Yes, P(X k 1/6 f k 1,...,6. (b No, this has a binomial distribution. (c Yes, P(X k

More information### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information### [1] Diagonal factorization

8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information### Exact Confidence Intervals

Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

More information### Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

More information### Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day.

16 The Exponential Distribution Example: 1. You have observed that the number of hits to your web site follow a Poisson distribution at a rate of 2 per day. Let T be the time (in days) between hits. 2.

More information### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information### Inner products on R n, and more

Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information### Design of Analytic Hierarchy Process Algorithm and Its Application for Vertical Handover in Cellular Communication

Design of Analytic Hierarchy Process Algorithm and Its Application for Vertical Handover in Cellular Communication Under the Guidance of Asso. Prof. Mr. Saurav Dhar Deptt. of Electronics and Communication

More information### Wiring channel Table Tab.1

LAMBDA CONTROLLER HARNESS "ANALOG - RS" version Wiring channel Table Tab. PIN AMP Connector Section [mm²] Analog + RS pin LAMBDA OUT RS PC RX RS PC TX 0 cm 0. Power Free wires +VBATT 00 cm. Lambda yellow

More information### Deriving MRS from Utility Function, Budget Constraints, and Interior Solution of Optimization

Utilit Function, Deriving MRS. Principles of Microeconomics, Fall Chia-Hui Chen September, Lecture Deriving MRS from Utilit Function, Budget Constraints, and Interior Solution of Optimization Outline.

More information### Bonus-malus systems and Markov chains

Bonus-malus systems and Markov chains Dutch car insurance bonus-malus system class % increase new class after # claims 0 1 2 >3 14 30 14 9 5 1 13 32.5 14 8 4 1 12 35 13 8 4 1 11 37.5 12 7 3 1 10 40 11

More information### 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

More information### Hull, Options, Futures & Other Derivatives, 9th Edition

P1.T2. Quantitative Analysis Bionic Turtle FRM Practice Questions Reading 17 Hull, Options, Futures & Other Derivatives, 9th Edition By David Harper, CFA FRM CIPM www.bionicturtle.com HULL, CHAPTER 22:

More information### Complex Eigenvalues. 1 Complex Eigenvalues

Complex Eigenvalues Today we consider how to deal with complex eigenvalues in a linear homogeneous system of first der equations We will also look back briefly at how what we have done with systems recapitulates

More information### #$ % & '((( !"# $ % # ! "!

! " #$ % & '(((!"# $ % #! "! ' ) *) )! ) ) +'(,-. * / $ )$ ) ) $ ) #! 1*$ ) *2 * $ ) ) ) ) *2 *) ) )! ) ) ) 3 )* ) ) 4 5 )* ) * $$ $ 4 ) ) ) 6! 5 $ ) )7! ) 7 ) ) ) ) 7 ) ) )* ) )! )7 +. * $ $ 8 +. 39 8

More information### - momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

More information### Econ674 Economics of Natural Resources and the Environment

Econ674 Economics of Natural Resources and the Environment Session 5 Static Static Optimization Optimization means the best use of a given stock of resources to achieve a given end. Best use generally

More information### r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)

Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system

More information### Mizzou Homecoming Announcements. October 11, 2015

Mizzou Homecoming Announcements October 11, 2015 Greek Groupings Blood Fifth Delta Delta Delta, Delta Upsilon & Kappa Sigma Fourth Zeta Tau Alpha & Phi Gamma Delta Sigma Kappa Third Sigma Sigma Sigma,

More information### Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,

More information### Basic concepts and introduction to statistical inference

Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence

More information### Critical points via monodromy and local methods

Critical points via monodromy and local methods Abraham Martín del Campo joint w/ Jose Rodriguez (U. Notre Dame) SIAM Conference on Applied Algebraic Geometry August 3, 2015 Abraham Martín del Campo (IST)

More information### Practice Problems for Homework #6. Normal distribution and Central Limit Theorem.

Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. 1. Read Section 3.4.6 about the Normal distribution and Section 4.7 about the Central Limit Theorem. 2. Solve the practice

More information### Detailed Product Information for Greek Stationery and Sorority Stationery

Sorority Stationery Sorority Stationary Sorority Letterhead Many Layouts Sorority Envelopes Self Seal Envelopes Mailing Envelopes Security Envelopes Window Envelopes Large Envelopes Sorority Notecards

More information### CHAPTER 7 STOCHASTIC ANALYSIS OF MANPOWER LEVELS AFFECTING BUSINESS 7.1 Introduction

CHAPTER 7 STOCHASTIC ANALYSIS OF MANPOWER LEVELS AFFECTING BUSINESS 7.1 Introduction Consider in this chapter a business organization under fluctuating conditions of availability of manpower and business

More information### BUSINESS COMMUNICATION. Competency: Grammar Task: Use a verb that correctly agrees with the subject of a sentence.

BUSINESS COMMUNICATION 1. Which one of the following is the incorrect sentence? a. His sending the note was a thoughtful gesture. b. Anyone who wants to change their vote may do so. c. Miguel, along with

More information### 18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 28, Lagrange Multipliers

18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 28, Lagrange Multipliers JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been learning about how to solve multivariable optimization

More information### Linear Search. CS 5010 Program Design Paradigms Bootcamp Lesson 8.5

Linear Search CS 5010 Program Design Paradigms Bootcamp Lesson 8.5 Mitchell Wand, 2012-2015 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 1 Introduction

More information### Orthogonal Diagonalization of Symmetric Matrices

MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information### Resonance in a Closed End Pipe

Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

More information### A Utility Maximization Example

A Utilit Maximization Example Charlie Gibbons Universit of California, Berkele September 17, 2007 Since we couldn t finish the utilit maximization problem in section, here it is solved from the beginning.

More information### Medium Access Sublayer

Medium Access Sublayer Topology of the Network Bus, Ring, Tree Protocols IEEE 802.3 for bus topology IEEE 802.4 for token bus IEEE 802.5 for token ring FDDI for fibre ring IEEE 802.11 for wireless networks

More information### Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information### Testing Rules for Thermal Conductivity October 2015

Testing Rules for Thermal Conductivity October 2015 Testing Rules for Thermal Conductivity (October 2015) 1 Normative references (to be inserted as additional chapter in the Testing Rules for Panels) 1.

More information### The Single Name Corporate CDS Market. Alan White

The Single Name Corporate CDS Market Alan White CDS Structure Single Name DJ Index Products CDS Notional x [ ] bp p.a. Buyer Credit Risk of ABC Seller 125 Equally Weighted Names Buyer Delivery 10MM Principal

More information### Some Optimization Fundamentals

ISyE 3133B Engineering Optimization Some Optimization Fundamentals Shabbir Ahmed E-mail: sahmed@isye.gatech.edu Homepage: www.isye.gatech.edu/~sahmed Basic Building Blocks min or max s.t. objective as

More information### Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues

Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues By Peter Woolf pwoolf@umich.edu) University of Michigan Michigan Chemical Process Dynamics and Controls Open Textbook version 1.0 Creative

More information### UNIT 2 QUEUING THEORY

UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the

More information### Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

More information### CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING

CFD SIMULATION OF NATURAL GAS COMBUSTION AND IST APPLICATION TO TUNNEL KILN FIRING. R. Obenaus-Emler University of Leoben Contents 1. Intoduction to combustion models in OpenFOAM 2. The Flamelet-Model

More information### Efficient Similarity Search over Encrypted Data

UT DALLAS Erik Jonsson School of Engineering & Computer Science Efficient Similarity Search over Encrypted Data Mehmet Kuzu, Saiful Islam, Murat Kantarcioglu Introduction Client Untrusted Server Similarity

More information### MOSFET transistor I-V characteristics

MOSFET transistor I-V characteristics Linear region: v DS «v GS Triode region: v DS < v GS i D = K[ 2( v GS )v DS ] 2 i D = K[ 2( v GS )v DS v DS ] K n K = = C ox µ n W ----- K 2L n v DS = v GS sat (current)

More information### 1. Pomfret 1,400 points 2. Buchanan Droke/Gladson Ripley Hall 800 points 3. Holcomb/Futrall Hall 650 points 4. Maple Hill 650 points

Homecoming 2012 Winners Overall Winners: Greek Category 1,850 2. Chi Omega, Order, Sigma Pi, Sigma Alpha Epsilon 1,800 Sigma Iota Alpha 3. Zeta Tau Alpha, Kappa Sigma, Alpha Phi Alpha 1,500 Residence Hall

More information### Chapter 2 Writing Simple Programs

Chapter 2 Writing Simple Programs Charles Severance Textbook: Python Programming: An Introduction to Computer Science, John Zelle Software Development Process Figure out the problem - for simple problems

More information### MS 20487A Developing Windows Azure and Web Services

MS 20487A Developing Windows Azure and Web Services Description: Days: 5 Prerequisites: In this course, students will learn how to design and develop services that access local and remote data from various

More information### Introduction to Light, Color, and Shadows

Introduction to Light, Color, and Shadows What is light made out of? -waves, photons, Electromagnetic waves (don t know this one) How do you get color? - different wavelengths of light. What does it mean

More information### L stub Z A = Z 0 Z R Z 0S. Single stub impedance matching

Single stub impedance matching Impedance matching can be achieved by inserting another transmission line (stub) as shown in the diagram below Z A = Z 0 Z 0 Z R Z 0S d stub L stub Amanogawa, 006 Digital

More information### Reliability Allocation in Parallel Series Systems

eliability Allocation in Parallel Series Systems Mushtaq AK Shkeer University of Babylon College of Education Hassanein Qassam Zeidan University of Babylon College of Education Zahir Abdul Haddi Hassan

More information