Supplement 16B: Small Sample Wilcoxon Rank Sum Test
|
|
|
- Isabella Parrish
- 9 years ago
- Views:
Transcription
1 Supplement 16B: Small Sample Wilcoxon Rank Sum Test Hypothesis Testing Steps When the samples have fewer than 10 observations, it may not be appropriate to use the large sample Wilcoxon Rank Sum (Mann-Whitney) test. However, there are tables of critical values that allow us to safely perform this test for small samples. As in the large sample case, the hypotheses are: H 0 : Populations are the same H 1 : populations are not the same If the analyst is willing to assume that the populations differ only in location (i.e., the center of the distributions is shifted) and are otherwise the same, we can view this as a test of two medians. For a two-sided test the hypotheses would then be: H 0 : M 1 = M 2 (medians are the same) H 0 : M 1 M 2 (medians are not the same) The hypothesis testing procedure is similar to the large-sample case until we get to Step 4. Step 1: Combine the two samples. Step 2: Calculate the ranks for the combined samples, sorting from smallest to largest. Be careful to average the ranks if there are tied data values. Warning: If you are using Excel, use the 2010 Excel function =RANK.AVG(X,Array,1) to sort from smallest to largest. Be sure to specify the third argument 1 because the default is to sort from largest to smallest. That is, if yo0u were to use the function =RANK.AVG(X,Array,0) or if the third argument is omitted as in =RANK.AVG(X,Array,) your data will be sorted from largest to smallest (the opposite of the test format shown here). Also, beware of the old 2007 Excel function =RANK(X,Array) and the new 2010 function =RANK.EQ(X,Array) which do not handle tied data values correctly. Step 3: Separate the ranks into the original groups and sum the ranks for each group. Denote the rank sums T 1 and T 2. Step 4: The test statistic is the sum of the ranks from the smaller sample (the sample with fewer observations). To avoid confusion, it is best to list the smaller sample first, so that the test statistic can be denoted T 1. Table 16.xx shows the critical values for a two-tailed test at α =.05 (upper and lower 2.5% critical values). Reject H 0 if T 1 W Lower or if T 1 W Upper.
2 Illustration: Computer Repair Claims Warranty Baldr Electronics Emporium is a medium-sized electronics retailer that offers a one-year parts and labor warranty on laptop computers that it sells. During the month of October, there were 15 claims for warranty repairs for its top two brands of laptops (6 claims for brand A and 9 claims for brand B). The store noted the number of days the laptops had been owned prior to coming in for repair. Is there a difference in the days owned prior to repairs? There is doubt about whether the data are normally distributed, so we will perform the Wilcoxon rank sum test to compare the medians. The color-coded data are: Step 1: Combine the two samples. Brand A Brand B Step 2: Calculate the ranks for the combined samples, sorting from smallest to largest. Be careful to average the ranks if there are tied data values. For example, here the value 52 occurs twice, as does the value 225. Color coding helps you keep track of data in the the combined samples. Combined and Sorted Rank Brand A Rank Brand B Rank Sum T 1 = 43.5 Sum T 2 = n 1 = 6 n 2 = Median 1 = 88.5 Median 2 =
3 Step 3: Separate the ranks into the original groups and sum them for each group. The test statistic is the sum of the ranks from the smaller sample (the sample with fewer observations). If you wish, you can check your sums by adding; the ranks must sum to n(n+1)/2 where n = n 1 + n 2. In this case, n = n 1 + n 2. = = 15 so the ranks must sum to n(n+1)/2 = 15(15+1)/2 = 120. Checking our rank sums, we get T 1 + T 2 = = 120 which confirms our rank calculations. Step 4: Table 16.B1 shows the critical values for a two-tailed test at α =.05 (upper and lower 2.5% critical values). We would reject H 0 if T 1 W Lower or if T 1 W Upper. For our data, n 1 = 6 and n 2 = 9, so the decision rule is: Reject H 0 if T 1 31 or if T 1 65 Because our test statistic is T 1 = 43.5, we cannot reject H 0. Although there is a difference in the sample medians, it is not great enough to conclude unequal population medians. TABLE 16.B1 Lower 2.5% and Upper 2.5% Critical Values for Wilcoxon Rank Sum Test n 1 n , ,29 17, ,32 18,42 26, ,35 20,45 27,57 36, ,38 21,49 29,61 38,74 49, ,42 22,53 31,65 40,79 51,93 62, ,45 23,57 32,70 42,84 53,99 65,115 78, ,48 24,61 34,74 44,89 55,105 68,121 81,139 96, ,51 26,64 35,79 46,94 58,110 71,127 84,146 99, ,185 Decision Rule: Reject the null hypothesis if T 1 W Lower or if T 1 W Upper where T 1 is the rank sum from the smaller sample. Source: F. Wilcoxon and R.A. Wilcox, Some Rapid Approximate Statistical Procedures, Lederle Laboratories, Use with permission of the American Cyanamid Company. Step 5: No action is required, However, the retailer may wish to continue accumulating data on the length of time before each warranty claim for these two top-selling brands. It is possible that in a larger sample, significant differences might be detected. Computer Software There are many reasons to prefer using a computer for this type of test. First, the calculations are easier. Second, you don t need tables. Third, tables become awkwardly large for this test when sample sizes become larger. Table 16.B1, for example, is abbreviated. If you have sample sizes between 13 and 20, you would need a larger table. Figure 16.B1 show the output from Minitab, which confirms our calculations and our decision not to reject H 0 at α =.05. Note that Minitab
4 also provides a confidence interval for the difference of medians as well as a p-value (0.6367) which shows that the observed difference in medians is within the realm of chance. FIGURE 16.B1 Minitab Results for Wilcoxon Rank Sum/Mann-Whitney Test Mann-Whitney Test and CI: Brand A, Brand B N Median Brand A Brand B Point estimate for ETA1-ETA2 is Percent CI for ETA1-ETA2 is (-113.0,112.0) W = 43.5 Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at The test is significant at (adjusted for ties) Section Exercises Note: *Indicates optional exercises based on large sample z-test or using software that may not be available to students. 16B.1 A trucking company wants to compare the number of miles driven by two delivery truck drivers in one week on different days (n 1 = 5 days, n 2 = 7 days). Do not assume that distances driven are normally distributed. (a) Use Table 16.B1 to test the hypothesis of equal medians at α =.05. Show the steps in your analysis. (b*) If possible, check your work using Minitab or another computer package. (c*) Perform a large-sample test using the z-test. Is your conclusion the same? Delivery Driver 1 Driver B.2 Below are data for two different regions, showing the number of days that kidney transplant patients had to wait before a donor was found (n 1 = 6 patients, n 2 = 8 patients). Do not assume a normal distribution of waiting times. (a) Use Table 16.B1 to test the hypothesis of equal medians at α =.05. Show the steps in your analysis. (b*)if possible, check your work using Minitab or another computer package. (c*) Perform a largesample test using the z-test. Is your conclusion the same? Kidneys East Region West Region
5
Nonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
Online 12 - Sections 9.1 and 9.2-Doug Ensley
Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics - Ensley Assignment: Online 12 - Sections 9.1 and 9.2 1. Does a P-value of 0.001 give strong evidence or not especially strong
Skewed Data and Non-parametric Methods
0 2 4 6 8 10 12 14 Skewed Data and Non-parametric Methods Comparing two groups: t-test assumes data are: 1. Normally distributed, and 2. both samples have the same SD (i.e. one sample is simply shifted
Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,
CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions
1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Mind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Hypothesis Testing. Steps for a hypothesis test:
Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB
Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB DIRECTIONS: Welcome! Your TA will help you apply your Calculator and MINITAB to review Business Stats, and will
Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
The Wilcoxon Rank-Sum Test
1 The Wilcoxon Rank-Sum Test The Wilcoxon rank-sum test is a nonparametric alternative to the twosample t-test which is based solely on the order in which the observations from the two samples fall. We
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed
Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test
Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
Tutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls [email protected] MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
Two Correlated Proportions (McNemar Test)
Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable
Friedman's Two-way Analysis of Variance by Ranks -- Analysis of k-within-group Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,
CHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
Factors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
Rank-Based Non-Parametric Tests
Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777
Math 210 - Exam 4 - Sample Exam 1) What is the p-value for testing H1: µ < 90 if the test statistic is t=-1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Introduction. Statistics Toolbox
Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon
Hypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
1-3 id id no. of respondents 101-300 4 respon 1 responsible for maintenance? 1 = no, 2 = yes, 9 = blank
Basic Data Analysis Graziadio School of Business and Management Data Preparation & Entry Editing: Inspection & Correction Field Edit: Immediate follow-up (complete? legible? comprehensible? consistent?
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
NCSS Statistical Software. One-Sample T-Test
Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,
Estimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice!
Statistics 100 Sample Final Questions (Note: These are mostly multiple choice, for extra practice. Your Final Exam will NOT have any multiple choice!) Part A - Multiple Choice Indicate the best choice
Testing Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
Chapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Paired 2 Sample t-test
Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.
Analysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
8 6 X 2 Test for a Variance or Standard Deviation
Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion
ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media
ISyE 2028 Basic Statistical Methods - Fall 2015 Bonus Project: Big Data Analytics Final Report: Time spent on social media Abstract: The growth of social media is astounding and part of that success was
Hypothesis Testing --- One Mean
Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
Chi-square test Fisher s Exact test
Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures
How Does My TI-84 Do That
How Does My TI-84 Do That A guide to using the TI-84 for statistics Austin Peay State University Clarksville, Tennessee How Does My TI-84 Do That A guide to using the TI-84 for statistics Table of Contents
Stat 5102 Notes: Nonparametric Tests and. confidence interval
Stat 510 Notes: Nonparametric Tests and Confidence Intervals Charles J. Geyer April 13, 003 This handout gives a brief introduction to nonparametrics, which is what you do when you don t believe the assumptions
Name: Date: Use the following to answer questions 3-4:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln. Log-Rank Test for More Than Two Groups
Survey, Statistics and Psychometrics Core Research Facility University of Nebraska-Lincoln Log-Rank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U Previous chapters of this text have explained the procedures used to test hypotheses using interval data (t-tests and ANOVA s) and nominal
SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing
Mind on Statistics. Chapter 13
Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions
Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals
Binary Diagnostic Tests Two Independent Samples
Chapter 537 Binary Diagnostic Tests Two Independent Samples Introduction An important task in diagnostic medicine is to measure the accuracy of two diagnostic tests. This can be done by comparing summary
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Testing for differences I exercises with SPSS
Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Multiple-Comparison Procedures
Multiple-Comparison Procedures References A good review of many methods for both parametric and nonparametric multiple comparisons, planned and unplanned, and with some discussion of the philosophical
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Testing a claim about a population mean
Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited
CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
Parametric and non-parametric statistical methods for the life sciences - Session I
Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute
Biostatistics: Types of Data Analysis
Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics [email protected] http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
22. HYPOTHESIS TESTING
22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?
Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test)
Hypothesis Test for Mean Using Given Data (Standard Deviation Known-z-test) A hypothesis test is conducted when trying to find out if a claim is true or not. And if the claim is true, is it significant.
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Permutation & Non-Parametric Tests
Permutation & Non-Parametric Tests Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate
START Selected Topics in Assurance
START Selected Topics in Assurance Related Technologies Table of Contents Introduction Some Statistical Background Fitting a Normal Using the Anderson Darling GoF Test Fitting a Weibull Using the Anderson
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures
Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
2 Sample t-test (unequal sample sizes and unequal variances)
Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
