Online 12  Sections 9.1 and 9.2Doug Ensley


 Marjorie Wilkinson
 2 years ago
 Views:
Transcription
1 Student: Date: Instructor: Doug Ensley Course: MAT Applied Statistics  Ensley Assignment: Online 12  Sections 9.1 and Does a Pvalue of give strong evidence or not especially strong evidence against the null hypothesis? C. The Pvalue does not give strong evidence B. The Pvalue gives strong evidence against the null hypothesis because it is D. The Pvalue does not give strong evidence 2. For (a) and (b), is the statement a null hypothesis or an alternative hypothesis? a. The proportion of adults who favor legalized gambling equals b. The proportion of all college students who are regular smokers is less than 0.28, the value it was ten years ago. c. Introducing notation for a parameter, state the hypotheses in (a) and (b) in terms of the parameter values. a. Is the statement in part (a) the null or alternative hypothesis? Null hypothesis Alternative hypothesis b. Is the statement in part (b) the null or alternative hypothesis? Alternative hypothesis Null hypothesis c. Choose the correct null and alternative hypotheses for part (a). A. H 0 : p > 0.40 H a : p = 0.40 D. H 0 : p < 0.40 H a : p = 0.40 B. H 0 : p = 0.40 H a : p 0.40 E. H 0 : p 0.40 H a : p = 0.40 C. H 0 : p = 0.40 H a : p < 0.40 F. H 0 : p = 0.40 H a : p = 0.40 Choose the correct null and alternative hypotheses for part (b). A. H 0 : p = 0.28 H a : p < 0.28 D. H 0 : p = 0.28 H a : p > 0.28 B. H 0 : p < 0.28 H a : p = 0.28 E. H 0 : p = 0.28 H a : p 0.28 C. H 0 : p > 0.28 H a : p = 0.28 F. H 0 : p 0.28 H a : p = Does a Pvalue of 0.36 give strong evidence or not especially strong evidence against the null hypothesis? 1 of 9 A. The Pvalue does not give strong evidence B. The Pvalue gives strong evidence against the null hypothesis because it is C. The Pvalue does not give strong evidence D. The Pvalue gives strong evidence against
2 4. A person who claims to be psychic says that the probability, p, that he can correctly predict the outcome of the astrological sign of a person in another room is greater than 1 / 12, the value that applies with random guessing. If we want to test this claim, we could use the data from an experiment in which he predicts the outcomes for n trials. State hypotheses for a significance test, letting the alternative hypothesis reflect the psychic's claim. Which of the following is the hypothesis test to be conducted? A. H 0 : p = 1 / 12 H a : p < 1 / 12 C. H 0 : p = 1 / 12 H a : p 1 / 12 E. H 0 : p > 1 / 12 H a : p = 1 / 12 B. H 0 : p > 1 / 12 H a : p = 1 / 12 D. H 0 : p 1 / 12 H a : p = 1 / 12 F. H 0 : p = 1 / 12 H a : p > 1 / Does a Pvalue of give strong evidence or not especially strong evidence against the null hypothesis? C. The Pvalue does not give strong evidence B. The Pvalue does not give strong evidence D. The Pvalue gives strong evidence against the null hypothesis because it is 6. For a test of H 0 : p = 0.50, the sample proportion is 0.36 based on a sample size of 100. Use this information to complete parts (a) through (c) below. a. Find the test statistic z. z = b. Find the Pvalue for H a : p < Pvalue = (Round to three decimal places as needed.) c. Does the Pvalue in (b) give much evidence against H 0? H 0. The Pvalue indicates that the null hypothesis is plausible. B. The Pvalue does not give strong evidence against H 0. The Pvalue indicates that the null hypothesis is not plausible. C. The Pvalue gives strong evidence against H 0. The Pvalue indicates that the null hypothesis is not plausible. D. The Pvalue does not give strong evidence against H 0. The Pvalue indicates that the null hypothesis is plausible. 2 of 9
3 7. Does a Pvalue of 0.35 give strong evidence or not especially strong evidence against the null hypothesis? C. The Pvalue gives strong evidence against the null hypothesis because it is B. The Pvalue does not give strong evidence D. The Pvalue does not give strong evidence 3 of 9
4 8. A study considered whether daily consumption of garlic could reduce tick bites. The study used a crossover design where half of the subjects used placebo first and garlic second and half the reverse. The authors described garlic being more effective with 33 subjects and placebo being more effective with 30 subjects. Does this suggest a real difference between garlic and placebo, or are the results consistent with random variation? Complete parts a through d below. a. Identify the relevant variable and parameter. A. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom placebo is more effective than garlic. B. The relevant variable is the population proportion, p, those for whom garlic is more effective than placebo. The parameter is whether garlic or placebo is more effective. C. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom garlic is more effective than placebo. b. State hypotheses for a largesample two sided test. A. H 0 : p = 0.5 H a : p > 0.5 D. H 0 : p = 0.5 H a : p 0.5 B. H 0 : p > 0.5 H a : p = 0.5 E. H 0 : p < 0.5 H a : p = 0.5 C. H 0 : p = 0.5 H a : p < 0.5 F. H 0 : p 0.5 H a : p = 0.5 Check that sample size guidelines are satisfied for that test. No, the sample size was not large enough to make the inference. Yes, the sample size was large enough to make the inference. c. Find the test statistic value. z = (Round to two decimal places as needed.) d. Find the Pvalue. Pvalue = (Use the answer from part c to find this answer. Round to two decimal places as needed.) Interpret the Pvalue and state the conclusion in context. Use a significance level of A. The Pvalue is greater than the significance level; do not reject the null hypothesis. There is sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. B. The Pvalue is less than the significance level; reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. C. The Pvalue is less than the significance level; reject the null hypothesis. There is sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. D. The Pvalue is greater than the significance level; do not reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than of 9
5 9. Does a Pvalue of give strong evidence or not especially strong evidence against the null hypothesis? the null hypothesis because it is C. The Pvalue gives strong evidence against B. The Pvalue does not give strong evidence D. The Pvalue does not give strong evidence 5 of 9
6 10. The 113 students in a class made blinded evaluations of pairs of cola drinks. For the comparison, cola A was preferred 65 times. In the population that this sample represents, is this strong evidence that a majority prefers one of the drinks? Refer to the following MINITAB printout. Test of p = 0.50 vs. not = 0.50 X N Sample p 95% CI ZValue PValue (0.483, 0.667) Complete parts (a) through (d) below. a. Explain how to get the test statistic value that MINITAB reports. A. The test statistic is calculated by taking the difference between the sample proportion and the null proportion and dividing it by the standard error. B. The test statistic is calculated by taking the difference between the sample proportion and the standard error and dividing it by the null proportion. C. The test statistic is calculated by taking the difference between the null proportion and the standard error and dividing it by the sample proportion. b. Explain how to get the "Pvalue". A. Use the value of the test statistic to find the righttail probability from the standard normal distribution to the right of the test statistic value. B. Use the value of the test statistic to find the twotail probability from the standard normal distribution to the left and right of the test statistic value. C. Use the value of the test statistic to find the lefttail probability from the standard normal distribution to the left of the test statistic value. Interpret it. A. The Pvalue tells us that if the alternate hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the null hypothesis. B. The Pvalue tells us that if the null hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the null hypothesis. C. The Pvalue tells us that if the null hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the alternative hypothesis. c. Based on the result in (b), does it make sense to "accept H 0 "? Explain. A. Yes, we can "accept H 0 " since there is sufficient evidence that the alternative hypothesis is not true. B. No, but only because there is not enough evidence that H 0 is true. C. It does not make sense to accept the null hypothesis. It is possible that there is a real difference in the population that we are not detecting in our test, and we can never accept a null hypothesis. d. What does the 95% confidence interval tell you that the test does not? A. The significance test tells us a range of plausible values, whereas the 95% confidence interval tells us only that 0.50 is plausible. B. The 95% confidence interval tells us the exact value of the population proportion. C. The 95% confidence interval tells us the range of plausible values, whereas the test merely tells us that 0.50 is plausible. 6 of 9
7 11. Does a Pvalue of 0.43 give strong evidence or not especially strong evidence against the null hypothesis? the null hypothesis because it is C. The Pvalue does not give strong evidence B. The Pvalue does not give strong evidence D. The Pvalue gives strong evidence against 7 of 9
8 1. A. The Pvalue gives strong evidence 2. Null hypothesis Alternative hypothesis B. A. H 0 : p = 0.40 H a : p 0.40 H 0 : p = 0.28 H a : p < A. The Pvalue does not give strong evidence 4. F. H 0 : p = 1 / 12 H a : p > 1 / A. The Pvalue gives strong evidence C. The Pvalue gives strong evidence against H 0. The Pvalue indicates that the null hypothesis is not plausible. 7. B. The Pvalue does not give strong evidence 8. C. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom garlic is more effective than placebo. D. H 0 : p = 0.5H a : p 0.5 Yes, the sample size was large enough to make the inference D. The Pvalue is greater than the significance level; do not reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than C. The Pvalue gives strong evidence 10. A. The test statistic is calculated by taking the difference between the sample proportion and the null proportion and dividing it by the standard error. 8 of 9 B.
9 Use the value of the test statistic to find the twotail probability from the standard normal distribution to the left and right of the test statistic value. B. The Pvalue tells us that if the null hypothesis were true, a proportion of sample data from the null hypothesis of samples would fall at least as far as the C. It does not make sense to accept the null hypothesis. It is possible that there is a real difference in the population that we are not detecting in our test, and we can never accept a null hypothesis. C. The 95% confidence interval tells us the range of plausible values, whereas the test merely tells us that 0.50 is plausible. 11. B. The Pvalue does not give strong evidence 9 of 9
Null Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationExtending Hypothesis Testing. pvalues & confidence intervals
Extending Hypothesis Testing pvalues & confidence intervals So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by
More informationStats for Strategy Exam 1 InClass Practice Questions DIRECTIONS
Stats for Strategy Exam 1 InClass Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check
More informationStats for Strategy Fall 2012 FirstDiscussion Handout: Stats Using Calculators and MINITAB
Stats for Strategy Fall 2012 FirstDiscussion Handout: Stats Using Calculators and MINITAB DIRECTIONS: Welcome! Your TA will help you apply your Calculator and MINITAB to review Business Stats, and will
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question
Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine
More informationStats Review Chapters 910
Stats Review Chapters 910 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationPaired 2 Sample ttest
Variations of the ttest: Paired 2 Sample 1 Paired 2 Sample ttest Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.
More informationChapter 4. Hypothesis Tests
Chapter 4 Hypothesis Tests 1 2 CHAPTER 4. HYPOTHESIS TESTS 4.1 Introducing Hypothesis Tests Key Concepts Motivate hypothesis tests Null and alternative hypotheses Introduce Concept of Statistical significance
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationCHAPTER 9 HYPOTHESIS TESTING
CHAPTER 9 HYPOTHESIS TESTING The TI83 Plus and TI84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationTesting Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
More information9.1 Basic Principles of Hypothesis Testing
9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the
More informationChapter 7 Notes  Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes  Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
More informationHypothesis. Testing Examples and Case Studies. Chapter 23. Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc.
Hypothesis Chapter 23 Testing Examples and Case Studies Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc. 23.1 How Hypothesis Tests Are Reported in the News 1. Determine the null hypothesis
More informationA) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777
Math 210  Exam 4  Sample Exam 1) What is the pvalue for testing H1: µ < 90 if the test statistic is t=1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that
More informationHomework 6 Solutions
Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Open book and note Calculator OK Multiple Choice 1 point each MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data.
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationGraphing calculators in teaching statistical pvalues to elementary statistics students
Graphing calculators in teaching statistical pvalues to elementary statistics students ABSTRACT Eric Benson American University in Dubai The statistical output of interest to most elementary statistics
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationConstruct a scatterplot for the given data. 2) x Answer:
Review for Test 5 STA 2023 spr 2014 Name Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents
More information6. Statistical Inference: Significance Tests
6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions
More informationConfidence Interval: pˆ = E = Indicated decision: < p <
Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STT315 Practice Ch 57 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed
More informationChapter 23 Inferences About Means
Chapter 23 Inferences About Means Chapter 23  Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300minute
More informationIntroduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationHypothesis Testing  One Mean
Hypothesis Testing  One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
More informationAP Statistics 2005 Scoring Guidelines
AP Statistics 2005 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a notforprofit membership association whose mission is to connect students to college
More informationHomework 5 Solutions
Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces
More informationChapter 8 Section 1. Homework A
Chapter 8 Section 1 Homework A 8.7 Can we use the largesample confidence interval? In each of the following circumstances state whether you would use the largesample confidence interval. The variable
More informationCHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING
CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationBasic Statistics Self Assessment Test
Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A sodadispensing machine fills 12ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation
More information5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
More informationHypothesis Testing. Bluman Chapter 8
CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 81 Steps in Traditional Method 82 z Test for a Mean 83 t Test for a Mean 84 z Test for a Proportion 85 2 Test for
More informationSTAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013
STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean
More informationChapter 7. Section Introduction to Hypothesis Testing
Section 7.1  Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine
More information8 6 X 2 Test for a Variance or Standard Deviation
Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the Pvalue method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 89 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the Pvalue for the indicated hypothesis test. 1) A
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More information2 Sample ttest (unequal sample sizes and unequal variances)
Variations of the ttest: Sample tail Sample ttest (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationUnderstanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation
Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of
More informationCase Study Call Centre Hypothesis Testing
is often thought of as an advanced Six Sigma tool but it is a very useful technique with many applications and in many cases it can be quite simple to use. Hypothesis tests are used to make comparisons
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More informationHypothesis Testing (unknown σ)
Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance
More informationSupplement 16B: Small Sample Wilcoxon Rank Sum Test
Supplement 16B: Small Sample Wilcoxon Rank Sum Test Hypothesis Testing Steps When the samples have fewer than 10 observations, it may not be appropriate to use the large sample Wilcoxon Rank Sum (MannWhitney)
More informationFINAL EXAM REVIEW  Fa 13
FINAL EXAM REVIEW  Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample
More informationUnit 27: Comparing Two Means
Unit 27: Comparing Two Means Prerequisites Students should have experience with onesample tprocedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One
More information82 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis
82 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative
More informationWhat are confidence intervals and pvalues?
What is...? series Second edition Statistics Supported by sanofiaventis What are confidence intervals and pvalues? Huw TO Davies PhD Professor of Health Care Policy and Management, University of St Andrews
More informationHypothesis Testing. Steps for a hypothesis test:
Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems  chapter 121 and 2 proportions for inference  Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationHypothesis testing for µ:
University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationCHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack
More informationMATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6
MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the PepsiCola Co. is interested
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationThe calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n
EXAMPLE 1: Paired ttest and tinterval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel
More informationSection 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities
Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and
More informationBasic concepts and introduction to statistical inference
Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence
More informationHypothesis Tests for 1 sample Proportions
Hypothesis Tests for 1 sample Proportions 1. Hypotheses. Write the null and alternative hypotheses you would use to test each of the following situations. a) A governor is concerned about his "negatives"
More informationLecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design
Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design Inference for Relationships: 2 Approaches CatQuan Relationship: 3 Designs Inference for Paired Design Paired
More information1 SAMPLE SIGN TEST. NonParametric Univariate Tests: 1 Sample Sign Test 1. A nonparametric equivalent of the 1 SAMPLE TTEST.
NonParametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A nonparametric equivalent of the 1 SAMPLE TTEST. ASSUMPTIONS: Data is nonnormally distributed, even after log transforming.
More informationCHANCE ENCOUNTERS. Making Sense of Hypothesis Tests. Howard Fincher. Learning Development Tutor. Upgrade Study Advice Service
CHANCE ENCOUNTERS Making Sense of Hypothesis Tests Howard Fincher Learning Development Tutor Upgrade Study Advice Service Oxford Brookes University Howard Fincher 2008 PREFACE This guide has a restricted
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationCONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationp1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.
Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationLecture 25. December 19, 2007. Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More informationAP Statistics 2011 Scoring Guidelines
AP Statistics 2011 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded in
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More information1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.
Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)
More informationMind on Statistics. Chapter 13
Mind on Statistics Chapter 13 Sections 13.113.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question
More informationPractice problems for Homework 12  confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1  confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
More informationAnalysis of categorical data: Course quiz instructions for SPSS
Analysis of categorical data: Course quiz instructions for SPSS The dataset Please download the Online sales dataset from the Download pod in the Course quiz resources screen. The filename is smr_bus_acd_clo_quiz_online_250.xls.
More informationFATFREE OR REGULAR PRINGLES: CAN TASTERS TELL THE DIFFERENCE?
CHAPTER 10 Hypothesis Tests Involving a Sample Mean or Proportion FATFREE OR REGULAR PRINGLES: CAN TASTERS TELL THE DIFFERENCE? Michael Newman/PhotoEdit When the makers of Pringles potato chips came out
More informationSample Size Planning, Calculation, and Justification
Sample Size Planning, Calculation, and Justification Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa
More informationBA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420
BA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420 1. Which of the following will increase the value of the power in a statistical test
More informationGood luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:
Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationIn the general population of 0 to 4yearolds, the annual incidence of asthma is 1.4%
Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given oneyear period for children 0 to 4 years of age whose mothers smoke in the home In the
More information9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Express the null hypothesis. 1) Which could be the null hypothesis for the true proportion
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationUnit 26: Small Sample Inference for One Mean
Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage
More informationSimulating ChiSquare Test Using Excel
Simulating ChiSquare Test Using Excel Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 524 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu
More informationp ˆ (sample mean and sample
Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics
More information6: Introduction to Hypothesis Testing
6: Introduction to Hypothesis Testing Significance testing is used to help make a judgment about a claim by addressing the question, Can the observed difference be attributed to chance? We break up significance
More information