Online 12 - Sections 9.1 and 9.2-Doug Ensley

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Online 12 - Sections 9.1 and 9.2-Doug Ensley"

Transcription

1 Student: Date: Instructor: Doug Ensley Course: MAT Applied Statistics - Ensley Assignment: Online 12 - Sections 9.1 and Does a P-value of give strong evidence or not especially strong evidence against the null hypothesis? C. The P-value does not give strong evidence B. The P-value gives strong evidence against the null hypothesis because it is D. The P-value does not give strong evidence 2. For (a) and (b), is the statement a null hypothesis or an alternative hypothesis? a. The proportion of adults who favor legalized gambling equals b. The proportion of all college students who are regular smokers is less than 0.28, the value it was ten years ago. c. Introducing notation for a parameter, state the hypotheses in (a) and (b) in terms of the parameter values. a. Is the statement in part (a) the null or alternative hypothesis? Null hypothesis Alternative hypothesis b. Is the statement in part (b) the null or alternative hypothesis? Alternative hypothesis Null hypothesis c. Choose the correct null and alternative hypotheses for part (a). A. H 0 : p > 0.40 H a : p = 0.40 D. H 0 : p < 0.40 H a : p = 0.40 B. H 0 : p = 0.40 H a : p 0.40 E. H 0 : p 0.40 H a : p = 0.40 C. H 0 : p = 0.40 H a : p < 0.40 F. H 0 : p = 0.40 H a : p = 0.40 Choose the correct null and alternative hypotheses for part (b). A. H 0 : p = 0.28 H a : p < 0.28 D. H 0 : p = 0.28 H a : p > 0.28 B. H 0 : p < 0.28 H a : p = 0.28 E. H 0 : p = 0.28 H a : p 0.28 C. H 0 : p > 0.28 H a : p = 0.28 F. H 0 : p 0.28 H a : p = Does a P-value of 0.36 give strong evidence or not especially strong evidence against the null hypothesis? 1 of 9 A. The P-value does not give strong evidence B. The P-value gives strong evidence against the null hypothesis because it is C. The P-value does not give strong evidence D. The P-value gives strong evidence against

2 4. A person who claims to be psychic says that the probability, p, that he can correctly predict the outcome of the astrological sign of a person in another room is greater than 1 / 12, the value that applies with random guessing. If we want to test this claim, we could use the data from an experiment in which he predicts the outcomes for n trials. State hypotheses for a significance test, letting the alternative hypothesis reflect the psychic's claim. Which of the following is the hypothesis test to be conducted? A. H 0 : p = 1 / 12 H a : p < 1 / 12 C. H 0 : p = 1 / 12 H a : p 1 / 12 E. H 0 : p > 1 / 12 H a : p = 1 / 12 B. H 0 : p > 1 / 12 H a : p = 1 / 12 D. H 0 : p 1 / 12 H a : p = 1 / 12 F. H 0 : p = 1 / 12 H a : p > 1 / Does a P-value of give strong evidence or not especially strong evidence against the null hypothesis? C. The P-value does not give strong evidence B. The P-value does not give strong evidence D. The P-value gives strong evidence against the null hypothesis because it is 6. For a test of H 0 : p = 0.50, the sample proportion is 0.36 based on a sample size of 100. Use this information to complete parts (a) through (c) below. a. Find the test statistic z. z = b. Find the P-value for H a : p < P-value = (Round to three decimal places as needed.) c. Does the P-value in (b) give much evidence against H 0? H 0. The P-value indicates that the null hypothesis is plausible. B. The P-value does not give strong evidence against H 0. The P-value indicates that the null hypothesis is not plausible. C. The P-value gives strong evidence against H 0. The P-value indicates that the null hypothesis is not plausible. D. The P-value does not give strong evidence against H 0. The P-value indicates that the null hypothesis is plausible. 2 of 9

3 7. Does a P-value of 0.35 give strong evidence or not especially strong evidence against the null hypothesis? C. The P-value gives strong evidence against the null hypothesis because it is B. The P-value does not give strong evidence D. The P-value does not give strong evidence 3 of 9

4 8. A study considered whether daily consumption of garlic could reduce tick bites. The study used a crossover design where half of the subjects used placebo first and garlic second and half the reverse. The authors described garlic being more effective with 33 subjects and placebo being more effective with 30 subjects. Does this suggest a real difference between garlic and placebo, or are the results consistent with random variation? Complete parts a through d below. a. Identify the relevant variable and parameter. A. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom placebo is more effective than garlic. B. The relevant variable is the population proportion, p, those for whom garlic is more effective than placebo. The parameter is whether garlic or placebo is more effective. C. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom garlic is more effective than placebo. b. State hypotheses for a large-sample two sided test. A. H 0 : p = 0.5 H a : p > 0.5 D. H 0 : p = 0.5 H a : p 0.5 B. H 0 : p > 0.5 H a : p = 0.5 E. H 0 : p < 0.5 H a : p = 0.5 C. H 0 : p = 0.5 H a : p < 0.5 F. H 0 : p 0.5 H a : p = 0.5 Check that sample size guidelines are satisfied for that test. No, the sample size was not large enough to make the inference. Yes, the sample size was large enough to make the inference. c. Find the test statistic value. z = (Round to two decimal places as needed.) d. Find the P-value. P-value = (Use the answer from part c to find this answer. Round to two decimal places as needed.) Interpret the P-value and state the conclusion in context. Use a significance level of A. The P-value is greater than the significance level; do not reject the null hypothesis. There is sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. B. The P-value is less than the significance level; reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. C. The P-value is less than the significance level; reject the null hypothesis. There is sufficient evidence that the proportion who think garlic more effective than a placebo is greater than 0.5. D. The P-value is greater than the significance level; do not reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than of 9

5 9. Does a P-value of give strong evidence or not especially strong evidence against the null hypothesis? the null hypothesis because it is C. The P-value gives strong evidence against B. The P-value does not give strong evidence D. The P-value does not give strong evidence 5 of 9

6 10. The 113 students in a class made blinded evaluations of pairs of cola drinks. For the comparison, cola A was preferred 65 times. In the population that this sample represents, is this strong evidence that a majority prefers one of the drinks? Refer to the following MINITAB printout. Test of p = 0.50 vs. not = 0.50 X N Sample p 95% CI Z-Value P-Value (0.483, 0.667) Complete parts (a) through (d) below. a. Explain how to get the test statistic value that MINITAB reports. A. The test statistic is calculated by taking the difference between the sample proportion and the null proportion and dividing it by the standard error. B. The test statistic is calculated by taking the difference between the sample proportion and the standard error and dividing it by the null proportion. C. The test statistic is calculated by taking the difference between the null proportion and the standard error and dividing it by the sample proportion. b. Explain how to get the "P-value". A. Use the value of the test statistic to find the right-tail probability from the standard normal distribution to the right of the test statistic value. B. Use the value of the test statistic to find the two-tail probability from the standard normal distribution to the left and right of the test statistic value. C. Use the value of the test statistic to find the left-tail probability from the standard normal distribution to the left of the test statistic value. Interpret it. A. The P-value tells us that if the alternate hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the null hypothesis. B. The P-value tells us that if the null hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the null hypothesis. C. The P-value tells us that if the null hypothesis were true, a proportion of of samples would fall at least as far as the sample data from the alternative hypothesis. c. Based on the result in (b), does it make sense to "accept H 0 "? Explain. A. Yes, we can "accept H 0 " since there is sufficient evidence that the alternative hypothesis is not true. B. No, but only because there is not enough evidence that H 0 is true. C. It does not make sense to accept the null hypothesis. It is possible that there is a real difference in the population that we are not detecting in our test, and we can never accept a null hypothesis. d. What does the 95% confidence interval tell you that the test does not? A. The significance test tells us a range of plausible values, whereas the 95% confidence interval tells us only that 0.50 is plausible. B. The 95% confidence interval tells us the exact value of the population proportion. C. The 95% confidence interval tells us the range of plausible values, whereas the test merely tells us that 0.50 is plausible. 6 of 9

7 11. Does a P-value of 0.43 give strong evidence or not especially strong evidence against the null hypothesis? the null hypothesis because it is C. The P-value does not give strong evidence B. The P-value does not give strong evidence D. The P-value gives strong evidence against 7 of 9

8 1. A. The P-value gives strong evidence 2. Null hypothesis Alternative hypothesis B. A. H 0 : p = 0.40 H a : p 0.40 H 0 : p = 0.28 H a : p < A. The P-value does not give strong evidence 4. F. H 0 : p = 1 / 12 H a : p > 1 / A. The P-value gives strong evidence C. The P-value gives strong evidence against H 0. The P-value indicates that the null hypothesis is not plausible. 7. B. The P-value does not give strong evidence 8. C. The relevant variable is whether garlic or placebo is more effective, and the parameter is the population proportion, p, those for whom garlic is more effective than placebo. D. H 0 : p = 0.5H a : p 0.5 Yes, the sample size was large enough to make the inference D. The P-value is greater than the significance level; do not reject the null hypothesis. There is not sufficient evidence that the proportion who think garlic more effective than a placebo is greater than C. The P-value gives strong evidence 10. A. The test statistic is calculated by taking the difference between the sample proportion and the null proportion and dividing it by the standard error. 8 of 9 B.

9 Use the value of the test statistic to find the two-tail probability from the standard normal distribution to the left and right of the test statistic value. B. The P-value tells us that if the null hypothesis were true, a proportion of sample data from the null hypothesis of samples would fall at least as far as the C. It does not make sense to accept the null hypothesis. It is possible that there is a real difference in the population that we are not detecting in our test, and we can never accept a null hypothesis. C. The 95% confidence interval tells us the range of plausible values, whereas the test merely tells us that 0.50 is plausible. 11. B. The P-value does not give strong evidence 9 of 9

Null Hypothesis H 0. The null hypothesis (denoted by H 0

Null Hypothesis H 0. The null hypothesis (denoted by H 0 Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

More information

Extending Hypothesis Testing. p-values & confidence intervals

Extending Hypothesis Testing. p-values & confidence intervals Extending Hypothesis Testing p-values & confidence intervals So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by

More information

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS

Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Stats for Strategy Exam 1 In-Class Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check

More information

Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB

Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB Stats for Strategy Fall 2012 First-Discussion Handout: Stats Using Calculators and MINITAB DIRECTIONS: Welcome! Your TA will help you apply your Calculator and MINITAB to review Business Stats, and will

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine

More information

Stats Review Chapters 9-10

Stats Review Chapters 9-10 Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

Paired 2 Sample t-test

Paired 2 Sample t-test Variations of the t-test: Paired 2 Sample 1 Paired 2 Sample t-test Suppose we are interested in the effect of different sampling strategies on the quality of data we recover from archaeological field surveys.

More information

Chapter 4. Hypothesis Tests

Chapter 4. Hypothesis Tests Chapter 4 Hypothesis Tests 1 2 CHAPTER 4. HYPOTHESIS TESTS 4.1 Introducing Hypothesis Tests Key Concepts Motivate hypothesis tests Null and alternative hypotheses Introduce Concept of Statistical significance

More information

Mind on Statistics. Chapter 12

Mind on Statistics. Chapter 12 Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference

More information

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures. Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

More information

CHAPTER 9 HYPOTHESIS TESTING

CHAPTER 9 HYPOTHESIS TESTING CHAPTER 9 HYPOTHESIS TESTING The TI-83 Plus and TI-84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE

More information

Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

More information

Testing Hypotheses About Proportions

Testing Hypotheses About Proportions Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine

More information

9.1 Basic Principles of Hypothesis Testing

9.1 Basic Principles of Hypothesis Testing 9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the

More information

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so: Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

More information

Hypothesis. Testing Examples and Case Studies. Chapter 23. Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc.

Hypothesis. Testing Examples and Case Studies. Chapter 23. Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc. Hypothesis Chapter 23 Testing Examples and Case Studies Copyright 2005 Brooks/Cole, a division of Thomson Learning, Inc. 23.1 How Hypothesis Tests Are Reported in the News 1. Determine the null hypothesis

More information

A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777

A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 Math 210 - Exam 4 - Sample Exam 1) What is the p-value for testing H1: µ < 90 if the test statistic is t=-1.592 and n=8? A) 0.1554 B) 0.0557 C) 0.0750 D) 0.0777 2) The owner of a football team claims that

More information

Homework 6 Solutions

Homework 6 Solutions Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Open book and note Calculator OK Multiple Choice 1 point each MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the mean for the given sample data.

More information

Chapter 8. Hypothesis Testing

Chapter 8. Hypothesis Testing Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

More information

Graphing calculators in teaching statistical p-values to elementary statistics students

Graphing calculators in teaching statistical p-values to elementary statistics students Graphing calculators in teaching statistical p-values to elementary statistics students ABSTRACT Eric Benson American University in Dubai The statistical output of interest to most elementary statistics

More information

Hypothesis testing S2

Hypothesis testing S2 Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

More information

Construct a scatterplot for the given data. 2) x Answer:

Construct a scatterplot for the given data. 2) x Answer: Review for Test 5 STA 2023 spr 2014 Name Given the linear correlation coefficient r and the sample size n, determine the critical values of r and use your finding to state whether or not the given r represents

More information

6. Statistical Inference: Significance Tests

6. Statistical Inference: Significance Tests 6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions

More information

Confidence Interval: pˆ = E = Indicated decision: < p <

Confidence Interval: pˆ = E = Indicated decision: < p < Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created

More information

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935) Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STT315 Practice Ch 5-7 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) The length of time a traffic signal stays green (nicknamed

More information

Chapter 23 Inferences About Means

Chapter 23 Inferences About Means Chapter 23 Inferences About Means Chapter 23 - Inferences About Means 391 Chapter 23 Solutions to Class Examples 1. See Class Example 1. 2. We want to know if the mean battery lifespan exceeds the 300-minute

More information

Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

More information

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

More information

Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

More information

AP Statistics 2005 Scoring Guidelines

AP Statistics 2005 Scoring Guidelines AP Statistics 2005 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

Homework 5 Solutions

Homework 5 Solutions Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces

More information

Chapter 8 Section 1. Homework A

Chapter 8 Section 1. Homework A Chapter 8 Section 1 Homework A 8.7 Can we use the large-sample confidence interval? In each of the following circumstances state whether you would use the large-sample confidence interval. The variable

More information

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

More information

Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests. Learning objectives Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

More information

Basic Statistics Self Assessment Test

Basic Statistics Self Assessment Test Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A soda-dispensing machine fills 12-ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation

More information

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

More information

Hypothesis Testing. Bluman Chapter 8

Hypothesis Testing. Bluman Chapter 8 CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 8-1 Steps in Traditional Method 8-2 z Test for a Mean 8-3 t Test for a Mean 8-4 z Test for a Proportion 8-5 2 Test for

More information

STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013

STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico. Fall 2013 STAT 145 (Notes) Al Nosedal anosedal@unm.edu Department of Mathematics and Statistics University of New Mexico Fall 2013 CHAPTER 18 INFERENCE ABOUT A POPULATION MEAN. Conditions for Inference about mean

More information

Chapter 7. Section Introduction to Hypothesis Testing

Chapter 7. Section Introduction to Hypothesis Testing Section 7.1 - Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine

More information

8 6 X 2 Test for a Variance or Standard Deviation

8 6 X 2 Test for a Variance or Standard Deviation Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 8-9 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the P-value for the indicated hypothesis test. 1) A

More information

Example Hypotheses. Chapter 8-2: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking

Example Hypotheses. Chapter 8-2: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking Chapter 8-2: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or

More information

2 Sample t-test (unequal sample sizes and unequal variances)

2 Sample t-test (unequal sample sizes and unequal variances) Variations of the t-test: Sample tail Sample t-test (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing

More information

Name: Date: Use the following to answer questions 3-4:

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

More information

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of

More information

Case Study Call Centre Hypothesis Testing

Case Study Call Centre Hypothesis Testing is often thought of as an advanced Six Sigma tool but it is a very useful technique with many applications and in many cases it can be quite simple to use. Hypothesis tests are used to make comparisons

More information

Hypothesis Testing I

Hypothesis Testing I ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),

More information

Hypothesis Testing (unknown σ)

Hypothesis Testing (unknown σ) Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance

More information

Supplement 16B: Small Sample Wilcoxon Rank Sum Test

Supplement 16B: Small Sample Wilcoxon Rank Sum Test Supplement 16B: Small Sample Wilcoxon Rank Sum Test Hypothesis Testing Steps When the samples have fewer than 10 observations, it may not be appropriate to use the large sample Wilcoxon Rank Sum (Mann-Whitney)

More information

FINAL EXAM REVIEW - Fa 13

FINAL EXAM REVIEW - Fa 13 FINAL EXAM REVIEW - Fa 13 Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. 1) The temperatures of eight different plastic spheres. 2) The sample

More information

Unit 27: Comparing Two Means

Unit 27: Comparing Two Means Unit 27: Comparing Two Means Prerequisites Students should have experience with one-sample t-procedures before they begin this unit. That material is covered in Unit 26, Small Sample Inference for One

More information

8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis

8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis 8-2 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative

More information

What are confidence intervals and p-values?

What are confidence intervals and p-values? What is...? series Second edition Statistics Supported by sanofi-aventis What are confidence intervals and p-values? Huw TO Davies PhD Professor of Health Care Policy and Management, University of St Andrews

More information

Hypothesis Testing. Steps for a hypothesis test:

Hypothesis Testing. Steps for a hypothesis test: Hypothesis Testing Steps for a hypothesis test: 1. State the claim H 0 and the alternative, H a 2. Choose a significance level or use the given one. 3. Draw the sampling distribution based on the assumption

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Sample Practice problems - chapter 12-1 and 2 proportions for inference - Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Hypothesis testing for µ:

Hypothesis testing for µ: University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative

More information

Statistical Inference and t-tests

Statistical Inference and t-tests 1 Statistical Inference and t-tests Objectives Evaluate the difference between a sample mean and a target value using a one-sample t-test. Evaluate the difference between a sample mean and a target value

More information

CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS

CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack

More information

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6

MATH 214 (NOTES) Math 214 Al Nosedal. Department of Mathematics Indiana University of Pennsylvania. MATH 214 (NOTES) p. 1/6 MATH 214 (NOTES) Math 214 Al Nosedal Department of Mathematics Indiana University of Pennsylvania MATH 214 (NOTES) p. 1/6 "Pepsi" problem A market research consultant hired by the Pepsi-Cola Co. is interested

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n

The calculations lead to the following values: d 2 = 46, n = 8, s d 2 = 4, s d = 2, SEof d = s d n s d n EXAMPLE 1: Paired t-test and t-interval DBP Readings by Two Devices The diastolic blood pressures (DBP) of 8 patients were determined using two techniques: the standard method used by medical personnel

More information

Section 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities

Section 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and

More information

Basic concepts and introduction to statistical inference

Basic concepts and introduction to statistical inference Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence

More information

Hypothesis Tests for 1 sample Proportions

Hypothesis Tests for 1 sample Proportions Hypothesis Tests for 1 sample Proportions 1. Hypotheses. Write the null and alternative hypotheses you would use to test each of the following situations. a) A governor is concerned about his "negatives"

More information

Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design

Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design Lecture 28: Chapter 11, Section 1 Categorical & Quantitative Variable Inference in Paired Design Inference for Relationships: 2 Approaches CatQuan Relationship: 3 Designs Inference for Paired Design Paired

More information

1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

More information

CHANCE ENCOUNTERS. Making Sense of Hypothesis Tests. Howard Fincher. Learning Development Tutor. Upgrade Study Advice Service

CHANCE ENCOUNTERS. Making Sense of Hypothesis Tests. Howard Fincher. Learning Development Tutor. Upgrade Study Advice Service CHANCE ENCOUNTERS Making Sense of Hypothesis Tests Howard Fincher Learning Development Tutor Upgrade Study Advice Service Oxford Brookes University Howard Fincher 2008 PREFACE This guide has a restricted

More information

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment

More information

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,

More information

Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

More information

p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.

p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0. Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested

More information

Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2. Hypothesis testing Power Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

More information

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

More information

Lecture 25. December 19, 2007. Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 25. December 19, 2007. Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

AP Statistics 2011 Scoring Guidelines

AP Statistics 2011 Scoring Guidelines AP Statistics 2011 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010

MONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010 MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times

More information

1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.

1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data. Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)

More information

Mind on Statistics. Chapter 13

Mind on Statistics. Chapter 13 Mind on Statistics Chapter 13 Sections 13.1-13.2 1. Which statement is not true about hypothesis tests? A. Hypothesis tests are only valid when the sample is representative of the population for the question

More information

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems. Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

More information

Analysis of categorical data: Course quiz instructions for SPSS

Analysis of categorical data: Course quiz instructions for SPSS Analysis of categorical data: Course quiz instructions for SPSS The dataset Please download the Online sales dataset from the Download pod in the Course quiz resources screen. The filename is smr_bus_acd_clo_quiz_online_250.xls.

More information

FAT-FREE OR REGULAR PRINGLES: CAN TASTERS TELL THE DIFFERENCE?

FAT-FREE OR REGULAR PRINGLES: CAN TASTERS TELL THE DIFFERENCE? CHAPTER 10 Hypothesis Tests Involving a Sample Mean or Proportion FAT-FREE OR REGULAR PRINGLES: CAN TASTERS TELL THE DIFFERENCE? Michael Newman/PhotoEdit When the makers of Pringles potato chips came out

More information

Sample Size Planning, Calculation, and Justification

Sample Size Planning, Calculation, and Justification Sample Size Planning, Calculation, and Justification Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name: Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test. Neyman-Pearson lemma 9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

More information

In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%

In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4% Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the

More information

9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Express the null hypothesis. 1) Which could be the null hypothesis for the true proportion

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Hypothesis Testing or How to Decide to Decide Edpsy 580

Hypothesis Testing or How to Decide to Decide Edpsy 580 Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Hypothesis Testing or How to Decide to Decide

More information

Unit 26: Small Sample Inference for One Mean

Unit 26: Small Sample Inference for One Mean Unit 26: Small Sample Inference for One Mean Prerequisites Students need the background on confidence intervals and significance tests covered in Units 24 and 25. Additional Topic Coverage Additional coverage

More information

Simulating Chi-Square Test Using Excel

Simulating Chi-Square Test Using Excel Simulating Chi-Square Test Using Excel Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 524 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

More information

p ˆ (sample mean and sample

p ˆ (sample mean and sample Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics

More information

6: Introduction to Hypothesis Testing

6: Introduction to Hypothesis Testing 6: Introduction to Hypothesis Testing Significance testing is used to help make a judgment about a claim by addressing the question, Can the observed difference be attributed to chance? We break up significance

More information