UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00

Size: px
Start display at page:

Download "UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00"

Transcription

1 UNIT TWO POLYNOMIALS MATH 421A 22 HOURS Revised May 2, 00 38

2 UNIT 2: POLYNOMIALS Previous Knowledge: With the implementation of APEF Mathematics at the intermediate level, students should be able to: - Grade 7 - addition and subtraction of first degree terms - Grade 7 - use algebra tiles to add and subtract polynomials and multiply a polynomial by a scalar - Grade 9 - factor algebraic expressions with common monomial factors - Grade 7 - solve simple linear equations - Grade 8 - solve and verify linear equations algebraically - Grade 8 - create and solve problems using linear equations - Grade 9 - solve and verify linear equations algebraically - Grade 9 - demonstrate an understanding of and apply the exponent laws for integral exponents Overview: - a brief review of the exponent laws - classification and operations on polynomials - factoring polynomials - solving linear equations - solving literal equations 39

3 SCO: By the end of grade 10 students will be expected to: A6 apply properties of numbers when operating upon and expressing equations Elaboration- Instructional Strategies/Suggestions Exponent Laws (1.7) Review exponent laws including introduction to zero and negative exponents. When developing zero exponent law, show students that ( x 2 ) ( x 0 ) = x 2. Then ask students to fill in the blank in the following: ( x 2 )( ) = x 2. Students will recognize that the blank must be 1 and thus x 0 = 1. Another method to illustrate this could be : You may also wish to expand the left side of this equation and reduce. Students should see that anything divided by itself equals one so therefore x 0 = 1. B23 understand the relationship that that exists between the arithmetic operations and the operations on exponents or logarithms B30 understand and use zero and negative exponents (fractional exponents optional) The same principle applies when working with negative exponents. Using the exponent laws, we know that This is an excellent opportunity to use TI-83 to explore its use in working with exponents. For example when a student evaluates 3-2 they would enter 3^-2 (use the gray minus sign)into the calculator the answer is This can be changed to common fraction form by pressing math Frac enter enter. The display on the screen shows 1/9 as the equivalent fraction. Note: Students may want to simplify numerical base problems like this: = 4 5. The students should explore problems like this to convince themselves that the law does apply here. Optional Rational exponents may be explored. 40

4 Worthwhile Tasks for Instruction and/or Assessment Exponent Laws (1.7) Journal Write out all of the exponent laws. For each law, include an example problem and its solution. Suggested Resources Exponent Laws Mathpower 10 p. 33 #1-21, odd 85,86 Technology Using the TI-83, solve the following in common fraction form: a) (1/2) 3 b) (-2) -4 c) (3) -3 d) (-2/3) 3 Journal Explore problems such as: and justify why the answer is 2 6 and not 4 6. Application Calculate the volume of air in a tennis ball container with diameter of 8 cm and a height of 24 cm, assuming the container has 3 tennis balls in it. Rational Exponent - Optional Mathpower 10 p

5 SCO: By the end of grade 10 students will be expected to: B1 model(with concrete materials and pictorial representations) and express the relationship between arithmetic operations and operations on algebraic expressions and equations B3 use concrete materials, pictorial representations and algebraic symbolism to perform operations on polynomials Elaboration - Instructional Strategies/Suggestions Polynomials (3.1)(3.3)(3.4) a) Classify by number of terms and degree: < A mathematical expression can be named by the number of terms which it contains. (ie. monomial, binomial, trinomial, polynomial) < An expression can also be classified by its degree. The degree of a monomial is determined by the sum of the exponents of the variable bases. The degree of a polynomial is determined by the highest degree term. A constant term is considered to have a degree of 0. (Note: The degree cannot be determined until the expression is simplified.) b) Operations on Polynomials: i) Review the concept of like terms and combining like terms through addition and subtraction. Algebra tiles should be used to demonstrate like terms. Students will have been previously exposed to algebra tiles. ii) Review multiplication of polynomials. This topic will rely on the students knowledge of the exponent laws. Again, algebra tiles should be used. Multiplication will include product of two trinomials and a binomial cubed but not beyond these problems. Note: Division of monomials has been previously covered under exponent laws. Invite students to discover the use of algebra tiles in multiplication of polynomials. An example is: (2x + 1)(x! 2) 42

6 Worthwhile Tasks for Instruction and/or Assessment Polynomials (3.1)(3.3)(3.4) a) Classify by number of terms and degree Journal/Communication A student has missed today s class. You are responsible to explain the degree of a monomial or a polynomial and the names of polynomials according to the number of terms. Write a paragraph explaining today s lesson and include examples for each of the following polynomials: a) binomial, degree three b) trinomial, degree four c) four terms, degree six d) monomial, degree five b) Operations on Polynomials Activity Like Term Memory Game Make cards with monomials on them - be sure that each card has a like term. The number of cards that you need will depend on the size of your class and the number of games necessary (a minimum of 20 cards per game is suggested). Students can play in pairs or small groups. Each student takes a turn flipping over two cards. If they turn over two like terms then they will pick up the cards, if not the cards will be turned back over. The winner is the student with the most pairs! Find cards in the Appendix. Manipulatives Have students model each of the following problems using algebra tiles and then state the product. 1. 2x (x + 1) 2. (x + 2)(x - 1) 3. (4x - 1) (x + 2) 4. ( x + 6) (2x + 1) An example with 2 variables is: (x + 1)(y!2) = xy!2x + y!2 Suggested Resources Polynomials a) Classify by number of terms and degree Mathpower 10, p. 102 # 1-8 b) Operations on Polynomials Mathpower, p. 102 #27-51 odd Problem Solving Strategies Math Power 10 p.105 #1-3,16-19 Mathpower 10, p.108 #44-54 even #59-65 odd #79-83 odd Applications p.109 # 87,88,90,92 p.112 #9-19 odd #31-37 odd #43-47 Applications p.113 #

7 SCO: By the end of grade 10 students will be expected to: B3 use concrete materials, pictorial representations and algebraic symbolism to perform operations on polynomials Elaboration -Instructional Strategies/Suggestions Factoring Polynomials (3.6)(3.8) Note: Algebra tiles should be used to assist students in understanding each of the following types of factoring methods. a) Greatest Common Factor - Remove a numerical and/or algebraic expression from any polynomial. This topic will be a review from grade 9. Examples: 2x(x - 3) C21 expand and factor polynomial expressions using perimeter and area models x (a + b) + y (a + b) = (a + b)(x + y) b) Factor by Grouping in Pairs Students should realize that this is directly related to greatest common factoring. When given a four term polynomial, grouping the terms in pairs will often allow the removal of a common factor from each pair, leaving a common binomial factor. Examples: ac - ad + bc - bd = a(c - d) + b(c - d) = (c - d) (a + b) 2x 3-2x 2 y + xy - y 2 = 2x 2 ( x - y) + y(x - y) = (x - y) (2x 2 + y) c) Trinomials of the form ax 2 +bx + c, where a = 1 This topic should be introduced with algebra tiles. Making rectangles with tiles will reveal the factors of the expression as the dimensions of each side of the figure. Refer to your algebra tile manual for instructions and examples. Mathpower 10, p is a great introduction to tiles and p. 125 shows one example of factoring this type of trinomial with tiles. Math 10, p. 362 gives an example for factoring using tiles. Students should now be capable of factoring mentally. This will involve finding the two numbers whose product is equal to the last term of the trinomial and whose sum is equal to the middle term. Invite students to construct a rectangle representing x 2-5x

8 Worthwhile Tasks for Instruction and/or Assessment Suggested Resources Factoring Polynomials (3.6)(3.8) a) Greatest Common Factoring Pencil/Paper Write a trinomial with different numerical coefficients that has a greatest common factor of 2xy. Write your trinomial in both unfactored and factored form. b) Factor by Grouping in Pairs Use algebra tiles to formulate and construct models of the following expression. State the dimensions of the rectangle formed. (x 2 + x) + (xy + y) c) Trinomials of the form ax 2 +bx + c, where a = 1 Journal Use pictorial representations of each expression to construct rectangles and determine their dimensions. 1) x 2 + 7x + 6 2) y 2 + 6y + 9 3) x 2-2x - 3 How would you determine the first term in each factor? Generate criteria that seems to describe the pattern between the last terms in the factors and the last term in the trinomial? Examine and discuss the pattern between the last term of the factors and the middle term of the trinomial? Explain why m 2 + 9m + 6 can t be factored. Write three other trinomials that don t have integral factors. Pencil/Paper The trinomial x 2 + kx + 24 has eight different pairs of binomial factors. Investigate the possible values for k. Manipulatives Place the tiles to represent x 2 + 5x + 4 on the overhead projector and invite a volunteer to arrange these tiles into a rectangle. What are the dimensions of the rectangle? Students should recognize that these are the factors of the trinomial. Factoring Polynomials a) Greatest Common Factoring Mathpower10, p. 120 #11-29 odd odd b) Factor by Grouping in Pairs Mathpower 10, p. 120 # c) Trinomials ax 2 + bx + c, a = 1 Mathpower 10, p. 127 #19-55 odd, 64 Problem Solving Strategies Math Power 10 p.115 #1,3,5 45

9 SCO: By the end of grade 10 students will be expected to: Elaboration - Instructional Strategies/Suggestions d) Trinomials of the form ax 2 +bx + c, where a > 1 (3.9) Again, algebra tiles should be used to show how to factor these trinomials concretely. Challenge students to create a rectangle using tiles for 2x 2-5x + 3 B3 use concrete materials, pictorial representations and algebraic symbolism to perform operations on polynomials C21 expand and factor polynomial expressions using perimeter and area models After students are comfortable with the tiles, you can move to symbolic factoring. There are at least two different approaches to this: 1) Breaking up the Middle Term(decomposition) - This process is similar to factoring ax 2 +bx + c, where a = 1. In factoring ax 2 +bx + c, where a > 1, follow these steps: < Find the product of a and c. < Find the factors of a and c that add or subtract to get the value of b. < Use these factors to replace the middle term to obtain a four termed expression. < Factor by grouping in pairs Example: 6x x - 5 ac =!30 6x 2-2x + 15x - 5 b = 13 2x(3x - 1) + 5(3x - 1) the two factors are chosen from (2x + 5)(3x - 1)!1, 30 1,!30!2, 15 2,!15!3, 10 3,!10!5, 6 5,!6 46

10 Worthwhile Tasks for Instruction and/or Assessment Suggested Resources Factoring Polynomials (3.9) d) Trinomials of the form ax 2 +bx + c, where a > 1 Manipulatives Encourage students to model a trinomial such as 2x 2 + 5x + 2 with algebra tiles. By finding the dimensions of the rectangle, the students will discover the factors of the trinomial. d) Trinomials ax 2 + bx + c, a >1 Mathpower 10, p. 130 #13-49 odd Applications p.131 #51,53 Pencil/Paper Construct a pictorial rectangle for each trinomial and state their dimensions. a) 2x 2-11x + 15 b) 4x 2-17x - 15 Factor by Guess and Check: c) 2x x + 15 d) 2x 2-11x + 12 c) 5x 2-7x - 6 d) 5x x - 4 Problem Solving Strategies Math Power 10 p.123 #1(a),5,6,9 Factor the following by breaking up the middle term(decomposition): a) 6x x + 3 b) 3x 2-5x

11 SCO: By the end of grade 10 students will be expected to: C21 expand and factor polynomial expressions using perimeter and area models Elaboration - Instructional Strategies/Suggestions 2) Guess and Check - Trinomials of the form ax 2 +bx + c, where a > 1, can be factored by looking at all combinations of binomial factors that when expanded will contain the first term and the last term of the trinomial. One of these pairs of factors will also produce the middle term when expanded. This can be easy if there are only a few factors but can be very time consuming for problems with a number of possible factors. Factor the following by Guess and Check: 2x 2 + x! 6 All of the following factors will give the first and last terms but only one pair will also give the middle term. (2x + 1) (x! 6) (2x! 1 ) (x + 6) (2x + 3) (x! 2) (2x! 3) (x + 2) The correct pair is (2x! 3) (x + 2). Verify by multiplication or using algebra tiles. e) Difference of Squares (3.10) Introduce this pattern for factoring by using algebra tiles. The students will need to complete the rectangle by adding zeros and then they will be able to determine the factors by finding the dimensions. Students should be able to recognize which factoring questions are a difference of squares by looking for two perfect squares that are being subtracted. f) Perfect Square Trinomials To identify these special products, the trinomial must meet the following criteria: < Are the first and last terms perfect squares and the sign of the last term positive? < Is the middle term equal to twice the product of the square roots of the first and last terms? Therefore the factors are two identical binomials (a binomial squared). Again, these can be explored through the use of algebra tiles. 48

12 Worthwhile Tasks for Instruction and/or Assessment Suggested Resources e) Difference of Squares (3.10) Activity Have students draw a table with binomial conjugates in the first column, their expanded form in the second column and the simplified expression in the third column. Use these binomials for the first column: e) Difference of Squares Mathpower 10, p. 133 # 1-11 odd After the students have completed their charts, have them answer the following questions: What do you notice about each expression in the third column? Observe and describe the pattern developed in the third column. f) Perfect Square Trinomial Journal/Communication Explain how you can recognize a perfect square trinomial. Activity Make a three column chart for expanding binomial squares. In the first column, write the two identical factors. In the second column, use FOIL to determine the four terms. In the third column, write the simplified form. After the chart is completed, examine the columns and look for a pattern. Can you find any pattern for multiplying a binomial squared? How would this help you in factoring a perfect square trinomial? f) Perfect Square Trinomials Mathpower 10, p. 133 #13-25 odd p.133 #29-43 odd 49

13 SCO: By the end of grade 10 students will be expected to: B1 model(with concrete materials and pictorial representations) and express the relationship between arithmetic operations and operations on algebraic expressions and equations Elaboration - Instructional Strategies/Suggestions Solving Linear Equations (p.194) In order for students to be able to solve quadratic equations, they must first review solving linear equations. This will involve both one-step and multi-step equations. Students must understand the concept of keeping the equation balanced by performing the same operation to each side of the equation. This can be easily demonstrated through the use of algebra tiles. Mathpower 10 gives a pictorial explanation of using tiles to solve linear equations on p Your algebra tile manual will also contain examples of these equations. {page numbers to be included when available.} B7 understand the relationships that exist between arithmetic operations used when solving equations and inequalities add!x and!1 to both sides Solving Literal Equations (4.9) This topic will assist students later in the course when they are required to solve an equation for y in order to graph manually or with the TI-83. The process is the same as solving linear equations except the students will be working with more than one variable. Example: Solve the following equation for t : I = p r t I = p r t p r p r I = t p r 50

14 Worthwhile Tasks for Instruction and/or Assessment Suggested Resources Solving Linear Equations (p.194) Research/Presentation The air temperature drops by 1 0 C for every 100m increase in altitude. If the air temperature at sea level is 20 0 C, a) write an equation describing the situation b) What would the temperature be at the top of the CN Tower? Do some research to find the tower s height. c) What would be the temperature outside a jet at an altitude of 11,000m? Solving Linear Equations These have already been done in unit one but it wouldn t hurt to do a few more. Technology Solve some of the problems on p.194 Green #1 with the TI- 83. Ex. 3x + 2 = 11 Press 2 nd calc 5:intersect and press enter 3 times We can see that at an x value of 3" 3x + 2 equals 11. Solving Literal Equations (4.9) Pencil/Paper/Research Do some reading on the life of a famous mathematician or scientist and present a short history of their life along with a formula that they developed. Initiate a class discussion on how that formula can be re-arranged various ways. Research Research a famous mathematician and bring out some interesting features about their life. Also discuss in the paper the person s major contributions to mathematics. Solving Literal Equations Mathpower 10, p mathhist/chronolgy.html Problem Solving Strategies Math Power 10 p.143 #1,5 51

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Learning Objectives 9.2. Media Run Times 9.3

Learning Objectives 9.2. Media Run Times 9.3 Unit 9 Table of Contents Unit 9: Factoring Video Overview Learning Objectives 9.2 Media Run Times 9.3 Instructor Notes 9.4 The Mathematics of Factoring Polynomials Teaching Tips: Conceptual Challenges

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Algebra II New Summit School High School Diploma Program

Algebra II New Summit School High School Diploma Program Syllabus Course Description: Algebra II is a two semester course. Students completing this course will earn 1.0 unit upon completion. Required Materials: 1. Student Text Glencoe Algebra 2: Integration,

More information

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 0390 - Intermediate Algebra Review for Pretest MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

More information

Interpretation of Test Scores for the ACCUPLACER Tests

Interpretation of Test Scores for the ACCUPLACER Tests Interpretation of Test Scores for the ACCUPLACER Tests ACCUPLACER is a trademark owned by the College Entrance Examination Board. Visit The College Board on the Web at: www.collegeboard.com/accuplacer

More information

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

More information

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa. IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for

More information

Blue Pelican Alg II First Semester

Blue Pelican Alg II First Semester Blue Pelican Alg II First Semester Teacher Version 1.01 Copyright 2009 by Charles E. Cook; Refugio, Tx (All rights reserved) Alg II Syllabus (First Semester) Unit 1: Solving linear equations and inequalities

More information

Solving Quadratic Equations by Factoring

Solving Quadratic Equations by Factoring 4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

More information

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

8-5 Using the Distributive Property. Use the Distributive Property to factor each polynomial. 1. 21b 15a SOLUTION:

8-5 Using the Distributive Property. Use the Distributive Property to factor each polynomial. 1. 21b 15a SOLUTION: Use the Distributive Property to factor each polynomial. 1. 1b 15a The greatest common factor in each term is 3.. 14c + c The greatest common factor in each term is c. 3. 10g h + 9gh g h The greatest common

More information

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation.

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation. Title: Another Way of Factoring Brief Overview: Students will find factors for quadratic equations with a leading coefficient of one. The students will then graph these equations using a graphing calculator

More information

Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

More information

Problem of the Month: Digging Dinosaurs

Problem of the Month: Digging Dinosaurs : The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

More information

1.3. Maximum or Minimum of a Quadratic Function. Investigate A

1.3. Maximum or Minimum of a Quadratic Function. Investigate A < P1-6 photo of a large arched bridge, similar to the one on page 292 or p 360-361of the fish book> Maximum or Minimum of a Quadratic Function 1.3 Some bridge arches are defined by quadratic functions.

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

Primes. Name Period Number Theory

Primes. Name Period Number Theory Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

More information

For example, estimate the population of the United States as 3 times 10⁸ and the

For example, estimate the population of the United States as 3 times 10⁸ and the CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Diablo Valley College Catalog 2014-2015

Diablo Valley College Catalog 2014-2015 Mathematics MATH Michael Norris, Interim Dean Math and Computer Science Division Math Building, Room 267 Possible career opportunities Mathematicians work in a variety of fields, among them statistics,

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

More information

Virginia Placement Test Practice Questions and Answers

Virginia Placement Test Practice Questions and Answers Virginia Placement Test Practice Questions and Answers Table of Contents Practice Problems for UNIT 1 Operations with Positive Fractions... 1 Practice Problems for UNIT Operations with Positive Decimals

More information

COMPASS Placement Test Preparation Packet

COMPASS Placement Test Preparation Packet COMPASS Placement Test Preparation Packet For preparing to take the COMPASS Math Placement Test Funded through the Gulf-Coast PASS Grant Table of Contents: 1. The COMPASS Test 1 The COMPASS Test 3 Test

More information

Virginia Placement Test Practice Questions and Answers

Virginia Placement Test Practice Questions and Answers Virginia Placement Test Practice Questions and Answers Table of Contents Practice Problems for MTE Operations with Positive Fractions... Practice Problems for MTE Operations with Positive Decimals and

More information

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old. How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

Just What Do You Mean? Expository Paper Myrna L. Bornemeier

Just What Do You Mean? Expository Paper Myrna L. Bornemeier Just What Do You Mean? Expository Paper Myrna L. Bornemeier In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics

More information

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer MATH Degree: A.S. AS-T for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 916-558-2202 Associate in Science Degree Program Information The mathematics program provides

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Algebra II and Trigonometry

Algebra II and Trigonometry Algebra II and Trigonometry Textbooks: Algebra 2: California Publisher: McDougal Li@ell/Houghton Mifflin (2006 EdiHon) ISBN- 13: 978-0618811816 Course descriphon: Algebra II complements and expands the

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

Mathematics Program Description Associate in Arts Degree Program Outcomes Required Courses............................. Units

Mathematics Program Description Associate in Arts Degree Program Outcomes Required Courses............................. Units Program Description Successful completion of this maj will assure competence in mathematics through differential and integral calculus, providing an adequate background f employment in many technological

More information

PoW-TER Problem Packet A Phone-y Deal? (Author: Peggy McCloskey)

PoW-TER Problem Packet A Phone-y Deal? (Author: Peggy McCloskey) PoW-TER Problem Packet A Phone-y Deal? (Author: Peggy McCloskey) 1. The Problem: A Phone-y Deal? [Problem #3280] With cell phones being so common these days, the phone companies are all competing to earn

More information

College Readiness Math MOOC

College Readiness Math MOOC College Readiness Math MOOC Instructor Information: Dr. Jennifer Kosiak, jkosiak@uwlax.edu General email: mathmooc@uwlax.edu Mathematics Department, University of Wisconsin- La Crosse Description: The

More information

You know from calculus that functions play a fundamental role in mathematics.

You know from calculus that functions play a fundamental role in mathematics. CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

More information

RANGER COLLEGE Math 1314 College Algebra - ONLINE

RANGER COLLEGE Math 1314 College Algebra - ONLINE RANGER COLLEGE Math 1314 College Algebra - ONLINE ONLINE Instructor: Kimberly Calton Office Location: Early Campus Office Hours: Otherwise by appointment only Cell Phone: 512-914-8883 E-Mail: kcalton@rangercollege.edu

More information

System of First Order Differential Equations

System of First Order Differential Equations CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level SS4 of challenge: B SS4 Evaluating statements about length and length areand area Mathematical goals Starting points Materials required Time needed To help learners to: understand concepts of length

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators

04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators 04 Mathematics CO-SG-FLD004-03 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal

More information

NOT AN OFFICIAL SCORE REPORT. Summary of Results

NOT AN OFFICIAL SCORE REPORT. Summary of Results From SAT TEST MARCH 8, 214 Summary of Results Page 1 of 1 Congratulations on taking the SAT Reasoning Test! You re showing colleges that you are serious about getting an education. The SAT is one indicator

More information

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana Teacher Annotated Edition Study Notebook Consultant: Lynn T. Havens SM Director of Project CRISS Kalispell, Montana i_sn_c1fmtwe_893629.indd i 3/16/09 9:17:03 PM Copyright by The McGraw-Hill Companies,

More information

Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation

Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation Taylor Martin Nicole Forsgren Velasquez Jason Maughan ABSTRACT 1 Mathematics proficiency is critical

More information

Alabama Department of Postsecondary Education

Alabama Department of Postsecondary Education Date Adopted 1998 Dates reviewed 2007, 2011, 2013 Dates revised 2004, 2008, 2011, 2013, 2015 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson

More information

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University

More information

FRESHMAN SOPHOMORE JUNIOR SENIOR. Algebra 2** (H) Algebra 2 H. Pre-Calculus H Honors Pre-Calculus and/or AP Statistics

FRESHMAN SOPHOMORE JUNIOR SENIOR. Algebra 2** (H) Algebra 2 H. Pre-Calculus H Honors Pre-Calculus and/or AP Statistics MATH DEPARTMENT COURSE DESCRIPTIONS The Mathematics Department provides a challenging curriculum that strives to meet the needs of a diverse student body by: Helping the student realize that the analytical

More information

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED Student: Instructor: Vicky Kauffman Assignment: Final problems Date: Course: Kauffman's Math 12 1 1. A Norman window consists of a rectangle surmounted by a semicircle. Find the area of the Norman window

More information

Just want the standards alone? You can find the standards alone at http://corestandards.org/the-standards

Just want the standards alone? You can find the standards alone at http://corestandards.org/the-standards 4 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North

More information

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

More information

Anyone know these guys?

Anyone know these guys? Anyone know these guys? Gavin Brown and Miles Reid We observe that some of our diptych varieties have a beautiful description in terms of key 5-folds V (k) A k+5 that are almost homogeneous spaces. By

More information

The Handshake Problem

The Handshake Problem The Handshake Problem Tamisha is in a Geometry class with 5 students. On the first day of class her teacher asks everyone to shake hands and introduce themselves to each other. Tamisha wants to know how

More information

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph

Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph The Effect of Taxes on Equilibrium Example 1: Suppose the demand function is p = 50 2q, and the supply function is p = 10 + 3q. a) Find the equilibrium point b) Sketch a graph Solution to part a: Set the

More information

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( ) 1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

More information

4.3 Least Squares Approximations

4.3 Least Squares Approximations 18 Chapter. Orthogonality.3 Least Squares Approximations It often happens that Ax D b has no solution. The usual reason is: too many equations. The matrix has more rows than columns. There are more equations

More information

Course Syllabus MATH 101 - College Algebra 3 credits

Course Syllabus MATH 101 - College Algebra 3 credits Course Syllabus MATH 101 - College Algebra 3 credits Prerequisites: High school algebra is recommended but not required Instructor: Steve Michalik, MS Facilitator: H. Elaine Frey, MA Contact Info: Faculty

More information

Mathematics. Designing High School Mathematics Courses Based on the Common

Mathematics. Designing High School Mathematics Courses Based on the Common common core state STANDARDS FOR Mathematics Appendix A: Designing High School Mathematics Courses Based on the Common Core State Standards Overview The (CCSS) for Mathematics are organized by grade level

More information

Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu

Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62

More information

Combinatorics. Chapter 1. 1.1 Factorials

Combinatorics. Chapter 1. 1.1 Factorials Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability

More information

BX in ( u, v) basis in two ways. On the one hand, AN = u+

BX in ( u, v) basis in two ways. On the one hand, AN = u+ 1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

More information

THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

More information

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE MATH 098 CIC Approval: BOT APPROVAL: STATE APPROVAL: EFFECTIVE TERM: SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY COLLEGE ASSOCIATE DEGREE COURSE OUTLINE SECTION I SUBJECT AREA AND COURSE NUMBER: Mathematics

More information

Mathematics I, II and III (9465, 9470, and 9475)

Mathematics I, II and III (9465, 9470, and 9475) Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and

More information

Math 96 Intermediate Algebra & Geometry (Online) San Diego Miramar College Spring Semester 2008 (01-28 to 05-24) CRN# 53607 (5 unit course)

Math 96 Intermediate Algebra & Geometry (Online) San Diego Miramar College Spring Semester 2008 (01-28 to 05-24) CRN# 53607 (5 unit course) Math 96 Intermediate Algebra & Geometry (Online) San Diego Miramar College Spring Semester 2008 (01-28 to 05-24) CRN# 53607 (5 unit course) INSTRUCTOR & WEBSITE INFORMATION Instructor: Howard Blumenfeld

More information

NCTM Content Standard/National Science Education Standard

NCTM Content Standard/National Science Education Standard Title: BASE-ic Space Travel Brief Overview: This unit introduces the concepts of bases and exponents (or powers) in order to gain a deeper understanding of place value. Students will assume the role of

More information

Problem of the Month Pick a Pocket

Problem of the Month Pick a Pocket The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

More information

Common Core State Standards for. Mathematics

Common Core State Standards for. Mathematics Common Core State Standards for Mathematics Table of Contents Introduction 3 Standards for Mathematical Practice 6 Standards for Mathematical Content Kindergarten 9 Grade 1 13 Grade 2 17 Grade 3 21 Grade

More information

Numbers Plus Preschool Mathematics Curriculum: Teacher s Manual

Numbers Plus Preschool Mathematics Curriculum: Teacher s Manual Number and operations involves understanding whole numbers and realizing that numbers represent quantity. It includes learning number words and symbols, counting, comparing and ordering quantities, composing

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

Mathematical Practices

Mathematical Practices The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K-12 MP 1 CC.K-12.MP.1 Make sense of problems and persevere in

More information

Problem of the Month Through the Grapevine

Problem of the Month Through the Grapevine The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

More information

Math 046 Online Course Syllabus Elementary Algebra and Geometry

Math 046 Online Course Syllabus Elementary Algebra and Geometry Math 046 Online Course Syllabus Elementary Algebra and Geometry THIS IS AN 8 WEEK CLASS Carol Murphy, Professor CRN # 08391 Online office hours: Tuesdays from 8 9 pm Office Phone: 619-388-7691 Fall Other

More information

SCHOOL OF ADVANCED TECHNOLOGIES, ENGINEERING AND SCIENCE (SATES) PROGRAM: CTech in Electrical and Electronic Engineering

SCHOOL OF ADVANCED TECHNOLOGIES, ENGINEERING AND SCIENCE (SATES) PROGRAM: CTech in Electrical and Electronic Engineering SCHOOL OF ADVANCED TECHNOLOGIES, ENGINEERING AND SCIENCE (SATES) Program Schedule PROGRAM: CTech in Electrical and Electronic Engineering CTech Electrical & Electronic Engineering Credits IT101 Information

More information

how to use dual base log log slide rules

how to use dual base log log slide rules how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

Project Management. Individual Program Information 2013 2014. 866.Macomb1 (866.622.6621) www.macomb.edu

Project Management. Individual Program Information 2013 2014. 866.Macomb1 (866.622.6621) www.macomb.edu Individual Program Information 2013 2014 866.Macomb1 (866.622.6621) www.macomb.edu Credential Associate of Business Administration Title Program Options Credit Hours Required 62 Notes Designed for transferring

More information

Mathematics. Routine Bank

Mathematics. Routine Bank S D C S SAN DIEGO CITY SCHOOLS MIDDLE LEVEL Instruction & Curriculum Mathematics Mathematics Routine Bank Middle Level Routines in Mathematics: Number Sense and Algebraic Thinking page 2 Middle Level Routines

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

GETTING READY FOR THE MBA. A common question we get asked is Is there anything I can do to get myself ready for what lies ahead?

GETTING READY FOR THE MBA. A common question we get asked is Is there anything I can do to get myself ready for what lies ahead? GETTING READY FOR THE MBA A common question we get asked is Is there anything I can do to get myself ready for what lies ahead? Your professors for Finance and Modelling Business Decisions, Mary Kelly

More information

PRE-CALCULUS with TRIGONOMETRY MTH 166 Online

PRE-CALCULUS with TRIGONOMETRY MTH 166 Online PRE-CALCULUS with TRIGONOMETRY MTH 166 Online INSTRUCTOR INFORMATION Name: Dr. Pablo Chalmeta Phone: 540-674-3600, ext. 4266 (or 4115) Email: pchalmeta@nr.edu Office: Godbey Hall, Room 48 (or Mall 115A)

More information

Unit 5 Area. What Is Area?

Unit 5 Area. What Is Area? Trainer/Instructor Notes: Area What Is Area? Unit 5 Area What Is Area? Overview: Objective: Participants determine the area of a rectangle by counting the number of square units needed to cover the region.

More information

Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator

Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator This Guide is designed to offer step-by-step instruction for using your TI-83, TI-83 Plus, or TI-84 Plus graphing calculator

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.

MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the

More information

Progressions for the Common Core State Standards in Mathematics (draft)

Progressions for the Common Core State Standards in Mathematics (draft) Progressions for the Common Core State Standards in Mathematics (draft) cthe Common Core Standards Writing Team 2 April 202 K 5, Number and Operations in Base Ten Overview Students work in the base-ten

More information

PRECALCULUS WITH INTERNET-BASED PARALLEL REVIEW

PRECALCULUS WITH INTERNET-BASED PARALLEL REVIEW PRECALCULUS WITH INTERNET-BASED PARALLEL REVIEW Rafael MARTÍNEZ-PLANELL Daniel MCGEE Deborah MOORE Keith WAYLAND Yuri ROJAS University of Puerto Rico at Mayagüez PO Box 9018, Mayagüez, PR 00681 e-mail:

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Calculating Abandoned Calls in the light of the Ofcom 2008 Statement

Calculating Abandoned Calls in the light of the Ofcom 2008 Statement Calculating Abandoned Calls in the light of the Ofcom 2008 Statement Summary This document has been produced for operators of Predictive Dialling equipment to clarify the calculations required when determining

More information

Take a Trip. Materials Trip Cards Trip Sheet (one per group) Vocabulary sum, difference, product, quotient

Take a Trip. Materials Trip Cards Trip Sheet (one per group) Vocabulary sum, difference, product, quotient Take a Trip Reporting Category Topic Primary SOL Computation and Estimation Solving practical problems 5.4 The student will create and solve single-step and multistep practical problems involving addition,

More information

Chapter 4. Spreadsheets

Chapter 4. Spreadsheets Chapter 4. Spreadsheets We ve discussed rather briefly the use of computer algebra in 3.5. The approach of relying on www.wolframalpha.com is a poor subsititute for a fullfeatured computer algebra program

More information

Algebra II Unit 1: Foundations of Functions 2014-2015. 27 2.2 Linear Equations Day 1. HW: Linear Equations WS 1. 3 Quiz 2.1, 2.2, and 2.

Algebra II Unit 1: Foundations of Functions 2014-2015. 27 2.2 Linear Equations Day 1. HW: Linear Equations WS 1. 3 Quiz 2.1, 2.2, and 2. Algebra II Unit 1: Foundations of Functions 2014-2015 Aug 25 School Starts Class rules, etc 26 2.1 Relations and Functions HW: Relations and functions WS 27 2.2 Linear Equations Day 1 HW: Linear Equations

More information

The Method of Least Squares

The Method of Least Squares The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

More information

Programming Your Calculator Casio fx-7400g PLUS

Programming Your Calculator Casio fx-7400g PLUS Programming Your Calculator Casio fx-7400g PLUS Barry Kissane Programming Your Calculator: Casio fx-7400g PLUS Published by Shriro Australia Pty Limited 72-74 Gibbes Street, Chatswood NSW 2067, Australia

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

MEP Y9 Practice Book A

MEP Y9 Practice Book A 1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Graphing and Solving Nonlinear Inequalities

Graphing and Solving Nonlinear Inequalities APPENDIX LESSON 1 Graphing and Solving Nonlinear Inequalities New Concepts A quadratic inequality in two variables can be written in four different forms y < a + b + c y a + b + c y > a + b + c y a + b

More information