Factor and Solve Polynomial Equations. In Chapter 4, you learned how to factor the following types of quadratic expressions.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Factor and Solve Polynomial Equations. In Chapter 4, you learned how to factor the following types of quadratic expressions."

Transcription

1 5.4 Factor and Solve Polynomial Equations Before You factored and solved quadratic equations. Now You will factor and solve other polynomial equations. Why? So you can find dimensions of archaeological ruins, as in Ex. 58. Key Vocabulary factored completely factor by grouping quadratic form In Chapter 4, you learned how to factor the following types of quadratic expressions. Type Example General trinomial 2x 2 2 3x (2x 1 5)(x 2 4) Perfect square trinomial x 2 1 8x (x 1 4) 2 Difference of two squares 9x (3x 1 1)(3x 2 1) Common monomial factor 8x x 5 4x(2x 1 5) You can also factor polynomials with degree greater than 2. Some of these polynomials can be factored completely using techniques learned in Chapter 4. KEY CONCEPT For Your Notebook Factoring Polynomials Definition A factorable polynomial with integer coefficients is factored completely if it is written as a product of unfactorable polynomials with integer coefficients. Examples 2(x 1 1)(x 2 4) and 5x 2 (x 2 2 3) are factored completely. 3x(x 2 2 4) is not factored completely because x can be factored as (x 1 2)(x 2 2). E XAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 1 2x x 5 x(x 2 1 2x 2 15) Factor common monomial. 5 x(x 1 5)(x 2 3) Factor trinomial. b. 2y y 3 5 2y 3 (y 2 2 9) Factor common monomial. 5 2y 3 (y 1 3)(y 2 3) Difference of two squares c. 4z z z 2 5 4z 2 (z 2 2 4z 1 4) Factor common monomial. 5 4z 2 (z 2 2) 2 Perfect square trinomial 5.4 Factor and Solve Polynomial Equations 353

2 FACTORING PATTERNS In part (b) of Example 1, the special factoring pattern for the difference of two squares is used to factor the expression completely. There are also factoring patterns that you can use to factor the sum or difference of two cubes. KEY CONCEPT For Your Notebook Special Factoring Patterns Sum of Two Cubes Example a 3 1 b 3 5 (a 1 b)(a 2 2 ab 1 b 2 ) 8x (2x) (2x 1 3)(4x 2 2 6x 1 9) Difference of Two Cubes Example a 3 2 b 3 5 (a 2 b)(a 2 1 ab 1 b 2 ) 64x (4x) (4x 2 1)(16x 2 1 4x 1 1) E XAMPLE 2 Factor the sum or difference of two cubes Factor the polynomial completely. a. x x Sum of two cubes 5 (x 1 4)(x 2 2 4x 1 16) b. 16z z 2 5 2z 2 (8z ) Factor common monomial. 5 2z 2 F (2z) G Difference of two cubes 5 2z 2 (2z 2 5)(4z z 1 25) GUIDED PRACTICE for Examples 1 and 2 Factor the polynomial completely. 1. x 3 2 7x x 2. 3y y b b 2 4. w FACTORING BY GROUPING For some polynomials, you can factor by grouping pairs of terms that have a common monomial factor. The pattern for factoring by grouping is shown below. ra 1 rb 1 sa 1 sb 5 r(a 1 b) 1 s(a 1 b) 5 (r 1 s)(a 1 b) E XAMPLE 3 Factor by grouping AVOID ERRORS An expression is not factored completely until all factors, such as x , cannot be factored further. Factor the polynomial x 3 2 3x x 1 48 completely. x 3 2 3x x x 2 (x 2 3) 2 16(x 2 3) Factor by grouping. 5 (x )(x 2 3) Distributive property 5 (x 1 4)(x 2 4)(x 2 3) Difference of two squares 354 Chapter 5 Polynomials and Polynomial Functions

3 QUADRATIC FORM An expression of the form au 2 1 bu 1 c, where u is any expression in x, is said to be in quadratic form. The factoring techniques you studied in Chapter 4 can sometimes be used to factor such expressions. E XAMPLE 4 Factor polynomials in quadratic form IDENTIFY QUADRATIC FORM The expression 16x is in quadratic form because it can be written as u where u 5 4x 2. Factor completely: (a) 16x and (b) 2p p p 2. a. 16x (4x 2 ) Write as difference of two squares. 5 (4x 2 1 9)(4x 2 2 9) Difference of two squares 5 (4x 2 1 9)(2x 1 3)(2x 2 3) Difference of two squares b. 2p p p 2 5 2p 2 (p 6 1 5p 3 1 6) Factor common monomial. 5 2p 2 (p 3 1 3)(p 3 1 2) Factor trinomial in quadratic form. GUIDED PRACTICE for Examples 3 and 4 Factor the polynomial completely. 5. x 3 1 7x 2 2 9x g t t t 2 SOLVING POLYNOMIAL EQUATIONS In Chapter 4, you learned how to use the zero product property to solve factorable quadratic equations. You can extend this technique to solve some higher-degree polynomial equations. E XAMPLE 5 Standardized Test Practice What are the real-number solutions of the equation 3x x 5 18x 3? A 0, 1, 3, 5 B 21, 0, 1 C 0, 1, Ï 5 D 2 Ï 5, 21, 0, 1, Ï 5 Solution 3x x 5 18x 3 Write original equation. AVOID ERRORS Do not divide each side of an equation by a variable or a variable expression, such as 3x. Doing so will result in the loss of solutions. 3x x x 5 0 Write in standard form. 3x(x 4 2 6x 2 1 5) 5 0 Factor common monomial. 3x(x 2 2 1)(x 2 2 5) 5 0 Factor trinomial. 3 x(x 1 1)(x 2 1)(x 2 2 5) 5 0 Difference of two squares x 5 0, x 5 21, x 5 1, x 5 Ï 5, or x 5 2 Ï 5 Zero product property c The correct answer is D. A B C D GUIDED PRACTICE for Example 5 Find the real-number solutions of the equation. 8. 4x x x x x 5 14x x x x Factor and Solve Polynomial Equations 355

4 E XAMPLE 6 Solve a polynomial equation CITY PARK You are designing a marble basin that will hold a fountain for a city park. The basin s sides and bottom should be 1 foot thick. Its outer length should be twice its outer width and outer height. What should the outer dimensions of the basin be if it is to hold 36 cubic feet of water? ANOTHER WAY For alternative methods to solving the problem in Example 6, turn to page 360 for the Problem Solving Workshop. Solution Volume (cubic feet) 5 Interior length (feet) p Interior width (feet) p Interior height (feet) 36 5 (2x 2 2) p (x 2 2) p (x 2 1) 36 5 (2x 2 2)(x 2 2)(x 2 1) Write equation x 3 2 8x x 2 40 Write in standard form x 2 (x 2 4) 1 10(x 2 4) Factor by grouping. 0 5 (2x )(x 2 4) Distributive property c The only real solution is x 5 4. The basin is 8 ft long, 4 ft wide, and 4 ft high. GUIDED PRACTICE for Example WHAT IF? In Example 6, what should the basin s dimensions be if it is to hold 128 cubic feet of water and have outer length 6x, width 3x, and height x? 5.4 EXERCISES SKILL PRACTICE HOMEWORK KEY 5 WORKED-OUT SOLUTIONS on p. WS1 for Exs. 7, 23, and 61 5 STANDARDIZED TEST PRACTICE Exs. 2, 9, 41, 63, and VOCABULARY The expression 8x x is in? form because it can be written as 2u 2 1 5u 2 3 where u 5 2x WRITING What condition must the factorization of a polynomial satisfy in order for the polynomial to be factored completely? EXAMPLE 1 on p. 353 for Exs. 3 9 MONOMIAL FACTORS Factor the polynomial completely x x 4. 30b b 2 5. c 3 1 9c c 6. z 3 2 6z z 7. 3y y m m 4 1 9m 3 9. MULTIPLE CHOICE What is the complete factorization of 2x x 3? A 2x 3 (x 1 2)(x 2 2)(x 2 1 4) B 2x 3 (x 2 1 2)(x 2 2 2) C 2x 3 (x 2 1 4) 2 D 2x 3 (x 1 2) 2 (x 2 2) Chapter 5 Polynomials and Polynomial Functions

5 EXAMPLE 2 on p. 354 for Exs EXAMPLE 3 on p. 354 for Exs EXAMPLE 4 on p. 355 for Exs EXAMPLE 5 on p. 355 for Exs SUM OR DIFFERENCE OF CUBES Factor the polynomial completely. 10. x y m n a c w z FACTORING BY GROUPING Factor the polynomial completely. 18. x 3 1 x 2 1 x y 3 2 7y 2 1 4y n 3 1 5n 2 2 9n m 3 2 m 2 1 9m s s 2 2 s c 3 1 8c 2 2 9c 2 18 QUADRATIC FORM Factor the polynomial completely. 24. x a 4 1 7a s 4 2 s z 5 2 2z m m 4 1 m x x x ERROR ANALYSIS Describe and correct the error in finding all real-number solutions x (2x 1 3)(4x 2 1 6x 1 9) 5 0 x x x 5 0 3x(x ) 5 0 x x 5 24 or x 5 4 SOLVING EQUATIONS Find the real-number solutions of the equation. 32. y 3 2 5y s s 34. g 3 1 3g 2 2 g m 3 1 6m 2 2 4m w w z z b b b x 6 2 4x 4 2 9x p p MULTIPLE CHOICE What are the real-number solutions of the equation 3x x 2 1 9x 5 x 3? A 21, 0, 3 B 23, 0, 3 C 23, 0, 1 3, 3 D 23, 2 1 3, 0, 3 CHOOSING A METHOD Factor the polynomial completely using any method x x x 43. n 4 2 4n b b a a a c c c d d x x y y y z 5 2 3z z 1 48 GEOMETRY Find the possible value(s) of x. 51. Area Volume Volume 5 125π x 2 4 2x 2 5 x 1 4 2x 3x 3x 1 2 x 2 1 CHOOSING A METHOD Factor the polynomial completely using any method. 54. x 3 y ac 2 1 bc 2 2 7ad 2 2 bd x 2n 2 2x n CHALLENGE Factor a 5 b 2 2 a 2 b 4 1 2a 4 b 2 2ab 3 1 a 3 2 b 2 completely. 5.4 Factor and Solve Polynomial Equations 357

6 PROBLEM SOLVING EXAMPLE 6 on p. 356 for Exs ARCHAEOLOGY At the ruins of Caesarea, archaeologists discovered a huge hydraulic concrete block with a volume of 945 cubic meters. The block s dimensions are x meters high by 12x 2 15 meters long by 12x 2 21 meters wide. What is the height of the block? LEBANON Caesarea SYRIA EGYPT ISRAEL JORDAN 59. CHOCOLATE MOLD You are designing a chocolate mold shaped like a hollow rectangular prism for a candy manufacturer. The mold must have a thickness of 1 centimeter in all dimensions. The mold s outer dimensions should also be in the ratio 1: 3: 6. What should the outer dimensions of the mold be if it is to hold 112 cubic centimeters of chocolate? 60. MULTI-STEP PROBLEM A production crew is assembling a three-level platform inside a stadium for a performance. The platform has the dimensions shown in the diagrams, and has a total volume of 1250 cubic feet. 4x 6x 8x 2x 4x 6x x x x a. Write Expressions What is the volume, in terms of x, of each of the three levels of the platform? b. Write an Equation Use what you know about the total volume to write an equation involving x. c. Solve Solve the equation from part (b). Use your solution to calculate the dimensions of each of the three levels of the platform. 61. SCULPTURE Suppose you have 250 cubic inches of clay with which to make a sculpture shaped as a rectangular prism. You want the height and width each to be 5 inches less than the length. What should the dimensions of the prism be? 62. MANUFACTURING A manufacturer wants to build a rectangular stainless steel tank with a holding capacity of 670 gallons, or about cubic feet. The tank s walls will be one half inch thick, and about 6.42 cubic feet of steel will be used for the tank. The manufacturer wants the outer dimensions of the tank to be related as follows: The width should be 2 feet less than the length. The height should be 8 feet more than the length. What should the outer dimensions of the tank be? x x 1 8 x WORKED-OUT SOLUTIONS 358 Chapter 5 Polynomials on p. WS1 and Polynomial Functions 5 STANDARDIZED TEST PRACTICE

7 63. SHORT RESPONSE A platform shaped like a rectangular prism has dimensions x 2 2 feet by 3 2 2x feet by 3x 1 4 feet. Explain why the volume of the platform cannot be 7 cubic feet EXTENDED RESPONSE In 2000 B.C., the Babylonians solved polynomial equations using tables of values. One such table gave values of y 3 1 y 2. To be able to use this table, the Babylonians sometimes had to manipulate the equation, as shown below. ax 3 1 bx 2 5 c a 3 x 3 1 a2 x 2 b 3 b 2 1 ax b ax 5 a2 c b 3 b a2 c b 3 Original equation Multiply each side by a2 b 3. Rewrite cubes and squares. They then found a2 c b in the 3 y3 1 y 2 column of the table. Because the corresponding y-value was y 5 ax by, they could conclude that x 5 b a. a. Calculate y 3 1 y 2 for y 5 1, 2, 3,..., 10. Record the values in a table. b. Use your table and the method described above to solve x 3 1 2x c. Use your table and the method described above to solve 3x 3 1 2x d. How can you modify the method described above for equations of the form ax 4 1 bx 3 5 c? 65. CHALLENGE Use the diagram to complete parts (a) (c). a. Explain why a 3 2 b 3 is equal to the sum of the volumes of solid I, solid II, and solid III. b. Write an algebraic expression for the volume of each of the three solids. Leave your expressions in factored form. c. Use the results from parts (a) and (b) to derive the factoring pattern for a 3 2 b 3 given on page 354. II b I a b III b a a MIXED REVIEW Graph the function. 66. f(x) 5 22 x (p. 123) 67. y x2 1 4x 1 5 (p. 236) 68. y 5 3(x 1 4) (p. 245) 69. f(x) 5 x 3 2 2x 2 5 (p. 337) Graph the inequality in a coordinate plane. (p. 132) 70. y 2x y > 25 2 x 72. y < 0.5x x 1 12y x 2 9y x y > 5 PREVIEW Prepare for Lesson 5.5 in Exs Use synthetic substitution to evaluate the polynomial function for the given value of x. (p. 337) 76. f(x) 5 5x 4 2 3x 3 1 4x 2 2 x 1 10; x f(x) 5 23x 5 1 x 3 2 6x 2 1 2x 1 4; x f(x) 5 5x 5 2 4x x ; x f(x) 5 26x 4 1 9x 2 15; x 5 4 EXTRA PRACTICE for Lesson 5.4, p ONLINE Factor and QUIZ Solve Polynomial at classzone.com Equations 359

8 LESSON 5.4 Using ALTERNATIVE METHODS Another Way to Solve Example 6, page 356 MULTIPLE REPRESENTATIONS In Example 6 on page 356, you solved a polynomial equation by factoring. You can also solve a polynomial equation using a table or a graph. P ROBLEM CITY PARK You are designing a marble basin that will hold a fountain for a city park. The basin s sides and bottom should be 1 foot thick. Its outer length should be twice its outer width and outer height. What should the outer dimensions of the basin be if it is to hold 36 cubic feet of water? M ETHOD 1 Using a Table One alternative approach is to write a function for the volume of the basin and make a table of values for the function. Using the table, you can find the value of x that makes the volume of the basin 36 cubic feet. STEP 1 Write the function. From the diagram, you can see that the volume y of water the basin can hold is given by this function: y 5 (2x 2 2)(x 2 2)(x 2 1) STEP 2 Make a table of values for the function. Use only positive values of x because the basin s dimensions must be positive. STEP 3 Identify the value of x for which y The table shows that y 5 36 when x 5 4. X Y1= Y1 X Y1= Y1 c The volume of the basin is 36 cubic feet when x is 4 feet. So, the outer dimensions of the basin should be as follows: Length 5 2x 5 8 feet Width 5 x 5 4 feet Height 5 x 5 4 feet 360 Chapter 5 Polynomials and Polynomial Functions

9 M ETHOD 2 Using a Graph Another approach is to make a graph. You can use the graph to find the value of x that makes the volume of the basin 36 cubic feet. STEP 1 Write the function. From the diagram, you can see that the volume y of water the basin can hold is given by this function: y 5 (2x 2 2)(x 2 2)(x 2 1) STEP 2 Graph the equations y 5 36 and y 5 (x 2 1)(2x 2 2)(x 2 2). Choose a viewing window that shows the intersection of the graphs. STEP 3 Identify the coordinates of the intersection point. On a graphing calculator, you can use the intersect feature. The intersection point is (4, 36). Intersection X=4 Y=36 c The volume of the basin is 36 cubic feet when x is 4 feet. So, the outer dimensions of the basin should be as follows: Length 5 2x 5 8 feet Width 5 x 5 4 feet Height 5 x 5 4 feet P RACTICE SOLVING EQUATIONS Solve the polynomial equation using a table or using a graph. 1. x 3 1 4x 2 2 8x x 3 2 9x x x x 2 1 3x x 4 1 x x 2 2 8x x 4 1 2x 3 1 6x x x 4 1 4x 3 1 8x 2 1 4x x x x x WHAT IF? In the problem on page 360, suppose the basin is to hold 200 cubic feet of water. Find the outer dimensions of the basin using a table and using a graph. 9. PACKAGING A factory needs a box that has a volume of 1728 cubic inches. The width should be 4 inches less than the height, and the length should be 6 inches greater than the height. Find the dimensions of the box using a table and using a graph. 10. AGRICULTURE From 1970 to 2002, the average yearly pineapple consumption P (in pounds) per person in the United States can be modeled by the function P(x) x x x x where x is the number of years since In what year was the pineapple consumption about 9.97 pounds per person? Solve the problem using a table and a graph. Using Alternative Methods 361

Factor Polynomials Completely

Factor Polynomials Completely 9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

More information

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns

Factoring. Factoring Polynomial Equations. Special Factoring Patterns. Factoring. Special Factoring Patterns. Special Factoring Patterns Factoring Factoring Polynomial Equations Ms. Laster Earlier, you learned to factor several types of quadratic expressions: General trinomial - 2x 2-5x-12 = (2x + 3)(x - 4) Perfect Square Trinomial - x

More information

6.4 Factoring Polynomials

6.4 Factoring Polynomials Name Class Date 6.4 Factoring Polynomials Essential Question: What are some ways to factor a polynomial, and how is factoring useful? Resource Locker Explore Analyzing a Visual Model for Polynomial Factorization

More information

Monomial. 5 1 x A sum is not a monomial. 2 A monomial cannot have a. x 21. degree. 2x 3 1 x 2 2 5x Rewrite a polynomial

Monomial. 5 1 x A sum is not a monomial. 2 A monomial cannot have a. x 21. degree. 2x 3 1 x 2 2 5x Rewrite a polynomial 9.1 Add and Subtract Polynomials Before You added and subtracted integers. Now You will add and subtract polynomials. Why? So you can model trends in recreation, as in Ex. 37. Key Vocabulary monomial degree

More information

6.3 FACTORING ax 2 bx c WITH a 1

6.3 FACTORING ax 2 bx c WITH a 1 290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

More information

Solve Quadratic Equations by the Quadratic Formula. The solutions of the quadratic equation ax 2 1 bx 1 c 5 0 are. Standardized Test Practice

Solve Quadratic Equations by the Quadratic Formula. The solutions of the quadratic equation ax 2 1 bx 1 c 5 0 are. Standardized Test Practice 10.6 Solve Quadratic Equations by the Quadratic Formula Before You solved quadratic equations by completing the square. Now You will solve quadratic equations using the quadratic formula. Why? So you can

More information

Use Square Roots to Solve Quadratic Equations

Use Square Roots to Solve Quadratic Equations 10.4 Use Square Roots to Solve Quadratic Equations Before You solved a quadratic equation by graphing. Now You will solve a quadratic equation by finding square roots. Why? So you can solve a problem about

More information

7.2 Quadratic Equations

7.2 Quadratic Equations 476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

More information

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

More information

Factoring Polynomials

Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

More information

MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

SPECIAL PRODUCTS AND FACTORS

SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

More information

6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions 6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Complete this equation: 2m = 2? PROPERTIES OF EXPONENTS PRODUCT OF POWERS PROPERTY POWER OF A POWER PROPERTY POWER OF A PRODUCT PROPERTY

Complete this equation: 2m = 2? PROPERTIES OF EXPONENTS PRODUCT OF POWERS PROPERTY POWER OF A POWER PROPERTY POWER OF A PRODUCT PROPERTY Page of 6 6. Using Properties of Eponents What you should learn GOAL Use properties of eponents to evaluate and simplify epressions involving powers. GOAL Use eponents and scientific notation to solve

More information

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below.

ACTIVITY: Multiplying Binomials Using Algebra Tiles. Work with a partner. Six different algebra tiles are shown below. 7.3 Multiplying Polynomials How can you multiply two binomials? 1 ACTIVITY: Multiplying Binomials Using Algebra Tiles Work with a partner. Six different algebra tiles are shown below. 1 1 x x x x Write

More information

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2. Unit 1: Polynomials and Factoring Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

More information

Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

Evaluate and Simplify Algebraic Expressions

Evaluate and Simplify Algebraic Expressions 1.2 Evaluate and Simplify Algebraic Expressions Before You studied properties of real numbers. Now You will evaluate and simplify expressions involving real numbers. Why? So you can estimate calorie use,

More information

UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00

UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00 UNIT TWO POLYNOMIALS MATH 421A 22 HOURS Revised May 2, 00 38 UNIT 2: POLYNOMIALS Previous Knowledge: With the implementation of APEF Mathematics at the intermediate level, students should be able to: -

More information

x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent. Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

More information

FACTORING POLYNOMIALS

FACTORING POLYNOMIALS 296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

10 7, 8. 2. 6x + 30x + 36 SOLUTION: 8-9 Perfect Squares. The first term is not a perfect square. So, 6x + 30x + 36 is not a perfect square trinomial.

10 7, 8. 2. 6x + 30x + 36 SOLUTION: 8-9 Perfect Squares. The first term is not a perfect square. So, 6x + 30x + 36 is not a perfect square trinomial. Squares Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it. 1.5x + 60x + 36 SOLUTION: The first term is a perfect square. 5x = (5x) The last term is a perfect

More information

Factoring Polynomials

Factoring Polynomials Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials

Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Pre-assessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages

More information

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

Study Guide and Review - Chapter 8

Study Guide and Review - Chapter 8 Study Guide Review - Chapter 8 Solve each equation. Check your solutions. 41. 6x 2 = 12x Factor the trinomial using the Zero Product Property. 43. 3x 2 = 5x Factor the trinomial using the Zero Product

More information

expression undefined is called an excluded value. For example, } is x 2 3 undefined when x 5 3. So, 3 is an excluded value. Find excluded values

expression undefined is called an excluded value. For example, } is x 2 3 undefined when x 5 3. So, 3 is an excluded value. Find excluded values 1.4 Simplify Rational Expressions Before You simplified polynomials. Now You will simplify rational expressions. Why So you can model a cost over time, as in Example. Key Vocabulary rational expression

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

Veterans Upward Bound Algebra I Concepts - Honors

Veterans Upward Bound Algebra I Concepts - Honors Veterans Upward Bound Algebra I Concepts - Honors Brenda Meery Kaitlyn Spong Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org Chapter 6. Factoring CHAPTER

More information

Solving Quadratic Equations by Completing the Square

Solving Quadratic Equations by Completing the Square 9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

More information

1.6. Solve Linear Inequalities E XAMPLE 1 E XAMPLE 2. Graph simple inequalities. Graph compound inequalities

1.6. Solve Linear Inequalities E XAMPLE 1 E XAMPLE 2. Graph simple inequalities. Graph compound inequalities .6 Solve Linear Inequalities Before You solved linear equations. Now You will solve linear inequalities. Why? So you can describe temperature ranges, as in Ex. 54. Key Vocabulary linear inequality compound

More information

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.

VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:

More information

Factoring, Solving. Equations, and Problem Solving REVISED PAGES

Factoring, Solving. Equations, and Problem Solving REVISED PAGES 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

Factoring a Difference of Two Squares. Factoring a Difference of Two Squares 284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Polynomial. Functions. 6A Operations with Polynomials. 6B Applying Polynomial. Functions. You can use polynomials to predict the shape of containers.

Polynomial. Functions. 6A Operations with Polynomials. 6B Applying Polynomial. Functions. You can use polynomials to predict the shape of containers. Polynomial Functions 6A Operations with Polynomials 6-1 Polynomials 6- Multiplying Polynomials 6-3 Dividing Polynomials Lab Explore the Sum and Difference of Two Cubes 6-4 Factoring Polynomials 6B Applying

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

1.1 Practice Worksheet

1.1 Practice Worksheet Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

More information

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve

More information

ALGEBRA I (Created 2014) Amherst County Public Schools

ALGEBRA I (Created 2014) Amherst County Public Schools ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies

More information

Factors and Products

Factors and Products CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

More information

Algebra II A Final Exam

Algebra II A Final Exam Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.

More information

3. Power of a Product: Separate letters, distribute to the exponents and the bases

3. Power of a Product: Separate letters, distribute to the exponents and the bases Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

More information

Learning Objectives 9.2. Media Run Times 9.3

Learning Objectives 9.2. Media Run Times 9.3 Unit 9 Table of Contents Unit 9: Factoring Video Overview Learning Objectives 9.2 Media Run Times 9.3 Instructor Notes 9.4 The Mathematics of Factoring Polynomials Teaching Tips: Conceptual Challenges

More information

a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2 Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

Chapter 8. Chapter 8 Opener. Section 8.1. Big Ideas Math Green Worked-Out Solutions. Try It Yourself (p. 353) Number of cubes: 7

Chapter 8. Chapter 8 Opener. Section 8.1. Big Ideas Math Green Worked-Out Solutions. Try It Yourself (p. 353) Number of cubes: 7 Chapter 8 Opener Try It Yourself (p. 5). The figure is a square.. The figure is a rectangle.. The figure is a trapezoid. g. Number cubes: 7. a. Sample answer: 4. There are 5 6 0 unit cubes in each layer.

More information

Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team. Meet #5. Algebra. Self-study Packet Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

More information

3.3. The Factor Theorem. Investigate Determining the Factors of a Polynomial. Reflect and Respond

3.3. The Factor Theorem. Investigate Determining the Factors of a Polynomial. Reflect and Respond 3.3 The Factor Theorem Focus on... factoring polynomials explaining the relationship between the linear factors of a polynomial expression and the zeros of the corresponding function modelling and solving

More information

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).

In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form). CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 27, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 27, 2015 1:15 to 4:15 p.m. INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesday, January 27, 2015 1:15 to 4:15 p.m., only Student Name: School Name: The possession

More information

Solve Absolute Value Equations and Inequalities

Solve Absolute Value Equations and Inequalities 1.7 Solve Absolute Value Equations and Inequalities Before You solved linear equations and inequalities. Now You will solve absolute value equations and inequalities. Why? So you can describe hearing ranges

More information

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2 Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

More information

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

More information

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

Algebra 2 PreAP. Name Period

Algebra 2 PreAP. Name Period Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

P.E.R.T. Math Study Guide

P.E.R.T. Math Study Guide A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring Name Algebra Unit 10 Tentative Sllabus Cubics & Factoring DATE CLASS ASSIGNMENT Tuesda Da 1: S.1 Eponent s P: -1, -7 Jan Wednesda Da : S.1 More Eponent s P: 9- Jan Thursda Da : Graphing the cubic parent

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

AIP Factoring Practice/Help

AIP Factoring Practice/Help The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

More information

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

SECTION 1-6 Quadratic Equations and Applications

SECTION 1-6 Quadratic Equations and Applications 58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

More information

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

More information

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to:

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio 43240 Click the mouse button

More information

Warm-Up Oct. 22. Daily Agenda:

Warm-Up Oct. 22. Daily Agenda: Evaluate y = 2x 3x + 5 when x = 1, 0, and 2. Daily Agenda: Grade Assignment Go over Ch 3 Test; Retakes must be done by next Tuesday 5.1 notes / assignment Graphing Quadratic Functions 5.2 notes / assignment

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

A. Factoring out the Greatest Common Factor.

A. Factoring out the Greatest Common Factor. DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information