arxiv:math/ v2 [math.co] 5 Jul 2006


 Marianna Glenn
 2 years ago
 Views:
Transcription
1 A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group arxiv:math/ v [math.co] 5 Jul 006 Richard P. Stanley Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 019, USA version of 1 June 006 The irreducible characters χ λ of the symmetric group S n are indexed by partitions λ of n (denoted λ n or λ = n), as discussed e.g. in [, 1.7] or [4, 7.18]. If w S n has cycle type ν n then we write χ λ (ν) for χ λ (w). Let µ be a partition of n, and let (µ, 1 n ) be the partition obtained by adding n 1 s to µ. Thus (µ, 1 n ) n. Regarding as given, define the normalized character χ λ (µ, 1 n ) by χ λ (µ, 1 n ) = (n) χ λ (µ, 1 n ), χ λ (1 n ) where χ λ (1 n ) denotes the dimension of the character χ λ and (n) = n(n 1) (n + 1). Thus [, (7.6)(ii)][4, p. 49] χ λ (1 n ) is the number f λ of standard Young tableaux of shape λ. Suppose that (the diagram of) the partition λ is a union of m rectangles of sizes p i q i, where q 1 q q m, as shown in Figure 1. The following result was proved in [5, Prop. 1] for µ = () and attributed to J. Katriel (private communication) for arbitrary µ. Proposition 1. Let λ be the shape in Figure 1, and fix 1. Let µ. Set n = λ and F µ (p; q) = F µ (p 1,...,p m ; q 1,..., q m ) = χ λ (µ, 1 n ). Then F µ (p; q) is a polynomial function of the p i s and q i s with integer coefficients, satisfying ( 1) F µ (1,...,1; 1,..., 1) = ( + m 1).
2 q 1 p 1. q p q m p m Figure 1: A union of m rectangles Note. When µ = (), the partition with a single part, we write F for F (). A formula was given in [5, (9)] for F (p; q), viz., F (p; q) = 1 [x 1 ] m (x) (x (q i + p i + p i p m )) i=1, m (x (q i + p i+1 + p i+ + + p m )) i=1 where [x 1 ]f(x) denotes the coefficient of x 1 in the expansion of f(x) in descending powers of x (i.e., as a Taylor series at x = ). It was conjectured in [5] that the coefficients of the polynomial ( 1) F µ (p; q) are nonnegative, where q = ( q 1,..., q m ). This conjecture was proved in [5] for the case m = 1, i.e., when λ is a p q rectangle, denoted λ = p q. For w S n let κ(w) denote the number of cycles of w (in the disjoint cycle decomposition of w). The main result of [5] was the following (stated slightly differently but clearly equivalent).
3 Theorem. Let µ and fix a permutation w µ S of cycle type µ. Then F µ (p; q) = ( 1) p κ(u) ( q) κ(v), uw µ=v where the sum ranges over all! pairs (u, v) S S satisfying uw µ = v. To state our conjectured generalization of Theorem, let S (m) denote the set of permutations u S whose cycles are colored with 1,,..., m. More formally, if C(u) denotes the set of cycles of u, then an element of S (m) is a pair (u, ϕ), where u S and ϕ : C(u) [m]. (We use the standard notation [m] = {1,,..., m}.) If α = (u, ϕ) S (m) and v S, then define a product αv = (w, ψ) S (m) as follows. First let w = uv. Let τ = (a 1, a,...,a j ) be a cycle of w, and let ρ i be the cycle of u containing a i. Set ψ(τ) = max{ϕ(ρ 1 ),...,ϕ(ρ j )}. For instance (multiplying permutations from left to right), 1 { }} { {}}{ {}}{ {}}{ { }} { {}}{ {}}{ ( 1,, )( 4, 5 )( 6, 7 )( 8 ) (1, 7)(, 4, 8, 5)(, 5) = ( 1, 4,, 6)(, 7 )( 5, 8 ). Note that it a immediate consequence of the wellnown formula w S x κ(w) = x(x + 1) (x + 1) that #S (m) = ( + m 1). Note. The product αv does not seem to have nice algebraic properties. In particular, it does not define an action of S on S (m), i.e., it is not necessarily true that (αu)v = α(uv). For instance (denoting a cycle colored 1 by leaving it as it is, and a cycle colored by an overbar), we have [(1)() (1, )] (1, ) = (1)() (1)() [(1, ) (1, )] = (1)().
4 Given α = (u, ϕ) S (m), let p κ(α) = i pκ i(α) i, where κ i (α) denotes the number of cycles of u colored i, and similarly q κ(β), so ( q) κ(β) = i ( q i) κ i(β) We can now state our conjecture. Conjecture. Let λ be the partition of n given by Figure 1. Let µ and fix a permutation w µ S of cycle type µ. Then F µ (p; q) = ( 1) αw µ=β p κ(α) ( q) κ(β), where the sum ranges over all (+m 1) pairs (α, β) S (m) satisfying αw µ = β. S (m) Example 1. Let m = and µ = (), so w µ = (1, ). There are six pairs (α, β) S () n for which α(1, ) = β, viz. (where as in the above Note an unmared cycle is colored 1 and a barred cycle ), α β p κ(α) q κ(β) (1)() (1, ) p 1q 1 (1)() (1, ) p 1 p q (1)() (1, ) p 1 p q (1)() (1, ) (1, ) (1)() p q p 1 q1 (1, ) (1)() p q. It follows (since the conjecture is true in this case) that F (p 1, p ; q 1, q ) = p 1q 1 p 1 p q p q + p 1 q + p q. We can reduce Conjecture to the case p 1 = = p m = 1; i.e., λ = (q 1,, q,..., q m ). Let G µ (p, q) = p κ(α) q κ(β), αw µ=β so that Conjecture asserts that F µ (p; q) = ( 1) G µ (p, q). 4
5 Proposition 4. We have G µ (p, q) qi+1 =q i = G µ (p 1,...,p i 1, p i + p i+1, p i+,...,p m ; q 1,...,q i 1, q i, q i+,...,q m ). (1) Proof. Let αw µ = β, where α, β S (m) and µ. If τ is a cycle of β colored i + 1 then change the color to i, giving a new colored permutation β. We can also get the pair (α, β ) by changing all the cycles in α colored i + 1 to i, producing a new colored permutation α for which α w µ = β, and then changing bac the colors of the recolored cycles of α to i + 1. Equation (1) is simply a restatement of this result in terms of generating functions. It is clear, on the other hand, that F µ (p, q) qi+1 =q i = F µ (p 1,...,p i 1, p i + p i+1, p i+,...,p m ; q 1,...,q i 1, q i, q i+,...,q m ), because the parameters p 1,...,p m ; q 1,...,q i 1, q i, q i, q i+,...,q m and p 1,...,p i 1, p i + p i+1, p i+,...,p m ; q 1,...,q i 1, q i, q i+,...,q m specify the same shape λ. (Note that Proposition 1 requires only q 1 q q m, not q 1 > q > > q m.) Hence if Conjecture is true when p 1 = = p m = 1, then it is true in general by iteration of equation (1). Remars. 1. Conjecture has been proved by Amarpreet Rattan [] for the terms of highest degree of F, i.e., the terms of F (p; q) of total degree Kerov s character polynomials (e.g., [1]) are related to F (p; q) and are also conjectured to have nonnegative (integral) coefficients. Is there a combinatorial interpretation of the coefficients similar to that of Conjecture? 5
6 References [1] I. P. Goulden and A. Rattan, An explicit form for Kerov s character polynomials, Trans. Amer. Math. Soc., to appear; math.co/ [] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, Oxford, [] A. Rattan, in preparation. [4] R. Stanley, Enumerative Combinatorics, vol., Cambridge University Press, New Yor/Cambridge, [5] R. Stanley, Irreducible symmetric group characters of rectangular shape, Sém. Lotharingien de Combinatoire (electronic) 50 (00), B50d. 6
Hook Lengths and Contents. Richard P. Stanley M.I.T.
Hook Lengths and Contents p. Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents p. Standard Young tableau standard Young tableau (SYT) of shape λ = (4, 4, 3, 1): < < 1 3 4 2
More information1 A duality between descents and connectivity.
The Descent Set and Connectivity Set of a Permutation 1 Richard P. Stanley 2 Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA rstan@math.mit.edu version of 16 August
More informationarxiv:math/0202219v1 [math.co] 21 Feb 2002
RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationarxiv:math/ v1 [math.nt] 31 Mar 2002
arxiv:math/0204006v1 [math.nt] 31 Mar 2002 Additive number theory and the ring of quantum integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, New York 10468 Email: nathansn@alpha.lehman.cuny.edu
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationZachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 6: Counting
Discrete Mathematics & Mathematical Reasoning Chapter 6: Counting Colin Stirling Informatics Slides originally by Kousha Etessami Colin Stirling (Informatics) Discrete Mathematics (Chapter 6) Today 1 /
More informationOur goal first will be to define a product measure on A 1 A 2.
1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ algebra A 1 A 2 with the unit element is the σ algebra generated by the
More informationMATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:
MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
More informationStern Sequences for a Family of Multidimensional Continued Fractions: TRIPStern Sequences
Stern Sequences for a Family of Multidimensional Continued Fractions: TRIPStern Sequences arxiv:1509.05239v1 [math.co] 17 Sep 2015 I. Amburg K. Dasaratha L. Flapan T. Garrity C. Lee C. Mihaila N. NeumannChun
More informationLecture 3. Mathematical Induction
Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationON THE COEFFICIENTS OF THE LINKING POLYNOMIAL
ADSS, Volume 3, Number 3, 2013, Pages 4556 2013 Aditi International ON THE COEFFICIENTS OF THE LINKING POLYNOMIAL KOKO KALAMBAY KAYIBI Abstract Let i j T( M; = tijx y be the Tutte polynomial of the matroid
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationDiscrete Mathematics: Homework 6 Due:
Discrete Mathematics: Homework 6 Due: 2011.05.20 1. (3%) How many bit strings are there of length six or less? We use the sum rule, adding the number of bit strings of each length to 6. If we include the
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationContinuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
More informationPrime power degree representations of the symmetric and alternating groups
Prime power degree representations of the symmetric and alternating groups Antal Balog, Christine Bessenrodt, Jørn B. Olsson, Ken Ono Appearing in the Journal of the London Mathematical Society 1 Introduction
More information3.7 Complex Zeros; Fundamental Theorem of Algebra
SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationminimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
More informationClimbing an Infinite Ladder
Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,
More informationTensor invariants of SL(n), wave graphs and Ltris arxiv:math/9802119v1 [math.rt] 27 Feb 1998
Tensor invariants of SL(n), wave graphs and Ltris arxiv:math/9802119v1 [math.rt] 27 Feb 1998 Aleksandrs Mihailovs Department of Mathematics University of Pennsylvania Philadelphia, PA 191046395 mihailov@math.upenn.edu
More informationFACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
More information1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on realclosed fields These notes develop the algebraic background needed to understand the model theory of realclosed fields. To understand these notes, a standard graduate course in algebra is
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationAssociativity condition for some alternative algebras of degree three
Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras
More information8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationON A MIXED SUMDIFFERENCE EQUATION OF VOLTERRAFREDHOLM TYPE. 1. Introduction
SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17) (2009), 55 62 ON A MIXED SUMDIFFERENCE EQUATION OF VOLTERRAFREDHOLM TYPE B.. PACHPATTE Abstract. The main objective of this paper is to study some basic properties
More informationSEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION
CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ  http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.
More informationThe Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics
The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationα α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
More informationNotes on counting finite sets
Notes on counting finite sets Murray Eisenberg February 26, 2009 Contents 0 Introduction 2 1 What is a finite set? 2 2 Counting unions and cartesian products 4 2.1 Sum rules......................................
More informationPrime numbers and prime polynomials. Paul Pollack Dartmouth College
Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)
More informationA note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
More informationModule MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions
Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective
More informationA characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
More informationArkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,
More informationSection 4.4 Inner Product Spaces
Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationMATH 4552 Cubic equations and Cardano s formulae
MATH 455 Cubic equations and Cardano s formulae Consider a cubic equation with the unknown z and fixed complex coefficients a, b, c, d (where a 0): (1) az 3 + bz + cz + d = 0. To solve (1), it is convenient
More informationChapter 3 Joint Distributions
Chapter 3 Joint Distributions 3.6 Functions of Jointly Distributed Random Variables Discrete Random Variables: Let f(x, y) denote the joint pdf of random variables X and Y with A denoting the twodimensional
More informationON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath
International Electronic Journal of Algebra Volume 7 (2010) 140151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December
More informationLecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
More informationUNIVERSAL JUGGLING CYCLES. Fan Chung 1 Department of Mathematics, University of California, San Diego, La Jolla, CA Ron Graham 2.
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A08 UNIVERSAL JUGGLING CYCLES Fan Chung 1 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093 Ron
More informationDiscrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.
Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationBABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS
BABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS SETH SHELLEYABRAHAMSON Abstract. These are notes for a talk in the MITNortheastern Spring 2015 Geometric Representation Theory Seminar. The main source
More informationA COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER IDEALS ON TORIC VARIETIES
Communications in Algebra, 40: 1618 1624, 2012 Copyright Taylor & Francis Group, LLC ISSN: 00927872 print/15324125 online DOI: 10.1080/00927872.2011.552084 A COUNTEREXAMPLE FOR SUBADDITIVITY OF MULTIPLIER
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]]
#A47 INTEGERS 4 (204) ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]] Daniel Birmaer Department of Mathematics, Nazareth College, Rochester, New Yor abirma6@naz.edu Juan B. Gil Penn State Altoona,
More informationIrreducible Representations of Wreath Products of Association Schemes
Journal of Algebraic Combinatorics, 18, 47 52, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Irreducible Representations of Wreath Products of Association Schemes AKIHIDE HANAKI
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationMathematical Induction
Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)
More informationPRIME FACTORS OF CONSECUTIVE INTEGERS
PRIME FACTORS OF CONSECUTIVE INTEGERS MARK BAUER AND MICHAEL A. BENNETT Abstract. This note contains a new algorithm for computing a function f(k) introduced by Erdős to measure the minimal gap size in
More informationStudent Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
More informationLECTURE 2. Part/ References Topic/Sections Notes/Speaker. 1 Enumeration 1 1.1 Generating functions... 1. Combinatorial. Asst #1 Due FS A.
Wee Date Sections f aculty of science MATH 8954 Fall 0 Contents 1 Sept 7 I1, I, I3 Symbolic methods I A3/ C Introduction to Prob 4 A sampling 18 IX1 of counting sequences Limit Laws and and generating
More informationInduction Problems. Tom Davis November 7, 2005
Induction Problems Tom Davis tomrdavis@earthlin.net http://www.geometer.org/mathcircles November 7, 2005 All of the following problems should be proved by mathematical induction. The problems are not necessarily
More informationMATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS
1 CHAPTER 6. MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 Introduction Recurrence
More informationFINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROSSHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS
FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROSSHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure
More informationSplit Nonthreshold Laplacian Integral Graphs
Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada kirkland@math.uregina.ca Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil maguieiras@im.ufrj.br
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationMinimally Infeasible Set Partitioning Problems with Balanced Constraints
Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of
More informationFactoring Dickson polynomials over finite fields
Factoring Dickson polynomials over finite fiels Manjul Bhargava Department of Mathematics, Princeton University. Princeton NJ 08544 manjul@math.princeton.eu Michael Zieve Department of Mathematics, University
More informationPrime Numbers and Irreducible Polynomials
Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.
More informationMath 2331 Linear Algebra
2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University
More informationRunning head: A GEOMETRIC INTRODUCTION 1
Running head: A GEOMETRIC INTRODUCTION A Geometric Introduction to Mathematical Induction Problems using the Sums of Consecutive Natural Numbers, the Sums of Squares, and the Sums of Cubes of Natural Numbers
More informationFinite dimensional C algebras
Finite dimensional C algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for selfadjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n
More informationA REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
More informationMath 117 Chapter 7 Sets and Probability
Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a welldefined collection of specific objects. Each item in the set is called an element or a member. Curly
More informationChapter 7. Induction and Recursion. Part 1. Mathematical Induction
Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P 1, P 2, P 3,..., P n,... (or, simply
More informationModule 6: Basic Counting
Module 6: Basic Counting Theme 1: Basic Counting Principle We start with two basic counting principles, namely, the sum rule and the multiplication rule. The Sum Rule: If there are n 1 different objects
More informationMath 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
More informationSets and functions. {x R : x > 0}.
Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.
More informationA COUNTEREXAMPLE TO A GEOMETRIC HALESJEWETT TYPE CONJECTURE
A COUNTEREXAMPLE TO A GEOMETRIC HALESJEWETT TYPE CONJECTURE Vytautas Gruslys Abstract. Pór and Wood conjectured that for all k, l 2 there exists n 2 with the following property: whenever n points, no
More informationMore Mathematical Induction. October 27, 2016
More Mathematical Induction October 7, 016 In these slides... Review of ordinary induction. Remark about exponential and polynomial growth. Example a second proof that P(A) = A. Strong induction. Least
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationMathematical Foundations of Computer Science Lecture Outline
Mathematical Foundations of Computer Science Lecture Outline September 21, 2016 Example. How many 8letter strings can be constructed by using the 26 letters of the alphabet if each string contains 3,4,
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More information1 Limiting distribution for a Markov chain
Copyright c 2009 by Karl Sigman Limiting distribution for a Markov chain In these Lecture Notes, we shall study the limiting behavior of Markov chains as time n In particular, under suitable easytocheck
More informationLecture Notes 1: Matrix Algebra Part B: Determinants and Inverses
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationARITHMETICAL FUNCTIONS II: CONVOLUTION AND INVERSION
ARITHMETICAL FUNCTIONS II: CONVOLUTION AND INVERSION PETE L. CLARK 1. Sums over divisors, convolution and Möbius Inversion The proof of the multiplicativity of the functions σ k, easy though it was, actually
More informationCARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE
CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. FiniteDimensional
More informationInteger Sequences and Matrices Over Finite Fields
Integer Sequences and Matrices Over Finite Fields arxiv:math/0606056v [mathco] 2 Jun 2006 Kent E Morrison Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93407 kmorriso@calpolyedu
More informationFACTORING PEAK POLYNOMIALS
FACTORING PEAK POLYNOMIALS SARA BILLEY, MATTHEW FAHRBACH, AND ALAN TALMAGE Abstract. Let S n be the symmetric group of permutations π = π 1 π 2 π n of {1, 2,..., n}. An index i of π is a peak if π i 1
More informationOn the representability of the biuniform matroid
On the representability of the biuniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every biuniform matroid is representable over all sufficiently large
More informationCOMBINATORIAL CHESSBOARD REARRANGEMENTS
COMBINATORIAL CHESSBOARD REARRANGEMENTS DARYL DEFORD Abstract. Many problems concerning tilings of rectangular boards are of significant combinatorial interest. In this paper we introduce a similar type
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More informationAnalyzing the Smarts Pyramid Puzzle
Analyzing the Smarts Pyramid Puzzle Spring 2016 Analyzing the Smarts Pyramid Puzzle 1/ 22 Outline 1 Defining the problem and its solutions 2 Introduce and prove Burnside s Lemma 3 Proving the results Analyzing
More information