A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

Save this PDF as:

Size: px
Start display at page:

Download "A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails"

Transcription

1 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint work with Qihe Tang) Department of Statistics and Actuarial Science The University of Iowa Page 1 of 13

2 Outline Sketch of the Proof of Theorem 1 Page 2 of 13

3 1. The following are some basic questions in insurance mathematics: how to model the claim size distribution? subexponential distribution class how to model discounted aggregate claims? constant force of interest how to describe the tail behavior of aggregate claims? value at risk, expected shortfall, etc. Page 3 of 13

4 2. Assume that there is a constant force of interest r > 0. We model discounted aggregate claims as the stochastic process D r (t) = X k e rτ k 1 (τk t), t 0, (1) k=1 in which we make the following standard assumptions: X 1, X 2,..., are i.i.d. nonnegative random variables with distribution F representing claim sizes; 0 < τ 1 < τ 2 < are claim arrival times constituting a renewal counting process N t = #{k = 1, 2,... : τ k t}, t 0, with renewal function λ t = EN t ; the sequences {X 1, X 2,...} and {τ 1, τ 2, } are mutually independent. Page 4 of 13

5 3. Definition: by F S, if A distribution F on [0, ) is said to be subexponential, denoted F 2 (x) 2F (x), x. An important property of subexponentiality: It holds for all n 2 that ( n ) ( ) Pr X k > x Pr max k > x 1 k n, x. k=1 This reveals an interesting phenomenon of subexponentiality that the tail of the maximum dominates that of the sum. It explains the relevance of subexponentiality in modeling heavy-tailed distributions. Page 5 of 13

6 Some Examples in the Class S (F = distribution, f = density) Lognormal: for < µ < and σ > 0, f(x; µ, σ 2 ) = 1 2πσx exp{ (ln x µ) 2 /(2σ 2 )}; Pareto: for α > 0, κ > 0, F (x) = Burr: for α > 0, κ > 0, τ > 0, F (x) = ( ) α κ ; κ + x ( ) α κ κ + x τ ; Page 6 of 13

7 Benktander-type I: for α > 0, β > 0, F (x) = (1 + 2(β/α) ln x) exp{ β(ln x) 2 (α + 1) ln x}; Benktander-type II: for α > 0, 0 < β < 1, F (x) = e α/β x (1 β) exp{ αx β /β}; Weibull: for c > 0, 0 < τ < 1, Loggamma: for α > 0, β > 0, f(x) = F (x) = exp{ cx τ }; αβ Γ(β) (ln x)β 1 x α 1. Page 7 of 13

8 4. Notation: Denote Λ = {t : λ t > 0} = {t : Pr (τ 1 t) > 0}. Theorem 1 If F S, then the relation Pr (D r (t) > x) t 0 F (xe rs )dλ s, x, (2) holds uniformly for all t Λ T = Λ [0, T ] for arbitrarily fixed T Λ. That is to say, Theorem 2 lim sup x t Λ T Pr (D r (t) > x) t 0 F 1 (xers )dλ s = 0. If F S, lim sup x F (vx) /F (x) < 1 for some v > 1, and P r (τ 1 > δ) = 1 for some δ > 0, then relation (2) holds uniformly for all t Λ. Page 8 of 13

9 Notation: If F has a finite expectation µ, then denote by F e (x) = 1 µ x 0 F (s)ds, x 0, the equilibrium distribution function of F. Theorem 3 Restrict {N t, t 0} to be a Poisson process with intensity λ > 0. If F S, F e S, and lim sup x F e (vx) /F e (x) < 1 for some v > 1, then the relation Pr (D r (t) > x) λ holds uniformly for all t (0, ]. t 0 F (xe rs )ds, x, (3) Page 9 of 13

10 5. Remark 1: Denote by τ(x) = inf{t : D r (t) > x} the first time when D r (t) up-crosses the level x > 0. Apply the uniform asymptotic relation (3) to get E ( e uτ(x)) λ 0 e us F (xe rs )ds, u > 0, which gives an explicit asymptotic expression for the Laplace transform of τ(x). Remark 2: Consider the limiting conditional distribution of τ (x) given (τ (x) < ) as x. For every fixed t > 0, by (3), Pr (τ (x) t τ (x) < ) = Pr (D r (t) > x) Pr (D r ( ) > x) If F R α with α > 0, then Pr (τ (x) t τ (x) < ) 1 e αrt, t 0 F (xers )ds 0 F (xe rs )ds. meaning that the limiting conditional distribution of τ (x) given (τ (x) < ) is exponential. Page 10 of 13

11 6. Sketch of the Proof of Theorem 1 Remember we want to prove (2). It is clearly that, for t Λ T, ( N ) ( n ) Pr (D r (t) > x) = + Pr X k e rτ k > x, N t = n n=1 n=n+1 k=1 =I 1 (x, t, N) + I 2 (x, t, N). Consider I 2 (x, t, N) first. We have ( t n+1 ) I 2 (x, t, N) Pr X k > xe rs Pr (N t s = n) dλ s n=n 0 k=1 C ε (1 + ε) E(1 + ε) N T 1 (NT N) t 0 F (xe rs )dλ s. Given ε small enough, E(1 + ε) N T 1 (NT N) 0 as N. Therefore, for all x > 0, lim sup I 2 (x, t, N) N t t Λ T 0 F = 0. (4) (xers ) dλ s Page 11 of 13

12 Next consider I 1 (x, t, N). It holds uniformly for all t Λ T that ( ) n n I 1 (x, t, N) Pr ( X k e rτ k > x, N t = n ) For I 12 (x, t, N), = n=1 k=1 t 0 n=n+1 k=1 F (xe rs ) dλ s I 12 (x, t, N). t I 12 (x, t, N) F (xe rs ) dλ s 0 It follows that, for all x > 0, n=n (n + 1) Pr (N T n). lim sup I 12 (x, t, N) N t t Λ T 0 F = 0. (5) (xers ) dλ s By (4) and (5), we conclude that the asymptotic relation (2) holds uniformly for all t Λ T. Page 12 of 13

13 7. Theorem 2 would look much nicer if we could get rid of the technical assumption on the distribution of the inter-arrival time τ 1. Recall (3). It strongly suggests that for F S, the relation Pr(D r ( ) > x) λ 0 F (xe rs )ds holds as x. As far as I know, this is still an open problem. Whether or not F S implies F e S is still unknown. Page 13 of 13 The End

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS

Applied Probability Trust 2 October 2013 UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS YANG YANG, Nanjing Audit University, and Southeast University KAIYONG WANG, Southeast

A Note on the Ruin Probability in the Delayed Renewal Risk Model

Southeast Asian Bulletin of Mathematics 2004 28: 1 5 Southeast Asian Bulletin of Mathematics c SEAMS. 2004 A Note on the Ruin Probability in the Delayed Renewal Risk Model Chun Su Department of Statistics

Asymptotics of discounted aggregate claims for renewal risk model with risky investment

Appl. Math. J. Chinese Univ. 21, 25(2: 29-216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially

EXTREMES ON THE DISCOUNTED AGGREGATE CLAIMS IN A TIME DEPENDENT RISK MODEL

EXTREMES ON THE DISCOUNTED AGGREGATE CLAIMS IN A TIME DEPENDENT RISK MODEL Alexandru V. Asimit 1 Andrei L. Badescu 2 Department of Statistics University of Toronto 100 St. George St. Toronto, Ontario,

Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks

1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics

Maximum Likelihood Estimation

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang

FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang 87. Li, J.; Tang, Q. Interplay of insurance and financial risks in a discrete-time model with strongly regular variation. Bernoulli 21 (2015), no. 3,

The Exponential Distribution

21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

Asymptotics for a discrete-time risk model with Gamma-like insurance risks. Pokfulam Road, Hong Kong

Asymptotics for a discrete-time risk model with Gamma-like insurance risks Yang Yang 1,2 and Kam C. Yuen 3 1 Department of Statistics, Nanjing Audit University, Nanjing, 211815, China 2 School of Economics

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

Uniform Tail Asymptotics for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model

Uniform Tail Asymptotics for the Stochastic Present Value of Aggregate Claims in the Renewal Risk Model Qihe Tang [a], Guojing Wang [b];, and Kam C. Yuen [c] [a] Department of Statistics and Actuarial

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

Finance 400 A. Penati - G. Pennacchi. Option Pricing

Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

1 Prior Probability and Posterior Probability

Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

Principle of Data Reduction

Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

Properties of Future Lifetime Distributions and Estimation

Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE

CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE EKONOMIKA A MANAGEMENT Valéria Skřivánková, Alena Tartaľová 1. Introduction At the end of the second millennium, a view of catastrophic events during

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME Alexey Chuprunov Kazan State University, Russia István Fazekas University of Debrecen, Hungary 2012 Kolchin s generalized allocation scheme A law of

Notes on metric spaces

Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk

Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Jose Blanchet and Peter Glynn December, 2003. Let (X n : n 1) be a sequence of independent and identically distributed random

9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let

Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as

M/M/1 and M/M/m Queueing Systems

M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

Aggregate Loss Models

Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

Private Equity Fund Valuation and Systematic Risk

An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology

Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

Lecture 13: Martingales

Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA

REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

Note on some explicit formulae for twin prime counting function

Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

Master s Theory Exam Spring 2006

Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

Planning And Scheduling Maintenance Resources In A Complex System

Planning And Scheduling Maintenance Resources In A Complex System Martin Newby School of Engineering and Mathematical Sciences City University of London London m.j.newbycity.ac.uk Colin Barker QuaRCQ Group

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February

STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1.

Mathematical Finance, Vol. 17, No. 2 April 2007), 307 317 STOCK LOANS JIANMING XIA Center for Financial Engineering and Risk Management, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,

Hedging bounded claims with bounded outcomes

Hedging bounded claims with bounded outcomes Freddy Delbaen ETH Zürich, Department of Mathematics, CH-892 Zurich, Switzerland Abstract. We consider a financial market with two or more separate components

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based

Hydrodynamic Limits of Randomized Load Balancing Networks

Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli

A Simple Model of Price Dispersion *

Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion

Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 10, September 3, 2014

Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 1, September 3, 214 Runhuan Feng, University of Illinois at Urbana-Champaign Joint work with Hans W.

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

Past and present trends in aggregate claims analysis

Past and present trends in aggregate claims analysis Gordon E. Willmot Munich Re Professor of Insurance Department of Statistics and Actuarial Science University of Waterloo 1st Quebec-Ontario Workshop

Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

Research Article Precise Large Deviations of Aggregate Claims with Dominated Variation in Dependent Multi-Risk Models

Abstract and Applied Analysis, Article ID 972029, 9 pages http://dx.doi.org/10.1155/2014/972029 Research Article Precise Large Deviations of Aggregate Claims with Dominated Variation in Dependent Multi-Ris

CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES

Annales Univ. Sci. Budapest., Sect. Comp. 39 213 137 147 CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES Andrii Ilienko Kiev, Ukraine Dedicated to the 7 th anniversary

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

Chapter 4: Statistical Hypothesis Testing

Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

Notes from Week 1: Algorithms for sequential prediction

CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking

Approximation of Aggregate Losses Using Simulation

Journal of Mathematics and Statistics 6 (3): 233-239, 2010 ISSN 1549-3644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura

POISSON PROCESS AND INSURANCE : AN INTRODUCTION 1

POISSON PROCESS AND INSURANCE : AN INTRODUCTION S.RAMASUBRAMANIAN Statistics and Mathematics Unit Indian Statistical Institute 8th Mile, Mysore Road Bangalore - 560059. Abstract: Basic aspects of the classical

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

A note on the distribution of the aggregate claim amount at ruin

A note on the distribution of the aggregate claim amount at ruin Jingchao Li, David C M Dickson, Shuanming Li Centre for Actuarial Studies, Department of Economics, University of Melbourne, VIC 31, Australia

Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION

SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

POISSON TRAFFIC FLOW IN A GENERAL FEEDBACK QUEUE

J. Appl. Prob. 39, 630 636 (2002) Printed in Israel Applied Probability Trust 2002 POISSON TRAFFIC FLOW IN A GENERAL FEEBACK QUEUE EROL A. PEKÖZ and NITINRA JOGLEKAR, Boston University Abstract Considera

Pacific Journal of Mathematics

Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market

Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market W. Hürlimann 1 Abstract. We consider the dynamic stable benchmark rate model introduced in Verlaak et al. (005),

Week 1: Introduction to Online Learning

Week 1: Introduction to Online Learning 1 Introduction This is written based on Prediction, Learning, and Games (ISBN: 2184189 / -21-8418-9 Cesa-Bianchi, Nicolo; Lugosi, Gabor 1.1 A Gentle Start Consider

Survival Distributions, Hazard Functions, Cumulative Hazards

Week 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution of a

Exponential Distribution

Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

Dynamic Load Balancing in Parallel Queueing Systems: Stability and Optimal Control

Dynamic Load Balancing in Parallel Queueing Systems: Stability and Optimal Control Douglas G. Down Department of Computing and Software McMaster University 1280 Main Street West, Hamilton, ON L8S 4L7,

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

MITES Physics III Summer Introduction 1. 3 Π = Product 2. 4 Proofs by Induction 3. 5 Problems 5

MITES Physics III Summer 010 Sums Products and Proofs Contents 1 Introduction 1 Sum 1 3 Π Product 4 Proofs by Induction 3 5 Problems 5 1 Introduction These notes will introduce two topics: A notation which

Optimal shift scheduling with a global service level constraint

Optimal shift scheduling with a global service level constraint Ger Koole & Erik van der Sluis Vrije Universiteit Division of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The

arxiv:1408.3610v1 [math.pr] 15 Aug 2014

PageRank in scale-free random graphs Ningyuan Chen, Nelly Litvak 2, Mariana Olvera-Cravioto Columbia University, 500 W. 20th Street, 3rd floor, New York, NY 0027 2 University of Twente, P.O.Box 27, 7500AE,

Some remarks on two-asset options pricing and stochastic dependence of asset prices

Some remarks on two-asset options pricing and stochastic dependence of asset prices G. Rapuch & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France July 16, 001 Abstract In this short

( ) ( ) [2],[3],[4],[5],[6],[7]

( ) ( ) Lebesgue Takagi, - []., [2],[3],[4],[5],[6],[7].,. [] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., (984), 83 99. [2] T. Sekiguchi and Y. Shiota, A

15 Kuhn -Tucker conditions

5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

Section 5.1 Continuous Random Variables: Introduction

Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE. 1. Introduction

SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17) (2009), 55 62 ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE B.. PACHPATTE Abstract. The main objective of this paper is to study some basic properties

( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x

Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: krzysio@krzysio.net Posted September 21,

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE

STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about

Exam C, Fall 2006 PRELIMINARY ANSWER KEY

Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14