March 29, S4.4 Theorems about Zeros of Polynomial Functions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions"

Transcription

1 MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial Division; The Remainder and Factor Theorems 4.4 Theorems about Zeros of Polynomial Functions 4.5 Rational Functions 4.6 Polynomial and Rational Inequalities See the following lesson in Course Documents of CourseCompass: 171Session4 171Session4 ( Package file ) This lesson is a brief discussion of and suggestions relative to studying Chapter Theorems about Zeros of Polynomial Functions Find a polynomial with specified zeros. For a polynomial function with integer coefficients, find the rational zeros and the other zeros, if possible. Use Descartes rule of signs to find information about the number of real zeros of a polynomial function with real coefficients. The Fundamental Theorem of Algebra Every polynomial function of degree n, with n 1, has at least one zero in the system of complex numbers. The Fundamental Theorem of Algebra Example: Find a polynomial function of degree 4 having zeros 1, 2, 4i, and 4i. Solution: Such a polynomial has factors (x 1),(x 2), (x 4i), and (x + 4i), so we have: Let a n = 1: 1

2 Zeros of Polynomial Functions with Real Coefficients Nonreal Zeros: If a complex number a + bi, b 0, is a zero of a polynomial function f(x) with real coefficients, then its conjugate, a bi, is also a zero. (Nonreal zeros occur in conjugate pairs.) Irrational Zeros: If where a, b, and c are rational and b is not a perfect square, is a zero of a polynomial function f(x) with rational coefficients, then its conjugate is also a zero. Example Suppose that a polynomial function of degree 6 with rational coefficients has 3 + 2i, 6i, and as three of its zeros. Find the other zeros. Solution: The other zeros are the conjugates of the given zeros, 3 2i, 6i, and There are no other zeros because the polynomial of degree 6 can have at most 6 zeros. Rational Zeros Theorem Let where all the coefficients are integers. Consider a rational number denoted by p/q, where p and q are relatively prime (having no common factor besides 1 and 1). If p/q is a zero of P(x), then p is a factor of a 0 and q is a factor of a n. Example Given f(x) = 2x 3 3x 2 11x + 6: a) Find the rational zeros and then the other zeros. b) Factor f(x) into linear factors. Solution: a) Because the degree of f(x) is 3, there are at most 3 distinct zeros. The possibilities for p/q are: 2

3 Use synthetic division to help determine the zeros. It is easier to consider the integers before the fractions. We try 1: We try 1: We try 3: Since f(1) = 6, 1 is not a zero. Since f( 1) = 12, 1 is not a zero. Since f(3) = 0, 3 is a zero. Thus x 3 is a factor. Using the results of the division above, we can express f(x) as We can further factor 2x2 + 3x 2 as (2x 1)(x + 2).. Descartes Rule of Signs The rational zeros are 2, 3 and The complete factorization of f(x) is: Let P(x) be a polynomial function with real coefficients and a nonzero constant term. The number of positive real zeros of P(x) is either: 1. The same as the number of variations of sign in P(x), or 2. Less than the number of variations of sign in P(x) by a positive even integer. The number of negative real zeros of P(x) is either: 3. The same as the number of variations of sign in P( x), or 4. Less than the number of variations of sign in P( x) by a positive even integer. A zero of multiplicity m must be counted m times. 3

4 Example What does Descartes rule of signs tell us about the number of positive real zeros and the number of negative real zeros? There are two variations of sign, so there are either two or zero positive real zeros to the equation. There are two variations of sign, so there are either two or zero negative real zeros to the equation. Total Number of Zeros (or Roots) = 4: Possible number of zeros (or roots) by kind: Positive Negative Nonreal /4. Find a polynomial function of degree 3 with the given numbers as zeros: 2, i, i 339/8. Find a polynomial function of degree 3 with the given numbers as zeros: 4, 1 5, n = 3; x = 2, x = i, x = i f(x) = (x 2)(x i)(x + i) = (x 2)(x 2 + 1) f(x) = x 3 2x 2 + x 2 4

5 339/14. Find a polynomial function of degree 4 with 2 as a zero of multiplicity 1, 3 as a zero of multiplicity 2, and 1 as a zero of multiplicity /24. Suppose that a polynomial function of degree 4 with rational coefficients has the given numbers as zeros. Find the other zero(s): 6 5i, We only needed to find the other roots or zeros. We did not need to find the polynomial function. 340/29. Suppose that a polynomial function of degree 5 with rational coefficients has the given numbers as zeros. Find the other zero(s): 6, 3 + 4i, 4 5 n = 5 means that the polynomial function has 5 roots (zeros) when we include complex solutions (roots or zeros). x = 6, x = 3 + 4i, and x = 4 5 are given as three roots (zeros). Since x = 3 + 4i is a root, we know that the conjugate x = 3 4i is a root. 340/36. Find a polynomial function of lowest degree with rational coefficients that has the given numbers as some of its zeros: 5i Find the polynomial function with lowest degree (smallest n) that has x = 5i as a root (zero). The conjugate x = 5i is also a root (zero) of the function. Thus, we can write f(x) = (x + 5i )(x 5i ) = x Since x = 4 5 is a root, we know that the conjugate x = is a root. Therefore, the five (5) roots (zeros) are x = 6, x = 3 + 4i, x = 3 4i, x = 4 5, and x =

6 340/46. Given that the polynomial function has the given zero, find the other zeros: f(x) = x 4 16; 2i 340/52. List all possible rational zeros of the function: f(x) = 3x 3 x 2 + 6x 9 340/62. For each polynomial function: a) Find the rational zeros and then the other zeros; that is, solve f(x) = 0. b) Factor f(x) into linear factors. f(x) = 3x 4 4x 3 + x 2 + 6x 2 NOTE: The original problem was copied wrong. The roots are x = 1, x = 1/3, x = 2i, and x = 2i. 340/69. For each polynomial function: a) Find the rational zeros and then the other zeros; that is, solve f(x) = 0. b) Factor f(x) into linear factors. f(x) = (1/3)x 3 (1/2)x 2 (1/6)x + 1/6 Other roots are 2i and 2i. 6

7 340/74. Find only the rational zeros of the function. f(x) = 2x 3 + 3x 2 + 2x /76. Find only the rational zeros of the function. f(x) = x 4 + 6x x x + 66 q {±1} p {±1, 2, 3, 6, 11, 22, 33, 66} I tried all 16 possible rational roots and found that none of them worked. So, f(x) has NO rational roots. 341/82. What does Descartes rule of signs tell you about the number of positive real zeros and the number of negative real zeros of the function? P(x) = 3x 5 7x 3 4x 5 341/86. What does Descartes rule of signs tell you about the number of positive real zeros and the number of negative real zeros of the function? g(z) = z z 7 + z 3 + 6z 1 7

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

In this lesson you will learn to find zeros of polynomial functions that are not factorable.

In this lesson you will learn to find zeros of polynomial functions that are not factorable. 2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.

2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved. 2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

More information

5.1 The Remainder and Factor Theorems; Synthetic Division

5.1 The Remainder and Factor Theorems; Synthetic Division 5.1 The Remainder and Factor Theorems; Synthetic Division In this section you will learn to: understand the definition of a zero of a polynomial function use long and synthetic division to divide polynomials

More information

Solutions to Self-Test for Chapter 4 c4sts - p1

Solutions to Self-Test for Chapter 4 c4sts - p1 Solutions to Self-Test for Chapter 4 c4sts - p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

3-17 15-25 5 15-10 25 3-2 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true Section 5.2 solutions #1-10: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the

More information

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

More information

CHAPTER 4. Test Bank Exercises in. Exercise Set 4.1

CHAPTER 4. Test Bank Exercises in. Exercise Set 4.1 Test Bank Exercises in CHAPTER 4 Exercise Set 4.1 1. Graph the quadratic function f(x) = x 2 2x 3. Indicate the vertex, axis of symmetry, minimum 2. Graph the quadratic function f(x) = x 2 2x. Indicate

More information

CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column. SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real

More information

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

More information

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative

More information

Polynomials Classwork

Polynomials Classwork Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

3.7 Complex Zeros; Fundamental Theorem of Algebra

3.7 Complex Zeros; Fundamental Theorem of Algebra SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

More information

Functions and Equations

Functions and Equations Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

First Degree Equations First degree equations contain variable terms to the first power and constants.

First Degree Equations First degree equations contain variable terms to the first power and constants. Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4 Complex Zeros and the Fundamental Theorem of Algebra 86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15. 9.4 (9-27) 517 Gear ratio d) For a fixed wheel size and chain ring, does the gear ratio increase or decrease as the number of teeth on the cog increases? decreases 100 80 60 40 20 27-in. wheel, 44 teeth

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

An Insight into Division Algorithm, Remainder and Factor Theorem

An Insight into Division Algorithm, Remainder and Factor Theorem An Insight into Division Algorithm, Remainder and Factor Theorem Division Algorithm Recall division of a positive integer by another positive integer For eample, 78 7, we get and remainder We confine the

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

0.4 FACTORING POLYNOMIALS

0.4 FACTORING POLYNOMIALS 36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

More information

Higher Order Equations

Higher Order Equations Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.

More information

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

CHAPTER 3: Quadratic Functions and Equations; Inequalities

CHAPTER 3: Quadratic Functions and Equations; Inequalities MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

Lecture Notes on Polynomials

Lecture Notes on Polynomials Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

More information

Algebra. Indiana Standards 1 ST 6 WEEKS

Algebra. Indiana Standards 1 ST 6 WEEKS Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

More information

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

MINI LESSON. Lesson 5b Solving Quadratic Equations

MINI LESSON. Lesson 5b Solving Quadratic Equations MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

6.4 The Remainder Theorem

6.4 The Remainder Theorem 6.4. THE REMAINDER THEOREM 6.3.2 Check the two divisions we performed in Problem 6.12 by multiplying the quotient by the divisor, then adding the remainder. 6.3.3 Find the quotient and remainder when x

More information

Quadratic Equations and Inequalities

Quadratic Equations and Inequalities MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

More information

Unit 2 Quadratic Equations and Polynomial Functions Algebra 2

Unit 2 Quadratic Equations and Polynomial Functions Algebra 2 Number of Days: 29 10/10/16 11/18/16 Unit Goals Stage 1 Unit Description: Students will build on their prior knowledge of solving quadratic equations. In Unit 2, solutions are no longer limited to real

More information

Algebra II Pacing Guide First Nine Weeks

Algebra II Pacing Guide First Nine Weeks First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

More information

Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if 1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

More information

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11. 9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Algebraic Concepts Algebraic Concepts Writing

Algebraic Concepts Algebraic Concepts Writing Curriculum Guide: Algebra 2/Trig (AR) 2 nd Quarter 8/7/2013 2 nd Quarter, Grade 9-12 GRADE 9-12 Unit of Study: Matrices Resources: Textbook: Algebra 2 (Holt, Rinehart & Winston), Ch. 4 Length of Study:

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

5-6 The Remainder and Factor Theorems

5-6 The Remainder and Factor Theorems Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.

More information

ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

More information

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

CHAPTER 5: Exponential and Logarithmic Functions

CHAPTER 5: Exponential and Logarithmic Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College 5.2 CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic

More information

Power of the Quadratic Formula

Power of the Quadratic Formula Power of the Quadratic Formula Name 1. Consider the equation y = x 4 8x 2 + 4. It may be a surprise, but we can use the quadratic the quadratic formula to first solve for x 2. Once we know the value of

More information

Introduction to polynomials

Introduction to polynomials Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS

Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS Moore Catholic High School Math Department COLLEGE PREP AND MATH CONCEPTS The following is a list of terms and properties which are necessary for success in Math Concepts and College Prep math. You will

More information

SYNTHETIC DIVISION AND THE FACTOR THEOREM

SYNTHETIC DIVISION AND THE FACTOR THEOREM 628 (11 48) Chapter 11 Functions In this section Synthetic Division The Factor Theorem Solving Polynomial Equations 11.6 SYNTHETIC DIVISION AND THE FACTOR THEOREM In this section we study functions defined

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Sect 3.2 Synthetic Division

Sect 3.2 Synthetic Division 94 Objective 1: Sect 3.2 Synthetic Division Division Algorithm Recall that when dividing two numbers, we can check our answer by the whole number (quotient) times the divisor plus the remainder. This should

More information

5. Factoring by the QF method

5. Factoring by the QF method 5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

More information

Algebra and Geometry Review (61 topics, no due date)

Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

More information

Basic Properties of Rational Expressions

Basic Properties of Rational Expressions Basic Properties of Rational Expressions A fraction is not defined when the denominator is zero! Examples: Simplify and use Mathematics Writing Style. a) x + 8 b) x 9 x 3 Solution: a) x + 8 (x + 4) x +

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Solving Cubic Polynomials

Solving Cubic Polynomials Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial

More information

Math 002 Intermediate Algebra

Math 002 Intermediate Algebra Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,

More information

Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

More information

Math Rational Functions

Math Rational Functions Rational Functions Math 3 Rational Functions A rational function is the algebraic equivalent of a rational number. Recall that a rational number is one that can be epressed as a ratio of integers: p/q.

More information