Lecture 18 Membranes 1: Lipids and Lipid Bilayers

Size: px
Start display at page:

Download "Lecture 18 Membranes 1: Lipids and Lipid Bilayers"

Transcription

1 Lecture 18 Membranes 1: Lipids and Lipid Bilayers Subsequent 3 lectures: Membrane Proteins 2 lectures on Membrane Transport Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 12, pp Problems: Chapter 12, p. 150, #9 Key Concepts Major functions of lipids: energy storage, major membrane components Other functions: signals, electron carriers, emulsifying agents... Membrane lipids (amphipathic) -- responsible for spontaneous formation of lipid bilayers Glycerophospholipids: glycerol backbone + 2 fatty acyl "tails" in ester linkage + a polar "head group (a phosphate ester of another alcohol like choline, ethanolamine, serine, inositol, etc.) Sphingolipids: sphingosine backbone (1 "tail") + fatty acid chain in amide linkage (another "tail") + either carbohydrate (glycosidic bond to sphingosine) or phosphate ester of another alcohol like choline or ethanolamine (ester bond to sphingosine) glycosphingolipids (cerebrosides, gangliosides) phosphosphingolipids (sphingomyelins) Cholesterol Membrane fluidity (vital to membrane function) depends on lipid composition of bilayer. fatty acid chainlength (more C atoms more packing of tails, less fluidity) fatty acid numbers of double bonds (fewer double bonds more packing of tails, less fluidity) cholesterol content ("buffers" fluidity) Bilayers 1

2 Learning Objectives Terminology: micelle, lipid bilayer, amphipathic List the biological roles and the molecular components of membranes. With the structure of a lipid as an example, point out the features that make a molecule amphipathic. Explain why amphipathic membrane lipids form self-sealing bilayers in aqueous environments, including the types of interactions stabilizing the bilayer structure. Write out the structure of a 16-carbon saturated fatty acid (i.e., no double bonds), and describe the general properties of the fatty acyl components of membrane lipids. Be able to recognize the structures of phosphoglycerides, phosphosphingolipids, glycosphingolipids, and cholesterol. What type of lipids are cerebrosides and gangliosides? Briefly explain the consequences if an individual has a genetic deficiency in any one specific enzyme involved in glycosphingolipid degradation. What bond in a glycerophospholipid is cleaved (hydrolyzed) by phospholipase A 1? A 2? C? D? Learning Objectives, continued Discuss how living organisms regulate the fluidity of their membranes, including in your discussion the effects on fluidity of temperature, fatty acyl chainlength, and number of double bonds. Discuss the concepts of lateral and transverse ( flip-flop ) diffusion of membrane lipids and proteins, and the asymmetric distribution of membrane components (especially carbohydrate portions) on the extracellular and intracellular sides of the bilayer. Describe the permeability properties of lipid bilayers. Bilayers 2

3 Biological Membranes sheet-like structures, a few molecules thick, forming closed boundaries (self-sealing) amphipathic lipids: polar "head" groups and nonpolar "tails With 2 hydrophobic "tails", amphipathic lipids form bilayers instead of micelles. Proteins carry out most of the specific functions. carbohydrates (covalently attached to lipids = glycolipids, or to proteins = glycoproteins) - important in communication/recognition noncovalent assembly (interactions between components) into a fluid 2-dimensional solution Proteins and lipids can diffuse rapidly in plane of membrane, but Proteins and lipids do not rotate across the membrane (no "flipflop" in orientation across membrane). asymmetric arrangement 2 sides (faces) different biosynthesized that way Components don t "flip-flop" their orientation. Membranes always synthesized by growth of preexisting membranes Amphipathic nature of membrane lipids hydrophilic portion and hydrophobic portion hydrophilic portion = "head"; hydrophobic chain(s) = "tails" Consequence: Amphipathic lipids form micelles or bilayers, to bury their hydrophobic tails so they're NOT exposed to H 2 O, but keep the hydrophilic head groups in contact with H 2 O. Lipids with single hydrophobic tails can form micelles, but Membrane lipids almost all have 2 tails, and thus form bilayers. Bilayers curve around and seal edges closed vesicles (liposomes). The hydrophobic effect provides the major driving force for the formation of lipid bilayers. slice through a micelle slice through a bilayer Berg et al., Fig Berg et al., Fig Bilayers 3

4 Liposomes lipid vesicles, aqueous compartments enclosed by a lipid bilayer experimental tools for studying membrane permeability vehicles for delivery to cells of chemicals/drugs/dna for gene therapy slice through a liposome Berg et al., Fig Membrane Functions 1) HIGHLY SELECTIVE PERMEABILITY BARRIERS regulate molecular & ionic compositions of cells and intracellular organelles a) channels and pumps (proteins that act as selective transport systems) b) electrical polarization of membrane (inside of plasma membrane negative, typically - 60 millivolts) (maintain different ionic concentrations on opposite sides of membrane) 2) INFORMATION PROCESSING - biological communication a) signal reception by specific protein receptors (BINDING) b) transmission/transduction of signals (via protein conformational changes) sometimes generation of signals, chemical or electrical, e.g.,nerve impulses 3) ENERGY CONVERSION - ordered arrays of enzymes and other proteins, organization of reaction sequences a) photosynthesis (light energy chemical bond energy): inner membranes of chloroplasts, and plasma membranes of some prokaryotes b) oxidative phosphorylation (oxidation of fuel molecules chemical bond energy "stored" in ATP): inner membranes of mitochondria, and plasma membranes of prokaryotes Bilayers 4

5 Lipid Components of Animal Cell Membranes LIPIDS (definition): water-insoluble biomolecules that are highly soluble in organic solvents Biological functions: fuels (highly concentrated energy stores) signaling molecules membrane components Membrane lipid functions: bilayer structure compartments/permeability barriers provide environment for proteins to work electrical insulation (e.g., myelin sheath on myelinated nerve fibers, but also maintenance of electrical potential in other cells) Membrane lipid distribution: functional significance of all the differences not really understood proportions of different lipids vary by type of membrane (plasma membrane vs. mitochondrial membrane vs. nuclear membrane, etc.) type of cell Membrane Assymmetry inner vs. outer "leaflets" [layers of bilayer] -- different lipid compositions, different proteins or protein domains asymmetry maintained because of extremely slow rate of rotation of components across membrane "flip-flop" essentially doesn t occur except when catalyzed by "flippases" (proteins involved in creating/maintaining lipid asymmetries across membrane) Carbohydrate components: on outer surface of membrane Glycolipids (have carbohydrate components) found only in outer leaflet of plasma membranes. Glycoproteins: Carbohydrate components found only on outsides of cells, even when protein itself spans membrane. Overall lipid composition related to environment (esp. temperature) - lipid composition regulates fluidity) Berg et al., Fig Bilayers 5

6 Fatty Acids Fatty acyl groups are components of membrane lipids, in ester or amide linkages. longchain carboxylic acids, typically C atoms C16 & C18 most common (amphipathic) RCOO with 0-4 double bonds, usually cis palmitate (16-C saturated F.A.) oleate (18-C unsaturated F.A., with 1 cis double bond. NOTE "kink" in structure) F.A.s are amphipathic molecules Berg et al., Fig Main classes of membrane lipids (all amphipathic) 3 types of BACKBONE in membrane lipids Glycerol (glycerophospholipids), a 3-carbon tri-alcohol: CH 2 OH-CHOH-CH 2 OH Sphingosine (sphingolipids, both sphingophospholipids and sphingoglycolipids) Cholesterol (a steroid compound) + Cholesterol (a steroid compound) Bilayers 6

7 1. Glycerophospholipids (phosphoglycerides, glycerophosphatides) start with glycerol backbone (3 carbon tri-alcohol, CH 2 OH-CHOH-CH 2 OH) diacylglycerol (fatty acids esterified to the C1 and C2 OH groups on glycerol; R 1 usually saturated, R 2 usually unsaturated; F.A.s usually C's) C3 esterified to phosphate That gives parent compound = phosphatidic acid (phosphatidate at ph 7) + another substituent also esterified to phosphate (any of several alcohols): ethanolamine, choline, serine, glycerol, inositol, phosphatidyl glycerol Berg et al., <-- Fig Berg et al.,fig Glycerophospholipids, continued Results of esterifying different alcohols to the phosphate on C3: phosphatidyl serine phosphatidyl choline (lecithin) phosphatidyl ethanolamine phosphatidyl inositol phosphatidyl glycerol diphosphatidyl glycerol (cardiolipin) Berg et al., Fig Bilayers 7

8 Phospholipase (PL) cleavage sites Phospholipases catalyze hydrolysis of ester bonds in phospholipids. PLA 1 cleaves ester bond to C1 OH PLA 2 cleaves ester bond to C2 OH PLC cleaves phosphate ester bond to C3 OH PLD cleaves phosphate ester bond to other alcohol on C3 phosphate (choline, ethanolamine, etc.) Phospholipase specificities > activity of phospholipases important in signaling pathways PLC generates 2 intracellular signaling molecules: diacylglycerol (DAG) and inositol phosphate (IP) PLA 2 removes arachidonic acid from membrane lipids for COX enzymes to make prostaglandins. Corticosteroid drugs like prednisone inhibit PLA 2. What effect would steroids have on inflammation? Nelson & Cox, Lehninger Principles of Biochemistry, 4th ed., Fig Sphingolipids backbone = sphingosine Similarity/differences with glycerol-based lipids (easier to see in figure on next slide): C1 has an OH group (can be esterified to phosphate, or in a glycosidic bond to carbohydrate) C2 has amino group (-NH 3+ ) instead of -OH on glycerol fatty acyl group in amide linkage (not ester) C3 has -OH group that does NOT get derivatized, and instead of one H atom on glycerol C3 has a long hydrocarbon chain, with 1 double bond, Ceramides have fatty acid in amide linkage to amino group of C2 in ALL sphingolipids. Nelson & Cox, Lehninger Principles of Biochemistry, 4th ed., Fig Bilayers 8

9 Structure comparison: glycerophospholipid and sphingophospholipid Note polar head groups and 2 nonpolar tails -- one of the tails on sphingolipid is the long chain of the sphingosine backbone continuing from C4-C18 Berg et al., Fig Sphingolipids Phosphosphingolipids: phosphate esterified to C1 OH. Sphingomyelins: choline or ethanolamine esterified to C1 phosphate Glycosphingolipids: especially abundant in nerve cell membranes; carbohydrate(s) on C1-OH instead of phosphate group Phosphosphingolipids Niemann-Pick types A&B: lack of enzyme to hydrolyze this bond Glycosphingolipids Tay-Sachs: lack of enzyme to hydrolyze this bond Bilayers 9

10 2. Sphingolipids, continued gangliosides (complex oligosaccharides, branched sugar chains on C1 OH) Degradation of lipids: specific enzymes required for each different bond hydrolyzed Membrane lipids undergo constant metabolic turnover, rate of synthesis and rate of breakdown being balanced. Genetic defects (deficiencies in specific enzymes) in glycosphingolipid breakdown abnormal accumulation of partially degraded lipids, with toxic results (genetic diseases). example: Tay-Sachs disease -- lack of hexosaminidase A, needed to hydrolyze glycosidic bond attaching terminal N-acetylgalactosamine residue in ganglioside GM2 (previous slide); causes mental retardation, blindness, muscular weakness, death by age 3-4 Electron micrograph of portion of a brain cell from infant with Tay-Sachs disease, showing abnormal ganglioside GM2 deposits in the lysosomes Niemann-Pick disease types A and B -- lack of sphingomyelinase, enzyme needed to hydrolyze phosphate ester linkage of phosphocholine to ceramide; symptoms include enlarged liver and spleen, mental retardation, early death Nelson & Cox, Lehninger Principles of Biochemistry, 4th ed., Box 10-2, Fig Cholesterol structure: 4 fused hydrocarbon rings, 3 with 6 C's, 1 with 5 C's ( steroid nucleus ) planar, rigid, electrically neutral amphipathic ("head" group = OH) mainly in plasma membranes of animal cells; organelle membranes generally have less; rarely found in bacteria functions: important membrane constituent (influences fluidity) precursor of bile acids (emulsifiers) precursor of hormones (steroid hormones) Bilayers 10

11 Other Lipids (not structural components of membranes, but biologically important) eicosanoids paracrine hormones (locally acting) all synthesized starting from arachidonic acid (20-carbon fatty acid with 4 double bonds, removed by phospholipase A 2 from position 2 of membrane glycerophospholipids) prostaglandins: mediate fever, inflammation and pain, among other functions thromboxanes (involved in blood clotting) leukotrienes (smooth muscle contraction, e.g., muscle lining airways to lungs -- overproduction causes asthmatic attacks and is involved in anaphylactic shock, potentially fatal allergic reaction) isoprenoid lipids (all synthesized by condensation of isoprene units (5 C unsaturated branched units) steroid hormones fat-soluble vitamins (A, D, E, and K) mobile electron carriers in membranes ubiquinone in mitochondrial membranes plastoquinone in chloroplast membranes sugar carriers (dolichols) MEMBRANE FLUIDITY -- controlled by lipid composition hydrocarbon chains: close packing, maximum interaction between chains at low temperatures rigid "gel"; the longer the chains and the more saturated (fewer double bonds), the more ordered/rigid the state of the lipid bilayer Above transition temperature, lipid bilayer undergoes phase change ("melting") to more disorderly, FLUID state (chains not so closely packed). Transition temperature is lowered (so relative fluidity increases) by fatty acid structures that reduce favorable packing interactions: a) shorter hydrocarbon chainlength, and/or b) more double bonds (which make "bends" in the chain) Highly ordered packing of fatty acid side chains (stabilized by lots of close van der Waals interactions) is disrupted by cis double bonds (kinks). With more double bonds, membrane remains fluid at lower temperatures (transition temp. is lowered). Berg et al., Fig Bilayers 11

12 Regulation of Membrane Fluidity Membranes of living cells must be fluid -- must have transition temperatures below body temperature of the organism. Regulation of fluidity (especially in organisms that don t rigorously control their body temperature) by lipid composition: 1. fatty acid chainlength (shorter more fluid) 2. number of double bonds (more d.b. more fluid) 3. Cholesterol (animal cells) "stiffens" membrane by packing between unsaturated HC tails, but also disrupts close packing between saturated tails, so broadens the transition sort of like a fluidity "buffer", when temperature or fatty acid composition changes. Rigid bilayer ( gel ) Fluid bilayer Berg et al., Fig Lipid Bilayers -- formed spontaneously by phospholipids Single-tailed amphipathic lipids form micelles in H 2 O (spheres with polar head groups out, exposed to H 2 O; nonpolar tails buried in center) "2-tailed" amphipathic lipids spontaneously form bilayers, burying the tails between the 2 layers; 2 tails (e.g., phosphoglycerides and sphingolipids) don t fit in middle of a micelle -- surface with head groups not large enough to bury double tails self-assembling and self-sealing -- form and grow spontaneously, and close in on themselves spontanously, because a "hole" would expose the lipid tails to the H 2 O. Bilayer structure stabilized by hydrophobic effect (the driving force for their formation) hydration of polar/charged head groups van der Waals interactions (packing between atoms in hydrophobic core) Hydrophobic core of the membrane is like a nonpolar solvent. Permeability coefficients correlated with solubility in nonpolar solvent relative to solubility in H 2 O. highly impermeable to ions and most polar molecules more permeable to nonpolar species Bilayers 12

Nomenclature of fatty acids. Fatty Acids. Chapter 9: Lipids. Fatty acids are carboxylic acids with a long hydrocarbon chain

Nomenclature of fatty acids. Fatty Acids. Chapter 9: Lipids. Fatty acids are carboxylic acids with a long hydrocarbon chain Chapter 9: Lipids Definition: those molecules which can be extracted from biological tissue with a nonpolar solvent Structural relationships of major lipid classes Lipids are essential components of all

More information

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple

More information

CHEM 121. Chapter 19, Name: Date:

CHEM 121. Chapter 19, Name: Date: CHEM 121. Chapter 19, Name: Date: 1. A lipid is any substance of biochemical origin that is A) soluble in water but insoluble in nonpolar solvents B) insoluble in both water and nonpolar solvents C) insoluble

More information

Ch24_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch24_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch24_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Substances originating in plant or animal material and soluble in non-polar organic solvents

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook Unit 2: Cells, Membranes and Signaling CELL MEMBRANE Chapter 5 Hillis Textbook HOW DOES THE LAB RELATE TO THE NEXT CHAPTER? SURFACE AREA: the entire outer covering of a cell that enables materials pass.

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids The FOUR Classes of Large Biomolecules All living things are made up of four classes of large biological molecules: Carbohydrates

More information

Preliminary MFM Quiz

Preliminary MFM Quiz Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate

More information

Introduction, Noncovalent Bonds, and Properties of Water

Introduction, Noncovalent Bonds, and Properties of Water Lecture 1 Introduction, Noncovalent Bonds, and Properties of Water Reading: Berg, Tymoczko & Stryer: Chapter 1 problems in textbook: chapter 1, pp. 23-24, #1,2,3,6,7,8,9, 10,11; practice problems at end

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Lipids. There are 2 types of lipids; those that contain the structural component of a fatty acid; and

Lipids. There are 2 types of lipids; those that contain the structural component of a fatty acid; and Lipids Lipids are biomolecules that contain fatty acids or a steroid nucleus. soluble in organic solvents, but not in water. named for the Greek word lipos, which means fat. extracted from cells using

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

Lipids. Classes of Lipids. Types of Lipids. Saturated and Unsaturated Fatty Acids. Fatty Acids. 15.1 Lipids 15.2 Fatty Acids

Lipids. Classes of Lipids. Types of Lipids. Saturated and Unsaturated Fatty Acids. Fatty Acids. 15.1 Lipids 15.2 Fatty Acids hapter 15 15.1 15.2 Fatty Acids are biomolecules that contain fatty acids or a steroid nucleus. soluble in organic solvents, but not in water. named for the Greek word lipos, which means fat. extracted

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function -plasma membrane acts as a barrier between cells and the surrounding. -plasma membrane is selective permeable -consist of lipids, proteins and carbohydrates -major lipids

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

Overview of Lipid Metabolism

Overview of Lipid Metabolism Overview of Lipid Metabolism Learning Objectives By the end of this lecture the students should be able to understand: Classification of Lipids The digestion, absorption and utilization of dietary lipids

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

BIOLOGICAL MOLECULES OF LIFE

BIOLOGICAL MOLECULES OF LIFE BIOLOGICAL MOLECULES OF LIFE C A R B O H Y D R A T E S, L I P I D S, P R O T E I N S, A N D N U C L E I C A C I D S The Academic Support Center @ Daytona State College (Science 115, Page 1 of 29) Carbon

More information

Biochemistry of Cells

Biochemistry of Cells Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon

More information

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids I. Chapter 5 Summary A. Simple Sugars (CH 2 O) n : 1. One C contains a carbonyl (C=O) rest contain - 2. Classification by functional group: aldoses & ketoses 3. Classification by number of C's: trioses,

More information

4. Biology of the Cell

4. Biology of the Cell 4. Biology of the Cell Our primary focus in this chapter will be the plasma membrane and movement of materials across the plasma membrane. You should already be familiar with the basic structures and roles

More information

How To Understand The Chemistry Of Organic Molecules

How To Understand The Chemistry Of Organic Molecules CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

Molecular Cell Biology

Molecular Cell Biology Harvey Lodish Arnold Berk Paul Matsudaira Chris A. Kaiser Monty Krieger Matthew P. Scott Lawrence Zipursky James Darnell Molecular Cell Biology Fifth Edition Chapter 2: Chemical Foundations Copyright 2004

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Ch. 8 - The Cell Membrane

Ch. 8 - The Cell Membrane Ch. 8 - The Cell Membrane 2007-2008 Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those

More information

Cell Membranes Part 1: Review of Membrane Structure and Changes with Aging By Dan Carter, ND

Cell Membranes Part 1: Review of Membrane Structure and Changes with Aging By Dan Carter, ND Introduction Does cell membrane physiology degrade over time? Can the physiologic function of cell membranes be improved? If cell membrane functionality can be improved, is there clinical benefit to patients?

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

Waxes. From the head of sperm whales Structural material of beehives Coating on the leaves of Brazilian palm. Fats and Oils

Waxes. From the head of sperm whales Structural material of beehives Coating on the leaves of Brazilian palm. Fats and Oils Lipids Lipids are organic compounds that contain hydrocarbons which are the foundation for the structure and function of living cells. Lipids are non polar so they are soluble in nonpolar environments

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Cell Membrane Structure (and How to Get Through One)

Cell Membrane Structure (and How to Get Through One) Cell Membrane Structure (and How to Get Through One) A cell s membrane is a wall of sorts that defines the boundaries of a cell. The membrane provides protection and structure for the cell and acts as

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Lecture 6: Cholesterol (Ch. 9.1e, 9.2b, 19.7b,c) & Lipoproteins (Ch. 10.3*, 19.1, 19.7b,c)

Lecture 6: Cholesterol (Ch. 9.1e, 9.2b, 19.7b,c) & Lipoproteins (Ch. 10.3*, 19.1, 19.7b,c) Lecture 6: Cholesterol (Ch. 9.1e, 9.2b, 19.7b,c) & Lipoproteins (Ch. 10.3*, 19.1, 19.7b,c) Next lecture: Fatty Acid Oxidation (Ch. 19.2), Ketone Bodies (Ch. 19.3) and Fatty Acid Biosynthesis (Ch. 19.4)

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Elements in Biological Molecules

Elements in Biological Molecules Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

Name: Hour: Elements & Macromolecules in Organisms

Name: Hour: Elements & Macromolecules in Organisms Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

Lipids. Classifying Lipids

Lipids. Classifying Lipids (Woods) Chem-131 Lec-19 09-4 Lipids 1 Lipids Triacylglycerols (triglycerides): a storage form of energy not required for immediate use. Phospholipids, sphingolipids, and cholesterol (together with proteins)

More information

Lecture 11 Enzymes: Kinetics

Lecture 11 Enzymes: Kinetics Lecture 11 Enzymes: Kinetics Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 216-225 Key Concepts Kinetics is the study of reaction rates (velocities). Study of enzyme kinetics is useful for

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

(Woods) Chem-131 Lec-19 09-4 Lipids 1. Lipids:

(Woods) Chem-131 Lec-19 09-4 Lipids 1. Lipids: (Woods) Chem-131 Lec-19 09-4 Lipids 1 Lipids Classifying Lipids Triacylglycerols (triglycerides): a storage form of energy not required for immediate use. Phospholipids, p sphingolipids, p and cholesterol

More information

1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain.

1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain. Lipid Metabolism 1. What has a higher stored energy potential per gram, glycogen or triglycerides? Explain. 2. How can excess acetyl CoA trapped in the mitochondria, be utilized as a substrate for fatty

More information

Fatty Acids carboxylic acids

Fatty Acids carboxylic acids Triglycerides (TG) should actually be called triacylglycerols (TAG). TG or TAG are molecules with a glycerol (a carbohydrate) backbone to which are attached three acyl groups. They represent a concentrated

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Lipid Metabolism. Dr. Howaida Nounou Biochemistry department Sciences college

Lipid Metabolism. Dr. Howaida Nounou Biochemistry department Sciences college Lipid Metabolism Dr. Howaida Nounou Biochemistry department Sciences college Lipids - Heterogenous group of biomolecules - Water insoluble (hydrophobic) - Soluble in organic and non-polar solvents acetone,

More information

Cell Membrane Coloring Worksheet

Cell Membrane Coloring Worksheet Cell Membrane Coloring Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the plasma membrane and is made of a phospholipid bilayer. The phospholipids have a hydrophilic

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

1. When applying the process of science, which of these is tested? a. an observation b. a result c. a hypothesis d. a question e.

1. When applying the process of science, which of these is tested? a. an observation b. a result c. a hypothesis d. a question e. BCOR 11 Exam 1, 2004 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. When applying the process of science, which of these is tested? a. an observation

More information

Lecture 4: Review of Lipids (Ch. 9) Adipocytes or fat cells

Lecture 4: Review of Lipids (Ch. 9) Adipocytes or fat cells Lecture 4: Review of Lipids (Ch. 9) Adipocytes or fat cells LIPIDS A class of biological molecules (i.e., are of biological origin) defined by low solubility in water and high solubility in non-polar solvents

More information

Chapter 2: Cell Structure and Function pg. 70-107

Chapter 2: Cell Structure and Function pg. 70-107 UNIT 1: Biochemistry Chapter 2: Cell Structure and Function pg. 70-107 Organelles are internal structures that carry out specialized functions, interacting and complementing each other. Animal and plant

More information

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic

More information

Ordered Structures of Lipids - Bilayers form spontaneously over large areas

Ordered Structures of Lipids - Bilayers form spontaneously over large areas Membranes What are the purposes of membranes? Physical barriers/compartmentalization Gatekeepers exclusion of toxic molecules Energy and signal transduction Aid in cell locomotion Cell-cell interactions

More information

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial. http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,

More information

Absorption of Drugs. Transport of a drug from the GI tract

Absorption of Drugs. Transport of a drug from the GI tract Absorption of Drugs Absorption is the transfer of a drug from its site of administration to the bloodstream. The rate and efficiency of absorption depend on the route of administration. For IV delivery,

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Homeostasis and Transport Module A Anchor 4

Homeostasis and Transport Module A Anchor 4 Homeostasis and Transport Module A Anchor 4 Key Concepts: - Buffers play an important role in maintaining homeostasis in organisms. - To maintain homeostasis, unicellular organisms grow, respond to the

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Organic Compounds Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Aristotle: Francesco Redi: What do we already know? Spontaneous

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

Cells. Structure, Function and Homeostasis

Cells. Structure, Function and Homeostasis Cells Structure, Function and Homeostasis Characteristics of Cells Basic unit of life anything alive is made of cells Plasma membrane (skin) that separates them from the environment. Skeletonsfor protection

More information

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know

Actions of Hormones on Target Cells Page 1. Actions of Hormones on Target Cells Page 2. Goals/ What You Need to Know Goals What You Need to Know Actions of Hormones on Target Cells Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Actions of Hormones on Target Cells Hormones

More information

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm.

Lecture 8. Protein Trafficking/Targeting. Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein Trafficking/Targeting (8.1) Lecture 8 Protein Trafficking/Targeting Protein targeting is necessary for proteins that are destined to work outside the cytoplasm. Protein targeting is more complex

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Carbon-organic Compounds

Carbon-organic Compounds Elements in Cells The living substance of cells is made up of cytoplasm and the structures within it. About 96% of cytoplasm and its included structures are composed of the elements carbon, hydrogen, oxygen,

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores

Biological Membranes. Impermeable lipid bilayer membrane. Protein Channels and Pores Biological Membranes Impermeable lipid bilayer membrane Protein Channels and Pores 1 Biological Membranes Are Barriers for Ions and Large Polar Molecules The Cell. A Molecular Approach. G.M. Cooper, R.E.

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids VEA Bringing Learning to Life Program Support Notes Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids Grades 10 - College 25mins Teacher Notes by Sue Wright, B. Sc., Dip. Ed. Produced by VEA Pty Ltd

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

An introduction to the biochemistry of diet.

An introduction to the biochemistry of diet. An introduction to the biochemistry of diet. SEPA BioScience Montana Module 3 Introduction: The following provides a basic introduction to the biochemistry of three major nutritional components of your

More information

Plasma Membrane hydrophilic polar heads

Plasma Membrane hydrophilic polar heads The Parts of the Cell 3 main parts in ALL cells: plasma membrane, cytoplasm, genetic material this is about the parts of a generic eukaryotic cell Plasma Membrane -is a fluid mosaic model membrane is fluid

More information

Chapter 2 Chemical Principles

Chapter 2 Chemical Principles Chapter 2 Chemical Principles I. Chemistry. [Students should read this section on their own]. a. Chemistry is the study of the interactions between atoms and molecules. b. The atom is the smallest unit

More information

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS Mammalian Physiology Cellular Membranes Membrane Transport UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton Objectives Describe the structure of the cell membrane

More information

I The THREE types of LIPIDS

I The THREE types of LIPIDS LECTURE OUTLINE Chapter 5 The Lipids: Fats, Oils, Phospholipids and Sterols I The THREE types of LIPIDS A. Triglycerides (fats & oils)- the MAJOR type of lipid in food and humans. 1. 2 parts of triglyceridesa)

More information

Organic Functional Groups Chapter 7. Alcohols, Ethers and More

Organic Functional Groups Chapter 7. Alcohols, Ethers and More Organic Functional Groups Chapter 7 Alcohols, Ethers and More 1 What do you do when you are in Pain? What do you do when you are in a lot of pain? 2 Functional Groups A functional group is an atom, groups

More information

Fig. 1. Background. Name: Class: Date:

Fig. 1. Background. Name: Class: Date: Background Bubbles make a great stand in for cell membranes. They re fluid, flexible, and can self-repair. Bubbles and cell membranes are alike because their parts are so similar. If you could zoom down

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information