Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects

Size: px
Start display at page:

Download "Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects"

Transcription

1 Globally-Opimal Greedy Algorihm for Tracking a Variable Number of Objec Hamed Piriavah Deva Ramanan Charle C. Fowlke Deparmen of Compuer Science, Univeriy of California, Irvine {hpiriav,dramanan,fowlke}@ic.uci.edu Abrac We analyze he compuaional problem of muli-objec racking in video equence. We formulae he problem uing a co funcion ha require eimaing he number of rack, a well a heir birh and deah ae. We how ha he global oluion can be obained wih a greedy algorihm ha equenially inaniae rack uing hore pah compuaion on a flow nework. Greedy algorihm allow one o embed pre-proceing ep, uch a nonmax uppreion, wihin he racking algorihm. Furhermore, we give a near-opimal algorihm baed on dynamic programming which run in ime linear in he number of objec and linear in he equence lengh. Our algorihm are fa, imple, and calable, allowing u o proce dene inpu daa. Thi reul in ae-of-he-ar performance. 62 rack deah rack deah d rack birh c b 62 rack birh rack birh 6 a e f Figure 1. We rea he problem of muli-arge racking hrough a perpecive of paioemporal grouping, where boh a large number of group and heir paioemporal exen (e.g., he number of objec and heir rack birh and deah) mu be eimaed. We how he oupu of an efficien, linear-ime algorihm for olving hi compuaional problem on he ETHMS daae []. In hi video clip our mehod reurn hundred of correc rack, a eviden by he overlaid rack number. 1. Inroducion Our conribuion i grounded in a novel analyi of an ineger linear program (ILP) formulaion of muli-objec racking [14, 25, 3, 17, 2, 18]. Our work mo cloely follow he min-co flow algorihm of [25]. We how ha one can exploi he pecial rucure of he racking problem by uing a greedy, ucceive hore-pah algorihm o reduce he be-previou running ime of O(N 3 log2 N ) o O(KN log N ), where K i he unknown, opimal number of unique rack, and N i he lengh of he video equence. The inuiion behind he greedy approach em from hi urpriing fac (Fig.2): he opimal inerpreaion of a video wih k + 1 rack can be derived by a local modificaion o he oluion obained for k rack. Guided by hi inigh, we alo inroduce an approximae greedy algorihm whoe running ime cale linearly wih equence lengh (i.e., O(KN )), and i in pracice everal order of magniude faer wih no obervable lo in accuracy. Finally, our greedy algorihm allow for he embedding of variou pre-proceing or po-proceing heuriic (uch a non-maximum uppreion) ino he racking algorihm, which can boo performance. We conider he problem of racking a variable number of objec in a video equence. We approach hi ak a a paioemporal grouping problem, where all image region mu be labeled a background or a a deecion belonging o a paricular objec rack. From uch a grouping perpecive, one mu explicily eimae (a) he number of unique rack and (b) he paioemporal exen, including he ar/erminaion ime, of each rack (Fig.1). Approache o accomplihing he above ak ypically employ heuriic or expenive algorihm ha cale exponenially in he number of objec and/or uper-linearly in he lengh of he video. In hi paper, we ouline a family of muli-objec racking algorihm ha are: 1. Globally opimal (for common objecive funcion) 2. Locally greedy (and hence eay o implemen) 3. Scale linearly in he number of objec and (quai)linearly wih video-lengh 1201

2 2. Relaed Work Claic formulaion of muli-objec racking focu on he daa aociaion problem of maching inance label wih emporal obervaion [11, 6, 7, 13]. Many approache aume manual iniializaion of rack and/or a fixed, known number of objec [14]. However, for many real-world racking problem, uch informaion i no available. A more general paioemporal grouping framework i required in which hee quaniie are auomaically eimaed from video daa. A popular approach o muli-objec racking i o run a low-level racker o obain rackle, and hen ich ogeher rackle uing variou graph-baed formalim or greedy heuriic [15, 22, 16, 1, 2]. Such graph-baed algorihm include flow-nework [25], linear-programming formulaion [14], and maching algorihm [15]. One of he conribuion of hi paper i o how ha wih a paricular choice of low-level racker, and a paricular chedule of rack inaniaion, uch an algorihm can be globallyopimal. We rely on an increaingly common ILP formulaion of racking [14, 25, 3, 17, 2, 18]. Such approache reric he e of poible objec locaion o a finie e of candidae window on he pixel grid. Becaue andard linear programming (LP) relaxaion do no cale well, many algorihm proce a mall e of candidae, wih limied or no occluion modeling. Thi can produce broken rack, ofen requiring a econd merging age. Our calable algorihm i able o proce much larger problem and direcly produce ae-of-he-ar rack. Our work relie heavily on he min-co flow nework inroduced for emporal daa aociaion in [25]. We compare our reul wih he min-co olver ued in ha work [12], and verified ha our O(KN log N) algorihm produce idenical reul, and ha our approximae O(KN) algorihm produce near-idenical reul when properly uned. In concurren work, Berclaz e al. decribe a O(KN log N) algorihm for muli-objec racking in [4]. I i imilar in many repec wih ome difference: Our graph repreenaion ha a pair of node for each deecion. Thi allow u o explicily model objec dynamic hrough raniion co, and allow for a impler flow-baed analyi. In addiion, our algorihm inaniae rack in a greedy fahion, allowing for he inegraion of pre-proceing ep (e.g., non-max-uppreion) ha improve accuracy. Finally, we alo decribe approximae O(KN) algorihm ha perform near-idenical in pracice. 3. Model We define an objecive funcion for muli-objec racking equivalen o ha of [25]. The objecive can be derived from a generaive perpecive by conidering a Hidden Markov 3 rack eimae 4 rack eimae x Figure 2. The inuiion behind our opimal greedy algorihm. Aume ha we are racking he x locaion of muliple objec over ime. On he lef, we how he opimal eimae of 3 objec rajecorie. Given he knowledge ha an addiional objec i preen, one may need o adju he exiing rack. We how ha one can do hi wih a hore-pah/minflow compuaion ha puhe flow from a ource o a erminal (middle). The oluion can revere flow along exiing rack o cu and pae egmen, producing he opimal 4-rack eimae (righ). We furher peed up hi proce by approximaing uch edi uing fa dynamic programming algorihm. Model (HMM) whoe ae pace i he e of rue objec locaion a each frame, along wih a prior ha pecifie likely ae raniion (including birh and deah) and an obervaion likelihood ha generae dene image feaure for all objec and he background Independen rack We wrie x for a vecor-valued random variable ha repreen he locaion of a paricular objec, a given by a pixel poiion, cale, and frame number: x = (p, σ, ) x V (1) where V denoe he e of all paceime locaion in a video. Prior: We wrie a ingle rack a an ordered e of ae vecor T = (x 1,... x N ), ordered by increaing frame number. We wrie he collecion of rack a a e X = {T 1,... T K }. We aume ha rack behave independenly of each oher, and ha each follow a variable-lengh Markov model: P (X) = P (T ) T X where P (T ) = P (x 1 ) ( N 1 n=1 ) P (x n+1 x n ) P (x N ) The dynamic model P (x n+1 x n ) encode a moohne prior for rack locaion. We wrie P (x 1 ) for he probabiliy of a rack aring a locaion x 1, and P (x N ) for he probabiliy of a rack raniioning ino a erminaion ae from locaion x N. If he probabiliy of erminaion i low, he above prior will end o favor longer, bu fewer rack o a o minimize he oal number of erminaion. If hee probabiliie are dependen on he paial coordinae of x, hey can model he fac ha rack end o erminae near image border or ar near enry poin uch a doorway. 1202

3 Likelihood: We wrie Y = {y i i V } for he e of feaure vecor oberved a all pace-ime locaion in a video. For example, hee could be he e of gradien hiogram feaure ha are cored by a liding-window objec deecor. We now decribe a likelihood model for generaing Y given he e of rack X. We make wo aumpion: 1) here exi a one-o-one mapping beween a puaive objec ae x and pace-ime locaion index i and 2) rack do no overlap (T k T l = for k l). Togeher, boh imply ha a locaion can be claimed by a mo one rack. We wrie y x for he image feaure a locaion x; hee feaure are generaed from a foreground appearance model. Feaure vecor for unclaimed window are generaed from a background model: ( ) P (Y X) = P fg (y x ) P bg (y i ) (2) T X x T = Z T X x T l(y x ) where l(y x ) = P fg(y x ) P bg (y x ) and i V \X Z = i P bg (y i ) The likelihood i, up o a conan, only dependen on feaure of he window which are par of he e of rack. If we aume ha he foreground and background likelihood are Gauian deniie wih he ame covariance, P fg (y x ) = N(y x ; µ fg, Σ) and P bg (y x ) = N(y x ; µ bg, Σ), we can wrie he log-likelihood-raio a a linear funcion (log l(y x ) = w y x ), akin o a logiic regreion model derived from a cla-condiional Gauian aumpion. Thi model provide a generaive moivaion for he linear emplae ha we ue a local deecor in our experimen Track inerdependence The above model i reaonable when he rack do no overlap or occlude each oher. However, in pracice we need o deal wih boh occluion and non-maxima uppreion. Occluion: To model occluion, we allow rack o be compoed of ae vecor from non-conecuive frame e.g., we allow n and n+1 o differ by up o k frame. The dynamic model P (x n+1 x n ) for uch k-frame kip capure he probabiliy of oberving he given k-frame occluion. Non-maxima uppreion: When we conider a dene e of locaion V, here will be muliple rack which core well bu correpond o he ame objec (e.g., a good rack hifed by one pixel will alo have a high probabiliy mach o he appearance model). A complee generaive model could accoun for hi by producing a cluer of image feaure around each rue objec locaion. Inference would explain away evidence and enforce excluion. In pracice, he ypical oluion i o apply non-max uppreion (NMS) a a pre-proce o prune he e of candidae locaion V prior o muli-objec racking [1, 6, 14, 25]. In our experimen, we alo uilize NMS o prune he e V and a a heuriic for explaining away evidence. However, we how ha he NMS procedure can be naurally embedded wihin our ieraive algorihm (raher han a a pre-proce). By uppreing exra deecion around each rack a i i inanced, we allow for he poibiliy ha he prior can override he obervaion erm and elec a window which i no a local maxima. Thi allow he NMS procedure o exploi emporal coherence. The recen work of [2] make a imilar argumen and add an explici nonoverlapping conrain o heir ILP, which may acrifice racabiliy. We demonrae in Sec. 6 ha our imple and fa approach produce ae-of-he-ar reul. 4. MAP Inference The maximuim a poeriori (MAP) eimae of rack given he collecion of oberved feaure i: X = argmax P (X)P (Y X) (3) X = argmax P (T ) l(y x ) X T X x T (4) = argmax X log P (T ) + log l(y x ) (5) T X x T We drop he conan facor Z and ake logarihm of he objecive funcion o implify he expreion while preerving he MAP oluion. The above can be re-wrien a an Ineger Linear Program: f = argmin C(f) (6) f wih C(f) = c i fi + c ij f ij + c i f i + c ifi i ij E i i (7).. f ij, f i, f i, f i {0, 1} and f i + j f ji = f i = f i + j f ij (8) where f i i a binary indicaor variable ha i 1 when paceime locaion i i included in ome rack. The auxiliary variable f ij along wih he econd conrain (8) enure ha a mo one rack claim locaion i, and ha muliple rack may no pli or merge. Wih a ligh abue of noaion, le u wrie x i for he puaive ae correponding o locaion i: c i = log P (x i ), c i = log P (x i ), () c ij = log P (x j x i ), c i = log l(y i ). 1203

4 frame 1 frame 2 frame 3 Figure 3. The nework model from [25] for hree conecuive frame of video. Each pace-ime locaion i V i repreened by a pair of node conneced by a red edge. Poible raniion beween locaion are modeled by blue edge. To allow rack o ar and end a any paioemporal poin in he video, each locaion i i conneced o boh a ar and erminaion node. All edge are direced and uni capaciy. The co are c i for red edge, c ij for blue edge and c i and c i for black edge. encode he rack ar, erminae, raniion, and obervaion likelihood repecively. We define he edge e E o pan he e of permiible ae raniion given by our dynamic model (Sec.3.1) Equivalence o nework flow To olve he above problem, we can relax he ineger conrain in (8) o linear box conrain (e.g., 0 f i 1) Thi relaxaion yield a uni capaciy nework flow problem whoe conrain marix i oally unimodular, implying ha opimal oluion o he relaxed problem will ill be inegral [1]. In paricular, aume ha we knew he number of rack in a video o be K. Le F K denoe he e of flow conervaion and uni capaciy conrain along wih he addiional conrain { F K = f ij, f i, fi, f i [0, 1], i f i = K, fi + j f ji = f i = fi + j f ij, i f i = K Minimizing C(f) ubjec o conrain F K i an inance of a minimum co flow problem [1, 25]. Such problem are imilar o max-flow problem (commonly ued in viion for olving graph-cu problem [5]), excep ha edge in he flow nework are labeled wih a co a well a capaciy. The co of a flow i defined o be he um, over all edge, of he co of each edge muliplied by he flow hrough ha edge. Finding he MAP eimae of K rack correpond o finding a minimum co flow ha puhe K uni of flow from he ource o he ink. Figure 3 how an example flow nework conruced from he racking problem. Each pace-ime locaion i, or equivalenly puaive objec ae x i, correpond o a pair of node (u i, v i ) conneced by an edge of co c i. Each raniion beween ucceive window i repreened by an edge (v i, u j ) wih co c ij. Finally, node and are inroduced wih edge (, u i ) correponding o rack ar and edge (v i, ) for erminaion (wih co c i and c i repecively). All edge have uni capaciy. Puhing K uni of flow from o yield a e of K dijoin -pah, each of which correpond o one of he opimal rack T X. 5. Finding min-co flow Zhang e al. [25] decribe how o olve he above opimizaion problem in O(mn 2 log n) ime uing a puhrelabel mehod [12], where n i he number of node (e.g. deecion window) in he nework graph and m i he number of edge. Auming ha n and m cale linearly wih he number of frame N (reaonable given a fixed number of deecion per frame), he algorihm ake O(N 3 log N) o find K rack. Furhermore, he co of he opimal oluion, min f FK C(f) i convex in K [25] o one can ue a biecion earch over K (upper-bounded by he number of deecion) o find he opimal number of rack wih a oal running ime O(N 3 log 2 N). In he following, we how ha one can olve he muliobjec racking problem in O(KN log N) by olving K +1 hore-pah problem. Thi coniderable reducion in complexiy i due o wo paricular properie of he nework in Fig.3: 1. All edge are uni capaciy. 2. The nework i a direced acyclic graph (DAG). The above condiion allow one o ue dynamic programming (DP) algorihm o compue hore pah. We decribe a novel DP algorihm ha i neceary o conruc a globally-opimal O(KN log N) algorihm. We alo how ha DP produce he opimal oluion for K = 1 in O(N) and high-qualiy approximae oluion for K > 1 in O(KN). We begin by decribing he opimal O(KN log N) algorihm baed on ucceive hore pah (inroduced in Fig.2) Succeive Shore-pah We now decribe a ucceive hore pah algorihm [1] for olving min-co flow problem for DAG nework wih uni-capaciy link. Given a graph G wih an inegral flow f, define he reidual graph G r (f) o be he ame a he original graph excep ha all edge ued in he flow f are revered in direcion and aigned negaive heir original co. We iniialize he algorihm by eing he flow f o be zero and hen ierae he following wo ep: 1. Find he minimum-co pah γ from o in G r (f) 2. If oal co of he pah C(γ) i negaive, updae f by puhing uni-flow along γ unil no negaive co pah can be found. Since each pah ha uni capaciy, each ieraion increae he oal flow by 1 and 1204

5 decreae he objecive by C(γ). The algorihm erminae afer K + 1 ieraion having found a minimum co flow. Puhing any furher flow from o will only increae he co. We refer he reader o [1] for a proof of he correcne of he algorihm bu give a brief ouline. We ay a flow f i F K -feaible if i aifie he conrain e F K. A neceary and ufficien condiion for f o be a minimum co flow of ize K i ha i be F K -feaible and ha here doe no exi a negaive-co direced cycle in G r (f). The ucceive hore-pah algorihm above ar wih a F 0 -feaible flow and a each ieraion i yield a new flow which i F i - feaible. Furhermore, each ep of he algorihm modifie edge along a ingle pah and can be hown o no inroduce any negaive weigh cycle. Figure 4 how example ieraion of hi algorihm and he reuling equence of reidual graph. Noe ha he hore pah in he reidual nework may inance a new rack and/or edi previou rack by removing flow from hem (by puhing flow hrough he revere edge). In each ieraion, we need o find a hore -pah. We would like o ue Dijkra algorihm o compue he hore pah in O(N log N), making he overall algorihm O(KN log N) where K i he opimal number of rack. Unforunaely, here are negaive edge co in our original nework, precluding he direc applicaion of Dijkra algorihm. Forunaely, one can conver any min-co flow nework o an equivalen nework wih non-negaive co [1]. Thi converion require compuing he hore-pah of every node from in he original graph G. For general graph wih negaive weigh, hi compuaion ake O(N 2 ) uing he Bellman-Ford algorihm [1]. For DAG, one can ue a O(N) dynamic programming algorihm, which we decribe below. The ucceive hore pah algorihm hu run in O(KN log N) operaion and reurn he global minima for our racking problem (Equaion 3) Dynamic Programming Soluion for K = 1 We now preen a O(N) dynamic programming (DP) algorihm for compuing he hore pah of every node o. We will alo how ha hi algorihm olve he min co flow problem for K = 1. Becaue each edge in he nework i of uni capaciy, he minimum co uni flow mu correpond o he hore pah from node o. Becaue he original nework graph i a DAG, one can conruc a parial ordering of node and ue DP o compue hore pah by weeping from he fir o la frame. Thi i imilar o DP algorihm for racking bu augmened o eimae boh he birh and deah ime of a rack. Aume ha node are ordered in ime, and le co(i) repreen he minimum co of a rack paing hrough node i. We iniialize co(i) for deecion in he fir frame o be co(i) = c i + c i. We can hen recurively compue he (a) (c) (e) Figure 4. Illuraion of ucceive hore pah algorihm. (a) The racking problem modeled a a graph a decribed in Fig.3. The algorihm hould end a given amoun of flow from ource node o he erminal. (b) One uni of flow f 1 i paed hrough he hore pah (in red) from ource o erminal. (c) The reidual graph G r(f 1) produced by eliminaing he hore pah and adding edge (in green) wih uni capaciy and negaive co wih he oppoie direcion. (d) The hore pah found in he reidual graph. In hi example, hi pah ue previouly added edge, puhing flow backward and ediing he previouly inanced rack. (e) Reidual graph afer paing wo uni of flow. A hi poin, no negaive co pah exi and o he algorihm erminae and reurn he wo rack highlighed in (f). Noe ha he algorihm ulimaely pli he rack inanced in he fir ep in order o produce he final opimal e of rack. In hi example only one pli happened in an ieraion, bu i i poible for a hore pah o ue edge from wo or more previouly inanced rack, bu i i very rare in pracice. Our dynamic programming algorihm canno reolve any pliing ince he reidual graph ha cycle, however he 2-pa dynamic programming algorihm can reolve he iuaion when any new hore pah pli a mo one previouly inanced rack. co in ucceive frame a: co(i) = c i + min(π, c i ) where π = min c ij + co(j) j N(i) (10) where N(i) i he e of deecion from he previou k frame ha can raniion o deecion i. The co of he opimal ending a node i i hen co(i) + c i, and he overall hore pah i compued by aking a min over i. By caching he argmin value a each node, we can reconruc he hore pah o each node in a ingle backward weep. (b) (d) 5.3. Approximae DP oluion for K > 1 We now propoe a imple greedy algorihm o inance a variable, unknown number of dijoin, low-co rack. Sar wih he original nework-flow graph: (f) 1205

6 1. Find he hore pah from o uing DP If he co of he pah i negaive, remove node on he pah and repea. rack birh rack deah The above algorihm perform K + 1 ieraion of DP o dicover K rack he la inanced rack i ignored ince i increae he overall co. I running ime i O(KN ). A each ieraion, we have obained a feaible (bu no necearily minimum co) k-uni flow. The ub-opimaliy lie in he fac ha he above algorihm canno adju any previouly inanced rack baed on he demand o produce addiional rack. In ucceive age, i operae on a ube of he original graph raher han he reidual graph ued in he ucceive hore pah algorihm. Unforunaely dynamic programming can be direcly applied o he reidual graph Gr (f ) ince he reidual graph i no longer a DAG (Fig.4-(c)). a rack deah c b rack deah d e d Figure 5. We how he reul of our algorihm, including eimaed rack birh and deah, on he Calech Pederian daae [8]. We how ypical reul on he ETHMS daae in Fig.1. men, hi decreaed compuaion ime by hree order of magniude. 6. Experimenal Reul 5.4. Approximae 2-pa DP oluion for K > 1 Daae: Mo benchmark for muli-objec racking (e.g., PETS [24]) are deigned for aionary camera. We are inereed in moving camera applicaion, and o ue he Calech Pederian daae [8] and ETHMS daae [] o evaluae our algorihm. The Calech daae wa capured by a camera inalled on a moving car. I conain 71 video of roughly 1800 frame each, capured a 30 frame per econd. Since he ee conain heldou label, we evaluae ourelve uing all annoaed pederian on he raining e. The ETHMS daae conain fooage of a buy idewalk a een by a camera mouned on a child roller. Alhough hi daae conain boh lef and righ view o faciliae ereo, we ue only he lef view in our experimen. The daae conain four video of roughly 1000 frame each, capured a 14 fp. Boh daae include bounding box annoaion for people, while Calech alo provide rack ID. We manually annoaed ID on a porion of ETHMS. In order o compare our reul wih previou work, we ue he ame ETHMS video equence a [25] wih frame and ignore deecion maller han 24 pixel a hey did. Seup: We ran an ou-of-he-box pre-rained parbaed HOG pederian deecor [10] wih a conervaive NMS hrehold, generaing around 1000 deecion per frame of each video. We e he log-likelihood raio (he local co ci ) of each deecion o be he negaive core of he linear deecor (he diance from he deciion boundary of an SVM). We ue a bounded-velociy dynamic model: we define he raniion co cij o be 0, bu only connec candidae window acro conecuive frame ha paially overlap. We e birh and deah co (ci, ci ) o be 10. We experimened wih applying an addiional NMS ep wihin our greedy algorihm. We alo experimened wih occluion modeling by adding raniion which kip over k frame, wih k up o 10. We now decribe generalizaion of our DP-baed algorihm from 5.3 ha can alo inance new rack while performing mall edi of previouly inanced rack. We oberve ha mo of he ime he hore reidual pah doe no make large edi on previou rack. We ue he ame algorihm from Secion 5.1, bu perform an approximae hore-pah uing a 2-pa DP algorihm raher han Dijkra algorihm. We perform a forward pa of DP a in (10), bu on Gr (f ) raher han G wih co(i) defined a he be forward-progreing pah from he ource o node i (ignoring revered edge). We hen ue he co a iniial value for a backward pa aring from he la frame, defining N (i) o be he e of node conneced hrough revere edge o i. Afer hi pa, co(i) i he co of he be forward and backward progreing pah ending a i. One could add addiional pae, bu we find experimenally ha wo pae are ufficien for good performance while aving O(log N ) operaion over Dijkra approach Caching Our DP algorihm repeaedly perform compuaion on a erie of reduced or reidual graph. Much of hee compuaion can be cached. Conider he DP compuaion required for he algorihm from Secion 5.3. Once a rack i inanced, co(i) value for node whoe hore-pah inerec ha rack are no longer valid, and i i only hi mall number of node ha need o be re-evaluaed in he nex ieraion. Thi e can be marked uing he following fac: any pah ha inerec a ome node mu hare he ame birh node. Each node can be labeled wih i birh node by propagaing a birh ID during meage-paing in DP. We hen only need o recompue co(i) for node ha have he ame birh node a a newly inanced rack. In our experi1206

7 Co DP (min a 444) 2 pa DP (min a 516) Succeive hore pah (min a 522) Co Number of rack Number of rack Figure 6. Co v. ieraion number for all hree algorihm on Calech daae. The ine how ha our 2-pa DP algorihm produce rack whoe co i cloe o opimum while being order of magniude faer. Deecion Rae DP SSP HOG Deecion Rae Fale Poiive Per Frame DP SSP Fale Poiive Per Frame DP+NMS HOG Figure 7. Deecion rae veru FPPI on Calech daae [8] (lef) and ETHMS daae [] (righ). We compare our approximae 1- pa DP algorihm wih he opimal ucceive hore pah (SSP) algorihm and a HOG-deecor baeline. The DP perform a well a or even beer han he hore pah algorihm, while being order of magniude faer. We alo how ha by uppreing overlapping deecion afer each rack i inanced (DP-NMS), we can furher improve performance. Scoring crieria: We ue deecion accuracy (a meaured by deecion rae and fale poiive per frame) a our primary evaluaion crieria, a i allow u o compare wih a wide body of relaed work on hee daae. To direcly core racker accuracy, variou oher crieria (uch a rack fragmenaion, ideniy wiching, ec.) have been propoed [21, 20, 25]. We alo ue rack ideniy o evaluae our algorihm below. Approximaion qualiy: We have decribed hree differen algorihm for olving he minimum co flow problem. Figure 6 how he flow co, i.e., he objecive funcion, veru ieraion number for all hree algorihm on he Calech daae. The DP algorihm follow he ucceive hore pah (SSP) algorihm for many ieraion bu evenually i i neceary o edi a previouly inanced rack (a in Figure 4) and he greedy DP algorihm begin o make ubopimal choice. However DP and SSP do no deviae much before reaching he minimum co and he 2-pa DP which allow for a ingle edi follow SSP quie cloely. Thi figure ine how a cloe look a he co a he minimum. Since he 2-pa algorihm can pli a mo one rack in each ieraion and i i very rare o ee wo pli a he ame ieraion, he co value for 2-pa DP algorihm i very cloe o he opimum one. Raher han coring he co funcion, we can direcly compare algorihm uing rack accuracy. Figure 7 how deecion rae veru FPPI for he baeline deecor, DP, and SSP algorihm. Thee figure how ha DP and SSP are imilar in accuracy, wih DP performing even beer in ome cae. We upec he SSP algorihm produce (overly) hor rack becaue he 1 order Markov model enforce a geomeric diribuion over rack lengh. The approximae DP algorihm inadverenly produce longer rack (ha beer mach he ground ruh diribuion of lengh) becaue previouly inanced rack are never cu or edied. We henceforh evaluae our one-pa DP algorihm in he ubequen experimen. We alo preen addiional diagnoic Lengh of % of window allowable occluion wih ID error Table 1. Evaluaing rack label error a a funcion of he lengh of he allowable occluion. We how reul for our DP algorihm applied o a porion of he ETHMS daae given ideal deeced window. Our DP algorihm cale linearly wih he lengh of allowable occluion. By allowing for longer occluion (common in hi daae), he % of window wih correc rack label ignificanly increae. experimen on he ETHMS daa, ince i conain on average more objec han Calech. Track ideniie: We evaluae rack ideniie on he ETHMS daae by uing our racker o compue rack label for ground-ruh bounding boxe. Thi i equivalen o running our racker on an ideal objec deecor wih zero mied deecion and fale poiive. Given a correpondence beween eimaed rack label and ground-ruh rack label, he miclaificaion rae i he fracion of bounding boxe wih incorrec label. We compue he correpondence ha minimize hi error by biparie maching [15]. We found occluion modeling o be crucial for mainaining rack ideniie. Our algorihm can repor rack wih k-frame occluion by adding in raniion beween pace-ime window paced k frame apar. Our DP algorihm cale linearly wih k, and o we can readily model long 10-frame occluion (Table 1). Thi grealy increae he accuracy of rack label on hi daa becaue uch occluion are common when nearby people pa he camera, occluding people furher away. Thi reul implie ha, given ideal local deecor, our racking algorihm produce rack ideniie wih 0% accuracy. NMS-wihin-he-loop: In Figure 7, we ue he ETHMS daae o examine he effec of adding a NMS ep wihin 1207

8 Algorihm Deecion rae Fale poiive per frame [] ereo algorihm [25] algorihm [25] algorihm 2 wih occluion handling [23] wo-age algorihm wih occluion handling Our DP Our DP+NMS Table 2. Our algorihm performance compared o he previou ae-of-he-ar on he ETHMS daae. Pleae ee he ex for furher dicuion. our ieraive greedy algorihm. When applying [10] pederian deecor, we ue heir defaul NMS algorihm a a pre-proce o uppre deecion ha overlap oher higher-coring deecion by ome hrehold. Afer inancing a rack during he DP algorihm, we uppre remaining window ha overlap he inanced rack uing a lower hrehold. Thi uppreion i more reliable han he iniial one becaue racked window are more likely o be rue poiive. Our reul ouperform all previouly publihed reul on hi daa (Table 2). Running ime: For he -frame ETHMS daae, MATLAB LP olver doe no converge, he commercial min-co-flow olver ued in [23] ake 5 econd, while our MATLAB DP code ake 0.5 econd. 7. Concluion We have decribed a family of efficien, greedy bu globally opimal algorihm for olving he problem of muliobjec racking, including eimaing he number of objec and heir rack birh and deah. Our algorihm are baed on a novel analyi of a min-co flow framework for racking. Our greedy algorihm allow u o embed pre-proceing ep uch a NMS wihin our racking algorihm. Our calable algorihm alo allow u o proce large inpu equence and model long occluion, producing ae-of-he-ar reul on benchmark daae. Acknowledgemen: Funding for hi reearch wa provided by NSF Gran 0540 and , and ONR- MURI Gran N Reference [1] R. Ahuja, T. Magnai, and J. Orlin. Nework flow: Theory, Algorihm, and Applicaion. Prenice Hall, [2] A. Andriyenko and K. Schindler. Globally opimal muliarge racking on a hexagonal laice. In ECCV, [3] J. Berclaz, F. Fleure, and P. Fua. Muliple objec racking uing flow linear programming. In Performance Evaluaion of Tracking and Surveillance (PETS-Winer), 200 Twelfh IEEE Inernaional Workhop on, page 1 8. IEEE, [4] J. Berclaz, F. Fleure, E. Türeken, and P. Fua. Muliple Objec Tracking uing K-Shore Pah Opimizaion. IEEE Tranacion on PAMI, Acceped for publicaion in [5] Y. Boykov, O. Vekler, and R. Zabih. Fa approximae energy minimizaion via graph cu. IEEE PAMI, [6] Y. Cai, N. de Freia, and J. Lile. Robu viual racking for muliple arge. Lecure Noe in Compuer Science, 354:107, [7] W. Choi and S. Savaree. Muliple arge racking in world coordinae wih ingle, minimally calibraed camera. ECCV 2010, page 553 5, [8] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pederian deecion: A benchmark. In IEEE CVPR, June 200. [] A. E, B. Leibe, and L. Van Gool. Deph and appearance for mobile cene analyi. In ICCV, [10] P. Felzenzwalb, D. McAlleer, and D. Ramanan. A dicriminaively rained, mulicale, deformable par model. IEEE CVPR, [11] T. Formann, Y. Bar-Shalom, and M. Scheffe. Sonar racking of muliple arge uing join probabiliic daa aociaion. IEEE Journal of Oceanic Engineering, 8(3):1 184, 1. [12] A. Goldberg. An efficien implemenaion of a caling minimum-co flow algorihm. Journal of Algorihm, 22(1):1 2, 17. [13] M. Iard and J. MacCormick. Bramble: A bayeian mulipleblob racker. In ICCV, [14] H. Jiang, S. Fel, and J. Lile. A linear programming approach for muliple objec racking. In IEEE CVPR, [15] H. Kuhn, P. Haa, I. Ilya, G. Lohman, and V. Markl. The Hungarian mehod for he aignmen problem. Mahead, 23(3): , 13. [16] S. K. V. G. L. Leibe, B. Coupled deecion and rajecory eimaion for muli-objec racking. ICCV [17] Y. Ma, Q. Yu, and I. Cohen. Targe racking wih incomplee deecion. CVIU, 200. [18] S. Pellegrini, A. E, and L. V. Gool. Improving daa aociaion by join modeling of pederian rajecorie and grouping. In ECCV, [1] A. Perera, C. Sriniva, A. Hoog, G. Brookby, and W. Hu. Muli-objec racking hrough imulaneou long occluion and pli-merge condiion. In IEEE CVPR, volume 1, [20] A. G. A. Perera, A. Hoog, C. Sriniva, G. Brookby, and W. Hu. Evaluaion of algorihm for racking muliple objec in video. In AIPR, page 35, [21] K. Smih, D. Gaica-Perez, J. Odobez, and S. Ba. Evaluaing muli-objec racking. In CVPR Workhop. IEEE, [22] C. Sauffer. Eimaing racking ource and ink. In Proc. Even Mining Workhop. Cieeer. [23] J. Xing, H. Ai, and S. Lao. Muli-objec racking hrough occluion by local rackle filering and global rackle aociaion wih deecion repone. In IEEE CVPR, June 200. [24] D. Young and J. Ferryman. Pe meric: On-line performance evaluaion ervice. In Join IEEE Inernaional Workhop on Viual Surveillance and Performance Evaluaion of Tracking and Surveillance (VS-PETS), page 317 4, [25] L. Zhang, Y. Li, and R. Nevaia. Global daa aociaion for muli-objec racking uing nework flow. In CVPR,

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics .4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).

More information

Chapter 13. Network Flow III Applications. 13.1 Edge disjoint paths. 13.1.1 Edge-disjoint paths in a directed graphs

Chapter 13. Network Flow III Applications. 13.1 Edge disjoint paths. 13.1.1 Edge-disjoint paths in a directed graphs Chaper 13 Nework Flow III Applicaion CS 573: Algorihm, Fall 014 Ocober 9, 014 13.1 Edge dijoin pah 13.1.1 Edge-dijoin pah in a direced graph 13.1.1.1 Edge dijoin pah queiong: graph (dir/undir)., : verice.

More information

On the Connection Between Multiple-Unicast Network Coding and Single-Source Single-Sink Network Error Correction

On the Connection Between Multiple-Unicast Network Coding and Single-Source Single-Sink Network Error Correction On he Connecion Beween Muliple-Unica ework Coding and Single-Source Single-Sink ework Error Correcion Jörg Kliewer JIT Join work wih Wenao Huang and Michael Langberg ework Error Correcion Problem: Adverary

More information

How Much Can Taxes Help Selfish Routing?

How Much Can Taxes Help Selfish Routing? How Much Can Taxe Help Selfih Rouing? Tim Roughgarden (Cornell) Join wih Richard Cole (NYU) and Yevgeniy Dodi (NYU) Selfih Rouing a direced graph G = (V,E) a ource and a deinaion one uni of raffic from

More information

Fortified financial forecasting models: non-linear searching approaches

Fortified financial forecasting models: non-linear searching approaches 0 Inernaional Conference on Economic and inance Reearch IPEDR vol.4 (0 (0 IACSIT Pre, Singapore orified financial forecaing model: non-linear earching approache Mohammad R. Hamidizadeh, Ph.D. Profeor,

More information

CHAPTER 11 NONPARAMETRIC REGRESSION WITH COMPLEX SURVEY DATA. R. L. Chambers Department of Social Statistics University of Southampton

CHAPTER 11 NONPARAMETRIC REGRESSION WITH COMPLEX SURVEY DATA. R. L. Chambers Department of Social Statistics University of Southampton CHAPTER 11 NONPARAMETRIC REGRESSION WITH COMPLEX SURVEY DATA R. L. Chamber Deparmen of Social Saiic Univeriy of Souhampon A.H. Dorfman Office of Survey Mehod Reearch Bureau of Labor Saiic M.Yu. Sverchkov

More information

Optimal Path Routing in Single and Multiple Clock Domain Systems

Optimal Path Routing in Single and Multiple Clock Domain Systems IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, TO APPEAR. 1 Opimal Pah Rouing in Single and Muliple Clock Domain Syem Soha Haoun, Senior Member, IEEE, Charle J. Alper, Senior Member, IEEE ) Abrac Shrinking

More information

Physical Topology Discovery for Large Multi-Subnet Networks

Physical Topology Discovery for Large Multi-Subnet Networks Phyical Topology Dicovery for Large Muli-Subne Nework Yigal Bejerano, Yuri Breibar, Mino Garofalaki, Rajeev Raogi Bell Lab, Lucen Technologie 600 Mounain Ave., Murray Hill, NJ 07974. {bej,mino,raogi}@reearch.bell-lab.com

More information

SELF-EVALUATION FOR VIDEO TRACKING SYSTEMS

SELF-EVALUATION FOR VIDEO TRACKING SYSTEMS SELF-EVALUATION FOR VIDEO TRACKING SYSTEMS Hao Wu and Qinfen Zheng Cenre for Auomaion Research Dep. of Elecrical and Compuer Engineering Universiy of Maryland, College Park, MD-20742 {wh2003, qinfen}@cfar.umd.edu

More information

Real-time Particle Filters

Real-time Particle Filters Real-ime Paricle Filers Cody Kwok Dieer Fox Marina Meilă Dep. of Compuer Science & Engineering, Dep. of Saisics Universiy of Washingon Seale, WA 9895 ckwok,fox @cs.washingon.edu, mmp@sa.washingon.edu Absrac

More information

How has globalisation affected inflation dynamics in the United Kingdom?

How has globalisation affected inflation dynamics in the United Kingdom? 292 Quarerly Bullein 2008 Q3 How ha globaliaion affeced inflaion dynamic in he Unied Kingdom? By Jennifer Greenlade and Sephen Millard of he Bank Srucural Economic Analyi Diviion and Chri Peacock of he

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales Forecasting

A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales Forecasting A Comparaive Sudy of Linear and Nonlinear Model for Aggregae Reail Sale Forecaing G. Peer Zhang Deparmen of Managemen Georgia Sae Univeriy Alana GA 30066 (404) 651-4065 Abrac: The purpoe of hi paper i

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

Heat demand forecasting for concrete district heating system

Heat demand forecasting for concrete district heating system Hea demand forecaing for concree diric heaing yem Bronilav Chramcov Abrac Thi paper preen he reul of an inveigaion of a model for hor-erm hea demand forecaing. Foreca of hi hea demand coure i ignifican

More information

AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 2010 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

More information

How To Solve An Uncerain Daa Problem

How To Solve An Uncerain Daa Problem Robu Bandwidh Allocaion Sraegie Oliver Heckmann, Jen Schmi, Ralf Seinmez Mulimedia Communicaion Lab (KOM), Darmad Univeriy of Technology Merckr. 25 D-64283 Darmad Germany {Heckmann, Schmi, Seinmez}@kom.u-darmad.de

More information

Empirical heuristics for improving Intermittent Demand Forecasting

Empirical heuristics for improving Intermittent Demand Forecasting Empirical heuriic for improving Inermien Demand Forecaing Foio Peropoulo 1,*, Konanino Nikolopoulo 2, Georgio P. Spihouraki 1, Vailio Aimakopoulo 1 1 Forecaing & Sraegy Uni, School of Elecrical and Compuer

More information

Formulating Cyber-Security as Convex Optimization Problems

Formulating Cyber-Security as Convex Optimization Problems Formulaing Cyber-Securiy a Convex Opimizaion Problem Kyriako G. Vamvoudaki, João P. Hepanha, Richard A. Kemmerer, and Giovanni Vigna Univeriy of California, Sana Barbara Abrac. Miion-cenric cyber-ecuriy

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets Nanocube for RealTime Exploraion of Spaioemporal Daae Lauro Lin, Jame T Kloowki, and arlo Scheidegger Fig 1 Example viualizaion of 210 million public geolocaed Twier po over he coure of a year The daa

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

Equity Valuation Using Multiples. Jing Liu. Anderson Graduate School of Management. University of California at Los Angeles (310) 206-5861

Equity Valuation Using Multiples. Jing Liu. Anderson Graduate School of Management. University of California at Los Angeles (310) 206-5861 Equiy Valuaion Uing Muliple Jing Liu Anderon Graduae School of Managemen Univeriy of California a Lo Angele (310) 206-5861 jing.liu@anderon.ucla.edu Doron Niim Columbia Univeriy Graduae School of Buine

More information

New Evidence on Mutual Fund Performance: A Comparison of Alternative Bootstrap Methods. David Blake* Tristan Caulfield** Christos Ioannidis*** and

New Evidence on Mutual Fund Performance: A Comparison of Alternative Bootstrap Methods. David Blake* Tristan Caulfield** Christos Ioannidis*** and New Evidence on Muual Fund Performance: A Comparion of Alernaive Boorap Mehod David Blake* Trian Caulfield** Chrio Ioannidi*** and Ian Tonk**** June 2014 Abrac Thi paper compare he wo boorap mehod of Koowki

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Two-Group Designs Independent samples t-test & paired samples t-test. Chapter 10

Two-Group Designs Independent samples t-test & paired samples t-test. Chapter 10 Two-Group Deign Independen ample -e & paired ample -e Chaper 0 Previou e (Ch 7 and 8) Z-e z M N -e (one-ample) M N M = andard error of he mean p. 98-9 Remember: = variance M = eimaed andard error p. -

More information

OPTIMAL BATCH QUANTITY MODELS FOR A LEAN PRODUCTION SYSTEM WITH REWORK AND SCRAP. A Thesis

OPTIMAL BATCH QUANTITY MODELS FOR A LEAN PRODUCTION SYSTEM WITH REWORK AND SCRAP. A Thesis OTIMAL BATH UANTITY MOELS FOR A LEAN ROUTION SYSTEM WITH REWORK AN SRA A Thei Submied o he Graduae Faculy of he Louiiana Sae Univeriy and Agriculural and Mechanical ollege in parial fulfillmen of he requiremen

More information

Cross-sectional and longitudinal weighting in a rotational household panel: applications to EU-SILC. Vijay Verma, Gianni Betti, Giulio Ghellini

Cross-sectional and longitudinal weighting in a rotational household panel: applications to EU-SILC. Vijay Verma, Gianni Betti, Giulio Ghellini Cro-ecional and longiudinal eighing in a roaional houehold panel: applicaion o EU-SILC Viay Verma, Gianni Bei, Giulio Ghellini Working Paper n. 67, December 006 CROSS-SECTIONAL AND LONGITUDINAL WEIGHTING

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Formulating Cyber-Security as Convex Optimization Problems Æ

Formulating Cyber-Security as Convex Optimization Problems Æ Formulaing Cyber-Securiy a Convex Opimizaion Problem Æ Kyriako G. Vamvoudaki,João P. Hepanha, Richard A. Kemmerer 2, and Giovanni Vigna 2 Cener for Conrol, Dynamical-yem and Compuaion (CCDC), Univeriy

More information

The Role of the Scientific Method in Software Development. Robert Sedgewick Princeton University

The Role of the Scientific Method in Software Development. Robert Sedgewick Princeton University The Role of he Scienific Mehod in Sofware Developmen Rober Sedgewick Princeon Univeriy The cienific mehod i neceary in algorihm deign and ofware developmen Scienific mehod creae a model decribing naural

More information

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches. Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

More information

Bi-label Propagation for Generic Multiple Object Tracking

Bi-label Propagation for Generic Multiple Object Tracking Bi-label Propagaion for Generic Muliple Objec Tracking Wenhan Luo, Tae-Kyun Kim, Björn Senger 2, Xiaowei Zhao, Robero Cipolla 3 Imperial College London, 2 Toshiba Research Europe, 3 Universiy of Cambridge

More information

TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999

TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999 TSG-RAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macro-diversiy for he PRACH Discussion/Decision

More information

Multi-resource Allocation Scheduling in Dynamic Environments

Multi-resource Allocation Scheduling in Dynamic Environments MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 in 1523-4614 ein 1526-5498 00 0000 0001 INFORMS doi 10.1287/xxxx.0000.0000 c 0000 INFORMS Muli-reource Allocaion Scheduling

More information

Making a Faster Cryptanalytic Time-Memory Trade-Off

Making a Faster Cryptanalytic Time-Memory Trade-Off Making a Faser Crypanalyic Time-Memory Trade-Off Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland philippe.oechslin@epfl.ch

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

How To Understand The Long Run Behavior Of Aving Rae

How To Understand The Long Run Behavior Of Aving Rae Subience Conumpion and Riing Saving Rae Kenneh S. Lin a, Hiu-Yun Lee b * a Deparmen of Economic, Naional Taiwan Univeriy, Taipei, 00, Taiwan. b Deparmen of Economic, Naional Chung Cheng Univeriy, Chia-Yi,

More information

An approach for designing a surface pencil through a given geodesic curve

An approach for designing a surface pencil through a given geodesic curve An approach for deigning a urface pencil hrough a given geodeic curve Gülnur SAFFAK ATALAY, Fama GÜLER, Ergin BAYRAM *, Emin KASAP Ondokuz Mayı Univeriy, Faculy of Ar and Science, Mahemaic Deparmen gulnur.affak@omu.edu.r,

More information

Dividend taxation, share repurchases and the equity trap

Dividend taxation, share repurchases and the equity trap Working Paper 2009:7 Deparmen of Economic Dividend axaion, hare repurchae and he equiy rap Tobia Lindhe and Jan Söderen Deparmen of Economic Working paper 2009:7 Uppala Univeriy May 2009 P.O. Box 53 ISSN

More information

Online Multi-Class LPBoost

Online Multi-Class LPBoost Online Muli-Class LPBoos Amir Saffari Marin Godec Thomas Pock Chrisian Leisner Hors Bischof Insiue for Compuer Graphics and Vision, Graz Universiy of Technology, Ausria {saffari,godec,pock,leisner,bischof}@icg.ugraz.a

More information

Automatic measurement and detection of GSM interferences

Automatic measurement and detection of GSM interferences Auomaic measuremen and deecion of GSM inerferences Poor speech qualiy and dropped calls in GSM neworks may be caused by inerferences as a resul of high raffic load. The radio nework analyzers from Rohde

More information

Max Flow, Min Cut. Maximum Flow and Minimum Cut. Soviet Rail Network, 1955. Minimum Cut Problem

Max Flow, Min Cut. Maximum Flow and Minimum Cut. Soviet Rail Network, 1955. Minimum Cut Problem Maximum Flow and Minimum u Max Flow, Min u Max flow and min cu. Two very rich algorihmic problem. ornerone problem in combinaorial opimizaion. eauiful mahemaical dualiy. Minimum cu Maximum flow Max-flow

More information

Calculation of variable annuity market sensitivities using a pathwise methodology

Calculation of variable annuity market sensitivities using a pathwise methodology cuing edge Variable annuiie Calculaion of variable annuiy marke eniiviie uing a pahwie mehodology Under radiional finie difference mehod, he calculaion of variable annuiy eniiviie can involve muliple Mone

More information

Signal Processing and Linear Systems I

Signal Processing and Linear Systems I Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

More information

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

The Application of Multi Shifts and Break Windows in Employees Scheduling

The Application of Multi Shifts and Break Windows in Employees Scheduling The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

Distributed Online Localization in Sensor Networks Using a Moving Target

Distributed Online Localization in Sensor Networks Using a Moving Target Disribued Online Localizaion in Sensor Neworks Using a Moving Targe Aram Galsyan 1, Bhaskar Krishnamachari 2, Krisina Lerman 1, and Sundeep Paem 2 1 Informaion Sciences Insiue 2 Deparmen of Elecrical Engineering-Sysems

More information

Stock option grants have become an. Final Approval Copy. Valuation of Stock Option Grants Under Multiple Severance Risks GURUPDESH S.

Stock option grants have become an. Final Approval Copy. Valuation of Stock Option Grants Under Multiple Severance Risks GURUPDESH S. Valuaion of Sock Opion Gran Under Muliple Severance Rik GURUPDESH S. PANDHER i an aian profeor in he deparmen of finance a DePaul Univeriy in Chicago, IL. gpandher@depaul.edu GURUPDESH S. PANDHER Execuive

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Acceleration Lab Teacher s Guide

Acceleration Lab Teacher s Guide Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

More information

Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1

Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1 Absrac number: 05-0407 Single-machine Scheduling wih Periodic Mainenance and boh Preempive and Non-preempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy

More information

Maintaining Multi-Modality through Mixture Tracking

Maintaining Multi-Modality through Mixture Tracking Mainaining Muli-Modaliy hrough Mixure Tracking Jaco Vermaak, Arnaud Douce Cambridge Universiy Engineering Deparmen Cambridge, CB2 1PZ, UK Parick Pérez Microsof Research Cambridge, CB3 0FB, UK Absrac In

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS. G. Chapman J. Cleese E. Idle DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS G. Chapman J. Cleee E. Idle ABSTRACT Content matching i a neceary component of any ignature-baed network Intruion Detection

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

1. BACKGROUND 1-1 Traffic Flow Surveillance

1. BACKGROUND 1-1 Traffic Flow Surveillance Auo-Recogniion of Vehicle Maneuvers Based on Spaio-Temporal Clusering. BACKGROUND - Traffic Flow Surveillance Conduced wih kinds of beacons mouned a limied roadside poins wih Images from High Aliude Plaforms

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783 Sock raing wih Recurren Reinforcemen Learning (RRL) CS9 Applicaion Projec Gabriel Molina, SUID 555783 I. INRODUCION One relaively new approach o financial raing is o use machine learning algorihms o preic

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

Newton s Laws of Motion

Newton s Laws of Motion Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

More information

Long Term Spread Option Valuation and Hedging

Long Term Spread Option Valuation and Hedging Long Term Spread Opion Valuaion and Hedging M.A.H. Demper, Elena Medova and Ke Tang Cenre for Financial Reearch, Judge Buine School, Univeriy of Cambridge, Trumpingon Sree, Cambridge CB 1AG & Cambridge

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

Trading Strategies for Sliding, Rolling-horizon, and Consol Bonds

Trading Strategies for Sliding, Rolling-horizon, and Consol Bonds Trading Sraegie for Sliding, Rolling-horizon, and Conol Bond MAREK RUTKOWSKI Iniue of Mahemaic, Poliechnika Warzawka, -661 Warzawa, Poland Abrac The ime evoluion of a liding bond i udied in dicree- and

More information

A Natural Feature-Based 3D Object Tracking Method for Wearable Augmented Reality

A Natural Feature-Based 3D Object Tracking Method for Wearable Augmented Reality A Naural Feaure-Based 3D Objec Tracking Mehod for Wearable Augmened Realiy Takashi Okuma Columbia Universiy / AIST Email: okuma@cs.columbia.edu Takeshi Kuraa Universiy of Washingon / AIST Email: kuraa@ieee.org

More information

The International Investment Position of Jamaica: An Estimation Approach

The International Investment Position of Jamaica: An Estimation Approach WP/04 The Inernaional Invemen Poiion of Jamaica: An Eimaion Approach Dane Docor* Economic Informaion & Publicaion Deparmen Bank of Jamaica Ocober 2004 Abrac Thi paper eek o inroduce he inernaional invemen

More information

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.

Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya. Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one

More information

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS

DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS DISTRIBUTED DATA PARALLEL TECHNIQUES FOR CONTENT-MATCHING INTRUSION DETECTION SYSTEMS Chritopher V. Kopek Department of Computer Science Wake Foret Univerity Winton-Salem, NC, 2709 Email: kopekcv@gmail.com

More information

Process Modeling for Object Oriented Analysis using BORM Object Behavioral Analysis.

Process Modeling for Object Oriented Analysis using BORM Object Behavioral Analysis. Proce Modeling for Objec Oriened Analyi uing BORM Objec Behavioral Analyi. Roger P. Kno Ph.D., Compuer Science Dep, Loughborough Univeriy, U.K. r.p.kno@lboro.ac.uk 9RMW FKMerunka Ph.D., Dep. of Informaion

More information

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities *

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities * A Universal Pricing Framework for Guaraneed Minimum Benefis in Variable Annuiies * Daniel Bauer Deparmen of Risk Managemen and Insurance, Georgia Sae Universiy 35 Broad Sree, Alana, GA 333, USA Phone:

More information

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

More information

Policies & Procedures. I.D. Number: 1071

Policies & Procedures. I.D. Number: 1071 Policie & Procedure Tile: Licened Pracical Nure (LPN ) ADDED SKILLS (Aigned Funcion) Auhorizaion: [x] SHR Nuring Pracice Commiee I.D. Number: 1071 Source: Nuring Dae Revied: Sepember 2004 Dae Effecive:

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

The Role of Science and Mathematics in Software Development

The Role of Science and Mathematics in Software Development The cienific mehod i eenial in applicaion of compuaion A peronal opinion formed on he bai of decade of experience a a The Role of Science and Mahemaic in Sofware Developmen CS educaor auhor algorihm deigner

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

PROFITS AND POSITION CONTROL: A WEEK OF FX DEALING

PROFITS AND POSITION CONTROL: A WEEK OF FX DEALING PROFITS AND POSITION CONTROL: A WEEK OF FX DEALING Richard K. Lyon U.C. Berkeley and NBER Thi verion: June 1997 Abrac Thi paper examine foreign exchange rading a he dealer level. The dealer we rack average

More information

Maintenance scheduling and process optimization under uncertainty

Maintenance scheduling and process optimization under uncertainty Compuers and Chemical Engineering 25 (2001) 217 236 www.elsevier.com/locae/compchemeng ainenance scheduling and process opimizaion under uncerainy C.G. Vassiliadis, E.N. Piikopoulos * Deparmen of Chemical

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

Infrastructure and Evolution in Division of Labour

Infrastructure and Evolution in Division of Labour Infrarucure and Evoluion in Diviion of Labour Mei Wen Monah Univery (Thi paper ha been publihed in RDE. (), 9-06) April 997 Abrac Thi paper udie he relaionhip beween infrarucure ependure and endogenou

More information

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

More information

Predicting Stock Market Index Trading Signals Using Neural Networks

Predicting Stock Market Index Trading Signals Using Neural Networks Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical

More information

Communication Networks II Contents

Communication Networks II Contents 3 / 1 -- Communicaion Neworks II (Görg) -- www.comnes.uni-bremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

E0 370 Statistical Learning Theory Lecture 20 (Nov 17, 2011)

E0 370 Statistical Learning Theory Lecture 20 (Nov 17, 2011) E0 370 Saisical Learning Theory Lecure 0 (ov 7, 0 Online Learning from Expers: Weighed Majoriy and Hedge Lecurer: Shivani Agarwal Scribe: Saradha R Inroducion In his lecure, we will look a he problem of

More information

Q-SAC: Toward QoS Optimized Service Automatic Composition *

Q-SAC: Toward QoS Optimized Service Automatic Composition * Q-SAC: Toward QoS Opimized Service Auomaic Composiion * Hanhua Chen, Hai Jin, Xiaoming Ning, Zhipeng Lü Cluser and Grid Compuing Lab Huazhong Universiy of Science and Technology, Wuhan, 4374, China Email:

More information

Multiprocessor Systems-on-Chips

Multiprocessor Systems-on-Chips Par of: Muliprocessor Sysems-on-Chips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,

More information

Chapter 1.6 Financial Management

Chapter 1.6 Financial Management Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

Chapter 4: Exponential and Logarithmic Functions

Chapter 4: Exponential and Logarithmic Functions Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion

More information

A Distributed Multiple-Target Identity Management Algorithm in Sensor Networks

A Distributed Multiple-Target Identity Management Algorithm in Sensor Networks A Disribued Muliple-Targe Ideniy Managemen Algorihm in Sensor Neworks Inseok Hwang, Kaushik Roy, Hamsa Balakrishnan, and Claire Tomlin Dep. of Aeronauics and Asronauics, Sanford Universiy, CA 94305 Elecrical

More information