# Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Sock raing wih Recurren Reinforcemen Learning (RRL) CS9 Applicaion Projec Gabriel Molina, SUID

2 I. INRODUCION One relaively new approach o financial raing is o use machine learning algorihms o preic he rise an fall of asse prices before hey occur. An opimal raer woul buy an asse before he price rises, an sell he asse before is value eclines. or his projec, an asse raer will be implemene using recurren reinforcemen learning (RRL). he algorihm an is parameers are from a paper wrien by Mooy an Saffell. I is a graien ascen algorihm which aemps o maximize a uiliy funcion known as Sharpe s raio. By choosing an opimal parameer w for he raer, we aemp o ake avanage of asse price changes. es examples of he asse raer s operaion, boh real-worl an conrive, are illusrae in he final secion. III. UILIY UNCION: SHARPE S RAIO One commonly use meric in financial engineering is Sharpe s raio. or a ime series of invesmen reurns, Sharpe s raio can be calculae as: Average( R ) S for inerval,..., Sanar Deviaion( R ) where R is he reurn on invesmen for raing perio. Inuiively, Sharpe s raio rewars invesmen sraegies ha rely on less volaile rens o make a profi. IV. RADER UNCION he raer will aemp o maximize Sharpe s raio for a given price ime series. or his projec, he raer funcion akes he form of a neuron: anh( w x ) where M is he number of ime series inpus o he raer, he parameer vecor x, r,..., r M,, an he reurn r p p. w M, he inpu Noe ha r is he ifference in value of he asse beween he curren perio an he previous perio. herefore, r is he reurn on one share of he asse bough a ime. Also, he funcion [, ] represens he raing posiion a ime. here are hree ypes of posiions ha can be hel: long, shor, or neural. A long posiion is when. In his case, he raer buys an asse a price p an hopes ha i appreciaes by perio. A shor posiion is when. In his case, he raer sells an asse which i oes no own a price p, wih he expecaion o prouce he shares a perio. If he price a is higher, hen he raer is force o buy a he higher price o fulfill he conrac. If he price a is lower, hen he raer has mae a profi. J Mooy, M Saffell, Learning o rae via Direc Reinforcemen, IEEE ransacions on Neural Neworks, Vol, No 4, July.

3 A neural posiion is when. In his case, he oucome a ime has no effec on he raer s profis. here will be neiher gain nor loss. hus, represens holings a perio. ha is, n shares are bough (long posiion) or sol (shor posiion), where is he maximum possible number of shares per ransacion. he reurn a ime, consiering he ecision, is: R r where is he cos for a ransacion a perio. If (i.e. no change in our invesmen his perio) hen here will be no ransacion penaly. Oherwise he penaly is proporional o he ifference in shares hel. he firs erm ( r ) is he reurn resuling from he invesmen ecision from he perio. or example, if shares, he ecision was o buy half he maximum allowe (. 5 ), an each share increase r 8 price unis, his erm woul be 8, he oal reurn profi (ignoring ransacion penalies incurre uring perio ). V. GRADIEN ASCEN Maximizing Sharpe s raio requires a graien ascen. irs, we efine our uiliy funcion using basic formulas from saisics for mean an variance: We have S E[ R ] A where A E[ R ] ( E[ R ]) B A R an B R hen we can ake he erivaive of S using he chain rule: S S A B A A A S B S A B A S B B S A A S B B he necessary parial erivaives of he reurn funcion are: r sgn( ) r r r sgn( ) hen, he parial erivaives an mus be calculae:

4 anh( w x ) ( anh( w x ) ) w x ( anh( w ) x M x ) w 3 Noe ha he erivaive is recurren an epens on all previous values of. his means ha o rain he parameers, we mus keep a recor of from he beginning of our ime series. Because sock aa is in he range of - samples, his slows own he graien ascen bu oes no presen an insurmounable compuaional buren. An alernaive is o use online learning an o approximae using only he previous erm, effecively making he algorihm a sochasic graien ascen as in Mooy & Saffell s paper. However, my chosen approach is o insea use he exac expressions as wrien above. Once he S erm has been calculae, he weighs are upae accoring o he graien ascen rule wi wi S. he process is repeae for N e ieraions, where N e is chosen o assure ha Sharpe s raio has converge. VI. RAINING he mos successful meho in my exploraion has been he following algorihm:. rain parameers w M using a hisorical winow of size. Use he opimal policy w o make real ime ecisions from o N preic 3. Afer N preic preicions are complee, repea sep one. Inuiively, he sock price has unerlying srucure ha is changing as a funcion of ime. Choosing large assumes he sock price s srucure oes no change much uring samples. In he ranom process example below, an N are large because he srucure of he process is consan. If long erm rens o no appear o preic ominae sock behavior, hen i makes sense o reuce, since shorer winows can be a beer soluion han raining on large amouns of pas hisory. or example, aa for he years IBM 98-6 migh no lea o a goo sraegy for use in Dec. 6. A more accurae policy woul likely resul from raining wih aa from 4-6. VII. EXAMPLE price, p() Sharpe' raio raining ieraion igure. raining resuls for auoregressive ranom process., 75 N e he firs example of raining a policy is execue on an auoregressive ranom process (ranomness by injecing Gaussian noise ino couple equaions). In figure, he op graph is he generae price series. he boom graph is Sharpe s raio on he ime series using he parameer w for each ieraion of raining. So, as raining progresses, we fin beer values of w unil we have achieve an opimum Sharpe s raio for he given aa.

5 hen, we use his opimal w parameer o form a preicion for he nex N preic aa samples, shown below: 4 igure. Preicion performance using opimal policy from raining. N preic As is apparen from he above graph, he raer is making ecisions base on he w parameer. Of course, w is subopimal for he ime series over his preice inerval, bu i oes beer han a monkey. Afer inervals our reurn woul be %. he nex experimen, presene in he same forma, is o preic real sock aa wih some precipious rops (Ciigroup): price series, p Sharpe's raio raining ieraion, N e igure 3. raining w on Ciigroup sock aa. 6

6 5 5 reurns, r (ecisions) percen gains (%) igure 4. r (op), (mile), an percenage profi (cumulaive) for Ciigroup. Noe ha alhough he general r ) wipes ou our gains aroun = 75. policy is goo, he precipious rop in price (ownwar spike in he recurren reinforcemen learner seems o work bes on socks ha are consan on average, ye flucuae up an own. In such a case, here is less worry abou a precipious rop like in he above example. Wih a relaively consan mean sock price, he reinforcemen learner is free o play he ups an owns. he recurren reinforcemen learner seems o work, alhough i is ricky o se up an verify. One imporan rick is o properly scale he reurn series aa o mean zero an variance one, or he neuron canno separae he resuling aa poins. VII. CONCLUSIONS he primary ifficulies wih his approach res in he fac ha cerain sock evens o no exhibi srucure. As seen in he secon example above, he reinforcemen learner oes no preic precipious rops in he sock price an is jus as vulnerable as a human. Perhaps i woul be more effecive if combine wih a mechanism o preic such precipious rops. Oher changes o he moel migh be incluing sock volumes as feaures ha coul help in preicing rises an falls. Aiionally, i woul be nice o augmen he moel o incorporae fixe ransacion coss, as well as less frequen ransacions. or example, a moel coul be creae ha learns from long perios of aa, bu only perioically makes a ecision. his woul reflec he case of a casual raer ha paricipaes in smaller volume raes wih fixe ransacion coss. Because i is oo expensive for small-ime invesors o rae every perio wih fixe ransacion coss, a moel wih a perioic rae sraegy woul more financially feasible for such users. I woul probably be worhwhile o ry aaping his moel o his sor of perioic raing an see he resuls. Gol, Carl, X raing via Recurren Reinforcemen Learning, Compuaional Inelligences for inancial Engineering, 3. Proceeings. 3 IEEE Inernaional Conference on. p March 3. Special hanks o Carl for avice on algorihm implemenaion.

### Hedging with Forwards and Futures

Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

### Morningstar Investor Return

Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

### Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is \$613.

Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

### Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...

Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The Black-Scholes Shl Ml Moel... pricing opions an calculaing

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

### Small Menu Costs and Large Business Cycles: An Extension of Mankiw Model *

Small enu Coss an Large Business Ccles: An Exension of ankiw oel * Hirana K Nah Deparmen of Economics an Inl. Business Sam Houson Sae Universi an ober Srecher Deparmen of General Business an Finance Sam

### Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

### Markit Excess Return Credit Indices Guide for price based indices

Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

### Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

### BALANCE OF PAYMENTS. First quarter 2008. Balance of payments

BALANCE OF PAYMENTS DATE: 2008-05-30 PUBLISHER: Balance of Paymens and Financial Markes (BFM) Lena Finn + 46 8 506 944 09, lena.finn@scb.se Camilla Bergeling +46 8 506 942 06, camilla.bergeling@scb.se

### SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,

### The Transport Equation

The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

### State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

### Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

### Why Did the Demand for Cash Decrease Recently in Korea?

Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

### Newton's second law in action

Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

### Multiprocessor Systems-on-Chips

Par of: Muliprocessor Sysems-on-Chips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO

Profi Tes Modelling in Life Assurance Using Spreadshees, par wo PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Erik Alm Peer Millingon Profi Tes Modelling in Life Assurance Using Spreadshees,

### CBOE VIX PREMIUM STRATEGY INDEX (VPD SM ) CAPPED VIX PREMIUM STRATEGY INDEX (VPN SM )

CBOE VIX PREIU STRATEGY INDEX (VPD S ) CAPPED VIX PREIU STRATEGY INDEX (VPN S ) The seady growh of CBOE s volailiy complex provides a unique opporuniy for invesors inen on capuring he volailiy premium.

### Forecasting, Ordering and Stock- Holding for Erratic Demand

ISF 2002 23 rd o 26 h June 2002 Forecasing, Ordering and Sock- Holding for Erraic Demand Andrew Eaves Lancaser Universiy / Andalus Soluions Limied Inroducion Erraic and slow-moving demand Demand classificaion

### I. Basic Concepts (Ch. 1-4)

(Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

### Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

### Chapter 6 Interest Rates and Bond Valuation

Chaper 6 Ineres Raes and Bond Valuaion Definiion and Descripion of Bonds Long-erm deb-loosely, bonds wih a mauriy of one year or more Shor-erm deb-less han a year o mauriy, also called unfunded deb Bond-sricly

### 4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

### Markov Models and Hidden Markov Models (HMMs)

Markov Models and Hidden Markov Models (HMMs (Following slides are modified from Prof. Claire Cardie s slides and Prof. Raymond Mooney s slides. Some of he graphs are aken from he exbook. Markov Model

### FIN 472 Fixed-Income Securities Approximating Price Changes: From Duration to Convexity Professor Robert B.H. Hauswald Kogod School of Business, AU

FIN 47 Fixed-Income Securiies Approximaing rice Changes: From Duraion o Convexiy rofessor Rober B.H. Hauswald Kogod School of Business, AU Bond rice Volailiy Consider only IR as a risk facor Longer M means

### Making a Faster Cryptanalytic Time-Memory Trade-Off

Making a Faser Crypanalyic Time-Memory Trade-Off Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland philippe.oechslin@epfl.ch

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1

Absrac number: 05-0407 Single-machine Scheduling wih Periodic Mainenance and boh Preempive and Non-preempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy

### Equities: Positions and Portfolio Returns

Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi

### INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE

INVESMEN UARANEES IN UNI-LINKED LIFE INSURANCE PRODUCS: COMPARIN COS AND PERFORMANCE NADINE AZER HAO SCHMEISER WORKIN PAPERS ON RISK MANAEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAEMEN

### Chapter 1.6 Financial Management

Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1

### 4. International Parity Conditions

4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

### Chapter 6: Business Valuation (Income Approach)

Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

### Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

### Technical Description of S&P 500 Buy-Write Monthly Index Composition

Technical Descripion of S&P 500 Buy-Wrie Monhly Index Composiion The S&P 500 Buy-Wrie Monhly (BWM) index is a oal reurn index based on wriing he nearby a-he-money S&P 500 call opion agains he S&P 500 index

### WHAT ARE OPTION CONTRACTS?

WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

### An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia

An empirical analysis abou forecasing Tmall air-condiioning sales using ime series model Yan Xia Deparmen of Mahemaics, Ocean Universiy of China, China Absrac Time series model is a hospo in he research

### The Grantor Retained Annuity Trust (GRAT)

WEALTH ADVISORY Esae Planning Sraegies for closely-held, family businesses The Granor Reained Annuiy Trus (GRAT) An efficien wealh ransfer sraegy, paricularly in a low ineres rae environmen Family business

### Dynamic programming models and algorithms for the mutual fund cash balance problem

Submied o Managemen Science manuscrip Dynamic programming models and algorihms for he muual fund cash balance problem Juliana Nascimeno Deparmen of Operaions Research and Financial Engineering, Princeon

### Individual Health Insurance April 30, 2008 Pages 167-170

Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

### Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

### Predicting Stock Market Index Trading Signals Using Neural Networks

Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical

### Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

### Chapter 8: Regression with Lagged Explanatory Variables

Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

### 1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

### Chapter Four: Methodology

Chaper Four: Mehodology 1 Assessmen of isk Managemen Sraegy Comparing Is Cos of isks 1.1 Inroducion If we wan o choose a appropriae risk managemen sraegy, no only we should idenify he influence ha risks

### Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

### A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

### Machine Learning in Pairs Trading Strategies

Machine Learning in Pairs Trading Sraegies Yuxing Chen (Joseph) Deparmen of Saisics Sanford Universiy Email: osephc5@sanford.edu Weiluo Ren (David) Deparmen of Mahemaics Sanford Universiy Email: weiluo@sanford.edu

### Distributing Human Resources among Software Development Projects 1

Disribuing Human Resources among Sofware Developmen Proecs Macario Polo, María Dolores Maeos, Mario Piaini and rancisco Ruiz Summary This paper presens a mehod for esimaing he disribuion of human resources

### Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

### Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

### Understanding Sequential Circuit Timing

ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

### THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

### Optimal Investment and Consumption Decision of Family with Life Insurance

Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

### Rationales of Mortgage Insurance Premium Structures

JOURNAL OF REAL ESTATE RESEARCH Raionales of Morgage Insurance Premium Srucures Barry Dennis* Chionglong Kuo* Tyler T. Yang* Absrac. This sudy examines he raionales for he design of morgage insurance premium

### 1. Explain why the theory of purchasing power parity is often referred to as the law of one price.

Chaper Review Quesions. xplain why he heory of purchasing power pariy is ofen referred o as he law of one price. urchasing ower ariy () is referred o as he law of one price because he deerminaion of he

### Lecture III: Finish Discounted Value Formulation

Lecure III: Finish Discouned Value Formulaion I. Inernal Rae of Reurn A. Formally defined: Inernal Rae of Reurn is ha ineres rae which reduces he ne presen value of an invesmen o zero.. Finding he inernal

### µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

### Capacity Planning and Performance Benchmark Reference Guide v. 1.8

Environmenal Sysems Research Insiue, Inc., 380 New York S., Redlands, CA 92373-8100 USA TEL 909-793-2853 FAX 909-307-3014 Capaciy Planning and Performance Benchmark Reference Guide v. 1.8 Prepared by:

### A Re-examination of the Joint Mortality Functions

Norh merican cuarial Journal Volume 6, Number 1, p.166-170 (2002) Re-eaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali

### Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

Moel Embee Conrol: A Meho o Rapily Synhesize Conrollers in a Moeling Environmen Moel Embee Conrol: A Meho o Rapily Synhesize Conrollers in a Moeling Environmen E. D. Tae Michael Sasena Jesse Gohl Michael

### Double Entry System of Accounting

CHAPTER 2 Double Enry Sysem of Accouning Sysem of Accouning \ The following are he main sysem of accouning for recording he business ransacions: (a) Cash Sysem of Accouning. (b) Mercanile or Accrual Sysem

### Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

### Financial Market Microstructure and Trading Algorithms

Financial Marke Microsrucure and Trading Algorihms M.Sc. in Economics and Business Adminisraion Specializaion in Applied Economics and Finance Deparmen of Finance Copenhagen Business School 2009 Jens Vallø

### CRISES AND THE FLEXIBLE PRICE MONETARY MODEL. Sarantis Kalyvitis

CRISES AND THE FLEXIBLE PRICE MONETARY MODEL Saranis Kalyviis Currency Crises In fixed exchange rae regimes, counries rarely abandon he regime volunarily. In mos cases, raders (or speculaors) exchange

### Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

### Fifth Quantitative Impact Study of Solvency II (QIS 5) National guidance on valuation of technical provisions for German SLT health insurance

Fifh Quaniaive Impac Sudy of Solvency II (QIS 5) Naional guidance on valuaion of echnical provisions for German SLT healh insurance Conens 1 Inroducion... 2 2 Calculaion of bes-esimae provisions... 3 2.1

### Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

### FORWARD AND FUTURES CONTRACTS

Page1 C H A P T E R 2 FORWARD AND FUTURES CONTRACTS 2.1 INTRODUCTION The main purpose of forward and fuures conracs is he managemen of risk. The exposure o risk as a resul of ransacing in he spo marke

### Analysis of Pricing and Efficiency Control Strategy between Internet Retailer and Conventional Retailer

Recen Advances in Business Managemen and Markeing Analysis of Pricing and Efficiency Conrol Sraegy beween Inerne Reailer and Convenional Reailer HYUG RAE CHO 1, SUG MOO BAE and JOG HU PARK 3 Deparmen of

### OPTIMAL PORTFOLIO MANAGEMENT WITH TRANSACTIONS COSTS AND CAPITAL GAINS TAXES

OPTIMAL PORTFOLIO MANAGEMENT WITH TRANSACTIONS COSTS AND CAPITAL GAINS TAXES Hayne E. Leland Haas School of Business Universiy of California, Berkeley Curren Version: December, 1999 Absrac We examine he

### RC, RL and RLC circuits

Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

### AP Calculus AB 2010 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College

### THE RETURN ON INVESTMENT FROM PROPORTIONAL PORTFOLIO STRATEGIES

THE RETURN ON INVESTMENT FROM PROPORTIONAL PORTFOLIO STRATEGIES Si Browne Columbia Universiy Final Version: November 11, 1996 Appeare in: Avances in Applie Probabiliy, 30, 216-238, 1998 Absrac Dynamic

### The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas

The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he

### COMPARISON OF AIR TRAVEL DEMAND FORECASTING METHODS

COMPARISON OF AIR RAVE DEMAND FORECASING MEHODS Ružica Škurla Babić, M.Sc. Ivan Grgurević, B.Eng. Universiy of Zagreb Faculy of ranspor and raffic Sciences Vukelićeva 4, HR- Zagreb, Croaia skurla@fpz.hr,

### Risk Modelling of Collateralised Lending

Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

### Inductance and Transient Circuits

Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

### YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

### Chapter 9 Bond Prices and Yield

Chaper 9 Bond Prices and Yield Deb Classes: Paymen ype A securiy obligaing issuer o pay ineress and principal o he holder on specified daes, Coupon rae or ineres rae, e.g. 4%, 5 3/4%, ec. Face, par value

### Indexing Executive Stock Options Relatively

Indexing Execuive Sock Opions Relaively Jin-Chuan Duan and Jason Wei Joseph L. Roman School of Managemen Universiy of Torono 105 S. George Sree Torono, Onario Canada, M5S 3E6 jcduan@roman.uorono.ca wei@roman.uorono.ca

### Total factor productivity growth in the Canadian life insurance industry: 1979-1989

Toal facor produciviy growh in he Canadian life insurance indusry: 1979-1989 J E F F R E Y I. B E R N S T E I N Carleon Universiy and Naional Bureau of Economic Research 1. Inroducion Produciviy growh

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

### NASDAQ-100 Futures Index SM Methodology

NASDAQ-100 Fuures Index SM Mehodology Index Descripion The NASDAQ-100 Fuures Index (The Fuures Index ) is designed o rack he performance of a hypoheical porfolio holding he CME NASDAQ-100 E-mini Index

### Two Compartment Body Model and V d Terms by Jeff Stark

Two Comparmen Body Model and V d Terms by Jeff Sark In a one-comparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics - By his, we mean ha eliminaion is firs order and ha pharmacokineic

### Performance Center Overview. Performance Center Overview 1

Performance Cener Overview Performance Cener Overview 1 ODJFS Performance Cener ce Cener New Performance Cener Model Performance Cener Projec Meeings Performance Cener Execuive Meeings Performance Cener

### 13 Solving nonhomogeneous equations: Variation of the constants method

13 Solving nonhomogeneous equaions: Variaion of he consans meho We are sill solving Ly = f, (1 where L is a linear ifferenial operaor wih consan coefficiens an f is a given funcion Togeher (1 is a linear

### THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS

HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models

### PRICING AND PERFORMANCE OF MUTUAL FUNDS: LOOKBACK VERSUS INTEREST RATE GUARANTEES

PRICING AND PERFORMANCE OF MUUAL FUNDS: LOOKBACK VERSUS INERES RAE GUARANEES NADINE GAZER HAO SCHMEISER WORKING PAPERS ON RISK MANAGEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAGEMEN

### 17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### Multiple Structural Breaks in the Nominal Interest Rate and Inflation in Canada and the United States

Deparmen of Economics Discussion Paper 00-07 Muliple Srucural Breaks in he Nominal Ineres Rae and Inflaion in Canada and he Unied Saes Frank J. Akins, Universiy of Calgary Preliminary Draf February, 00

### 23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

### The Impact of Surplus Distribution on the Risk Exposure of With Profit Life Insurance Policies Including Interest Rate Guarantees.

The Impac of Surplus Disribuion on he Risk Exposure of Wih Profi Life Insurance Policies Including Ineres Rae Guaranees Alexander Kling 1 Insiu für Finanz- und Akuarwissenschafen, Helmholzsraße 22, 89081