# E0 370 Statistical Learning Theory Lecture 20 (Nov 17, 2011)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 E0 370 Saisical Learning Theory Lecure 0 (ov 7, 0 Online Learning from Expers: Weighed Majoriy and Hedge Lecurer: Shivani Agarwal Scribe: Saradha R Inroducion In his lecure, we will look a he problem of learning from muliple expers in an online fashion. There are finie number of expers, who give heir predicions ξ,..., ξ. The learning algorihm has o use he predicor values and come up wih an oucome ŷ. The oal number of misakes made by he algorihm is compared wih he performance of he bes exper in consideraion. Online Predicion from Expers A general online predicion problem proceeds as follows. Online (binary predicion using muliple expers For =,..., T : Receive exper predicors ξ (x,..., ξ (x {±} Predic ŷ {±} Receive rue label y {±} Incur loss l(y, ŷ. Halving Algorihm Here we assume ha he se of expers ha we consider has an exper which would give he correc label for all insances. In he halving algorihm, for every ieraion, only he consisen expers are reained. If a predicor makes a misake i will no more be conribuing in he predicion process. Halving Algorihm Iniiae weighs wi = i ] For =,..., T : Receive exper predicors ξ (x,..., ξ (x {±} Predic ŷ = sign( n j= w j.ξ j (majoriy voe Receive rue label y {±} Incur loss l(y, ŷ Updae:- Updae:- i... : Ifξi y hen i 0 else i wi

2 Online Learning from Expers: Weighed Majoriy and Hedge Thus he maximum number of misakes, or he sum of loss over any given sequence is bounded by he logarihm of number of predicors. i.e. L 0- S Halving] log.. Weighed Majoriy (WM Algorihm In he halving algorihm, when a predicor makes even one misake, i will no be able o conribue o he predicion in he successive ieraions. When we don have an exper ha would predic correcly for all samples, his would no be a suiable approach. The weighed majoriy algorihm works well in such siuaions. Here every predicor is assigned equal weigh, say, iniially. Laer as hey make binary predicions on insances, he weighs of he predicors are decreased using muliplicaive updae, when hey commi misakes. The rae a which he weighs are updaed is governed by he parameer. Weighed majoriy Algorihm Iniiae weighs wi = i ] For =,..., T : Receive exper predicors ξ (x,..., ξ (x {±} Predic ŷ = sign( n j= w j.ξ j Receive rue label y {±} Incur loss l(y, ŷ Updae:- If ŷ y i... i w i exp(.i(y ξ i (majoriy voe Theorem.. Le ξ,..., ξ {±} T. Le S = (y,..., y T {±} and le > 0. Then he oal number of misakes ( L 0- S W eighedm ajoriy(] +exp(. min L 0- S ξ i ] + i. +exp(. Proof. Denoe L 0- S W eighedmajoriy] = L For each rial on which here is a misake, we have + = wi. exp (.I(y ξ i. ( = w i. exp + w i ( i:y ξ i i:y =ξ i = exp.w maj + W min (3 For all misake rials, we have + Therefore summing over =,..., T gives exp.w maj + W min + exp (W maj W min (4 = + exp.(w maj + W min +exp. For oher rials, + W W T + W T = + exp.( (5 ( + exp L. (6

3 Online Learning from Expers: Weighed Majoriy and Hedge 3 L ln W ln W T + +exp (. (7 Finding he lower bound on ln W T + + = j= w T + j w T + j exp.li w i ( i. (8 L ln W.L i ln wi +e ( = ln +.L i +e ( (9 (0 for all w j > 0 j Thus we obain he resul..3 Weighed Majoriy: Coninuous Version (WMC We now see he coninuous version of weighed majoriy algorihm. The final predicion is a weighed average of he exper predicor values. Here ỹ = ŷ = y = 0, ] Weighed majoriy Algorihm :Coninuous Version (WMC Iniiae weighs wi = i ] For =,..., T : Receive exper predicors ξ (x,..., ξ (x 0, ] Predic ŷ = w i.ξ i 0, ] (Weighed Average w i Receive rue label y 0, ] Incur loss l abs (y, ŷ = y ŷ Updae:- i... i wi. exp. ξ i y Theorem.. Le ξ,..., ξ 0, ] T. Le S = (y,..., y T 0, ] and le > 0. Then he oal number of misakes S W MC(] (. min exp i L abs L abs S ξ i ] +.. exp Proof. Denoe L abs S W MC(] = L For each rial we have + = wi. exp. y ξ i. ( wi. ( exp y ξi ]. (

4 4 Online Learning from Expers: Weighed Majoriy and Hedge + wi ( exp w i y ξi (3 w i. ( exp w i y ξi (4 w i =. ( exp ŷ y ] (5 ] +. exp ( exp. ŷ y. (6 + exp ( exp. T = ŷ y ] = exp ( exp.l exp ( exp. ŷ y ] (7 (8 Finding he lower bound on ln W T + L ln W ln W T + (exp. (9 + exp.li w i ( i. (0 Thus we obain he resul L ln W T + +.L i ln wi (exp ( ln +.L i (exp. ( 3 Online Allocaion The problem of online allocaion occurs in scenarios where we need o allocae differen fracion of resources ino differen opions. The loss associaed wih every opion is available a he end of every ieraion. We would like o reduce he oal loss suffered for he paricular allocaion. The allocaion for he nex ieraion is hen revised, based on he oal loss suffered in he curren ieraion using muliplicaive updae. Hedge Algorihm( Iniiae weighs wi = i ] For =,..., T : Make allocaion p p = w ; w i Receive vecor of loses l = (l,..., l 0, ] Incur loss p.l = p i.l i Updae:- i... i wi. exp (l i

5 Online Learning from Expers: Weighed Majoriy and Hedge 5 Theorem 3.. Le l,..., l T 0, ] The cumulaive loss of he algorihm is LA] = T p.l If he loss of a paricular opion over he T ieraions is given by Then L T l i. LHedge(] (. min L exp i +.. i exp Proof. Denoe LHedge(] = L For each rial we have + = wi. exp.l i. (3 wi. ( exp. w i.l i. (4 w i + wi ( exp p.l ]. (5 + exp ( exp.p.l ] (6 ] exp ( exp.l (7 L ln W ln W T + (exp. (8 Finding he lower bound on ln W T + + exp.li w i ( i. (9 Thus we obain he resul L ln W T + +.L i ln wi (exp (30 ln +.L i (exp. (3 4 ex Lecure In he nex lecure, we will inroduce he idea of minimax regre, in an adversarial learning seing. References

### MTH6121 Introduction to Mathematical Finance Lesson 5

26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

### Markov Models and Hidden Markov Models (HMMs)

Markov Models and Hidden Markov Models (HMMs (Following slides are modified from Prof. Claire Cardie s slides and Prof. Raymond Mooney s slides. Some of he graphs are aken from he exbook. Markov Model

### I. Basic Concepts (Ch. 1-4)

(Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

Real-Time Scheduling Sysem Model Task is a schedulable eniy, i.e., a hread Time consrains of periodic ask T: - s: saring poin - e: processing ime of T - d: deadline of T - p: period of T Periodic ask T

### Multiobjective Prediction with Expert Advice

Muliobjecive Predicion wih Exper Advice Alexey Chernov Compuer Learning Research Cenre and Deparmen of Compuer Science Royal Holloway Universiy of London GTP Workshop, June 2010 Alexey Chernov (RHUL) Muliobjecive

### Newton's second law in action

Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

### Parameter-Free Convex Learning through Coin Betting

JMLR: Workshop and Conference Proceedings 1:1 7, 2016 ICML 2016 AuoML Workshop Parameer-Free Convex Learning hrough Coin Being Francesco Orabona Dávid Pál Yahoo Research, New York FRANCESCO@ORABONA.COM

### Single-machine Scheduling with Periodic Maintenance and both Preemptive and. Non-preemptive jobs in Remanufacturing System 1

Absrac number: 05-0407 Single-machine Scheduling wih Periodic Mainenance and boh Preempive and Non-preempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy

### ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

Learning Eigenvecors for Free Wouer M Koolen Royal Holloway and CWI wouer@csrhulacuk Wojek Kołowski Cenrum Wiskunde & Informaica kolowsk@cwinl Manfred K Warmuh UC Sana Cruz manfred@cseucscedu Absrac We

### Renewal processes and Poisson process

CHAPTER 3 Renewal processes and Poisson process 31 Definiion of renewal processes and limi heorems Le ξ 1, ξ 2, be independen and idenically disribued random variables wih P[ξ k > 0] = 1 Define heir parial

### The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1

Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,

### An Online Learning-based Framework for Tracking

An Online Learning-based Framework for Tracking Kamalika Chaudhuri Compuer Science and Engineering Universiy of California, San Diego La Jolla, CA 9293 Yoav Freund Compuer Science and Engineering Universiy

### GLAS Team Member Quarterly Report. June , Golden, Colorado (Colorado School of Mines)

GLAS Team ember Quarerly Repor An Nguyen, Thomas A Herring assachuses Insiue of Technology Period: 04/01/2004 o 06/30//2004 eeings aended Tom Herring aended he eam meeing near GSFC a he end of June, 2004.

### SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,

### Graphing the Von Bertalanffy Growth Equation

file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

### The Application of Multi Shifts and Break Windows in Employees Scheduling

The Applicaion of Muli Shifs and Brea Windows in Employees Scheduling Evy Herowai Indusrial Engineering Deparmen, Universiy of Surabaya, Indonesia Absrac. One mehod for increasing company s performance

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

### An empirical analysis about forecasting Tmall air-conditioning sales using time series model Yan Xia

An empirical analysis abou forecasing Tmall air-condiioning sales using ime series model Yan Xia Deparmen of Mahemaics, Ocean Universiy of China, China Absrac Time series model is a hospo in he research

### Table of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities

Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17

### A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

### Supply Chain Management Using Simulation Optimization By Miheer Kulkarni

Supply Chain Managemen Using Simulaion Opimizaion By Miheer Kulkarni This problem was inspired by he paper by Jung, Blau, Pekny, Reklaii and Eversdyk which deals wih supply chain managemen for he chemical

### Math 201 Lecture 12: Cauchy-Euler Equations

Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

### Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

### 4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

### Chapter 8: Regression with Lagged Explanatory Variables

Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

### 1 The basic circulation problem

2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he max-flow problem again, bu his

### TSG-RAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999

TSG-RAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macro-diversiy for he PRACH Discussion/Decision

### 4. The Poisson Distribution

Virual Laboraories > 13. The Poisson Process > 1 2 3 4 5 6 7 4. The Poisson Disribuion The Probabiliy Densiy Funcion We have shown ha he k h arrival ime in he Poisson process has he gamma probabiliy densiy

### ON THURSTONE'S MODEL FOR PAIRED COMPARISONS AND RANKING DATA

ON THUSTONE'S MODEL FO PAIED COMPAISONS AND ANKING DATA Alber Maydeu-Olivares Dep. of Psychology. Universiy of Barcelona. Paseo Valle de Hebrón, 171. 08035 Barcelona (Spain). Summary. We invesigae by means

### Risk Modelling of Collateralised Lending

Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

### Density Dependence. births are a decreasing function of density b(n) and deaths are an increasing function of density d(n).

FW 662 Densiy-dependen populaion models In he previous lecure we considered densiy independen populaion models ha assumed ha birh and deah raes were consan and no a funcion of populaion size. Long-erm

### A Short Introduction to Boosting

Journal of Japanese Sociey for Arificial Inelligence,14(5):771-780, Sepember, 1999. (In Japanese, ranslaion by Naoki Abe.) A Shor Inroducion o Boosing Yoav Freund Rober E. Schapire AT&T Labs Research Shannon

### AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

### A dynamic probabilistic modeling of railway switches operating states

A dynamic probabilisic modeling of railway swiches operaing saes Faicel Chamroukhi 1, Allou Samé 1, Parice Aknin 1, Marc Anoni 2 1 IFSTTAR, 2 rue de la Bue Vere, 93166 Noisy-le-Grand Cedex, France {chamroukhi,same,aknin}@ifsar.fr

### Morningstar Investor Return

Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

### Revisions to Nonfarm Payroll Employment: 1964 to 2011

Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm

### Suggested Reading. Signals and Systems 4-2

4 Convoluion In Lecure 3 we inroduced and defined a variey of sysem properies o which we will make frequen reference hroughou he course. Of paricular imporance are he properies of lineariy and ime invariance,

### PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

### Lecture 18. Serial correlation: testing and estimation. Testing for serial correlation

Lecure 8. Serial correlaion: esing and esimaion Tesing for serial correlaion In lecure 6 we used graphical mehods o look for serial/auocorrelaion in he random error erm u. Because we canno observe he u

### A NOTE ON UNIT SYSTEMS

Tom Aage Jelmer NTNU eparmen of Peroleum Engineering and Applied Geophysics Inroducory remarks A NOTE ON UNIT SYSTEMS So far, all equaions have been expressed in a consisen uni sysem. The SI uni sysem

### Longevity 11 Lyon 7-9 September 2015

Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

### Communication Networks II Contents

3 / 1 -- Communicaion Neworks II (Görg) -- www.comnes.uni-bremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP

### A NOTE ON THE ALMOST EVERYWHERE CONVERGENCE OF ALTERNATING SEQUENCES WITH DUNFORD SCHWARTZ OPERATORS

C O L L O Q U I U M M A T H E M A T I C U M VOL. LXII 1991 FASC. I A OTE O THE ALMOST EVERYWHERE COVERGECE OF ALTERATIG SEQUECES WITH DUFORD SCHWARTZ OPERATORS BY RYOTARO S A T O (OKAYAMA) 1. Inroducion.

### Small and Large Trades Around Earnings Announcements: Does Trading Behavior Explain Post-Earnings-Announcement Drift?

Small and Large Trades Around Earnings Announcemens: Does Trading Behavior Explain Pos-Earnings-Announcemen Drif? Devin Shanhikumar * Firs Draf: Ocober, 2002 This Version: Augus 19, 2004 Absrac This paper

### INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES

Journal of Applied Analysis 1, 1 (1995), pp. 39 45 INDEPENDENT MARGINALS OF OPERATOR LÉVY S PROBABILITY MEASURES ON FINITE DIMENSIONAL VECTOR SPACES A. LUCZAK Absrac. We find exponens of independen marginals

### Fair games, and the Martingale (or "Random walk") model of stock prices

Economics 236 Spring 2000 Professor Craine Problem Se 2: Fair games, and he Maringale (or "Random walk") model of sock prices Sephen F LeRoy, 989. Efficien Capial Markes and Maringales, J of Economic Lieraure,27,

### Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

### Predicting Stock Market Index Trading Signals Using Neural Networks

Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical

### Working Paper Social security systems, human capital, and growth in a small open economy

econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Kaganovich, Michael;

### WHAT ARE OPTION CONTRACTS?

WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be

### State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

### Technical Appendix to Risk, Return, and Dividends

Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,

### Evolutionary building of stock trading experts in real-time systems

Evoluionary building of sock rading expers in real-ime sysems Jerzy J. Korczak Universié Louis Paseur Srasbourg, France Email: jjk@dp-info.u-srasbg.fr Absrac: This paper addresses he problem of consrucing

### Time Consistency in Portfolio Management

1 Time Consisency in Porfolio Managemen Traian A Pirvu Deparmen of Mahemaics and Saisics McMaser Universiy Torono, June 2010 The alk is based on join work wih Ivar Ekeland Time Consisency in Porfolio Managemen

### Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].

Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,

### Markit Excess Return Credit Indices Guide for price based indices

Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

### Chabot College Physics Lab RC Circuits Scott Hildreth

Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

### = r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process,

Chaper 19 The Black-Scholes-Vasicek Model The Black-Scholes-Vasicek model is given by a sandard ime-dependen Black-Scholes model for he sock price process S, wih ime-dependen bu deerminisic volailiy σ

### Stochastic Optimal Control Problem for Life Insurance

Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

### AP Calculus AB 2007 Scoring Guidelines

AP Calculus AB 7 Scoring Guidelines The College Board: Connecing Sudens o College Success The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and

### On Stochastic and Worst-case Models for Investing

On Sochasic and Wors-case Models for Invesing Elad Hazan IBM Almaden Research Cener 650 Harry Rd, San Jose, CA 9520 ehazan@cs.princeon.edu Sayen Kale Yahoo! Research 430 Grea America Parkway, Sana Clara,

### A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

A Generalized Bivariae Ornsein-Uhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical

### Permutations and Combinations

Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes - ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he k-value for he middle erm, divide

### On the degrees of irreducible factors of higher order Bernoulli polynomials

ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate

Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his

### Present Value Methodology

Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer

### 17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

### Example: scheduling using EDF

EDA/DIT6 Real-Time Sysems, Chalmers/GU, 0/0 ecure #4 Updaed February, 0 Real-Time Sysems Specificaion Implemenaion Dynamic scheduling -- Earlies-deadline-firs scheduling Processor-demand analysis Verificaion

### Newton s Laws of Motion

Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The

### Real-time Particle Filters

Real-ime Paricle Filers Cody Kwok Dieer Fox Marina Meilă Dep. of Compuer Science & Engineering, Dep. of Saisics Universiy of Washingon Seale, WA 9895 ckwok,fox @cs.washingon.edu, mmp@sa.washingon.edu Absrac

### Option Trading Costs Are Lower Than You Think

Opion Trading Coss Are Lower Than You Think Dmiriy Muravyev Boson College Neil D. Pearson Universiy of Illinois a Urbana-Champaign March 15, 2015 Absrac Convenionally measured bid-ask spreads of liquid

### nonlocal conditions.

ISSN 1749-3889 prin, 1749-3897 online Inernaional Journal of Nonlinear Science Vol.11211 No.1,pp.3-9 Boundary Value Problem for Some Fracional Inegrodifferenial Equaions wih Nonlocal Condiions Mohammed

### Usefulness of the Forward Curve in Forecasting Oil Prices

Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,

### INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE

INVESMEN UARANEES IN UNI-LINKED LIFE INSURANCE PRODUCS: COMPARIN COS AND PERFORMANCE NADINE AZER HAO SCHMEISER WORKIN PAPERS ON RISK MANAEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAEMEN

### Imagine a Source (S) of sound waves that emits waves having frequency f and therefore

heoreical Noes: he oppler Eec wih ound Imagine a ource () o sound waes ha emis waes haing requency and hereore period as measured in he res rame o he ource (). his means ha any eecor () ha is no moing

### Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783

Sock raing wih Recurren Reinforcemen Learning (RRL) CS9 Applicaion Projec Gabriel Molina, SUID 555783 I. INRODUCION One relaively new approach o financial raing is o use machine learning algorihms o preic

### Forecasting, Ordering and Stock- Holding for Erratic Demand

ISF 2002 23 rd o 26 h June 2002 Forecasing, Ordering and Sock- Holding for Erraic Demand Andrew Eaves Lancaser Universiy / Andalus Soluions Limied Inroducion Erraic and slow-moving demand Demand classificaion

### FIN 472 Fixed-Income Securities Approximating Price Changes: From Duration to Convexity Professor Robert B.H. Hauswald Kogod School of Business, AU

FIN 47 Fixed-Income Securiies Approximaing rice Changes: From Duraion o Convexiy rofessor Rober B.H. Hauswald Kogod School of Business, AU Bond rice Volailiy Consider only IR as a risk facor Longer M means

### Dynamic programming models and algorithms for the mutual fund cash balance problem

Submied o Managemen Science manuscrip Dynamic programming models and algorihms for he muual fund cash balance problem Juliana Nascimeno Deparmen of Operaions Research and Financial Engineering, Princeon

### Online Algorithms: Learning & Optimization with No Regret.

Online Algorithms: Learning & Optimization with No Regret. Daniel Golovin 1 The Setup Optimization: Model the problem (objective, constraints) Pick best decision from a feasible set. Learning: Model the

### Bayesian Inference of Arrival Rate and Substitution Behavior from Sales Transaction Data with Stockouts

Bayesian Inference of Arrival Rae and Subsiuion Behavior from Sales Transacion Daa wih Sockous Benjamin Leham 1, Lydia M. Leham, and Cynhia Rudin 3 1 Operaions Research Cener, Massachuses Insiue of Technology,

### Term Structure of Prices of Asian Options

Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

### Multiprocessor Systems-on-Chips

Par of: Muliprocessor Sysems-on-Chips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,

### Return Calculation of U.S. Treasury Constant Maturity Indices

Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion

### THE PRESSURE DERIVATIVE

Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.

### On the Connection Between Multiple-Unicast Network Coding and Single-Source Single-Sink Network Error Correction

On he Connecion Beween Muliple-Unica ework Coding and Single-Source Single-Sink ework Error Correcion Jörg Kliewer JIT Join work wih Wenao Huang and Michael Langberg ework Error Correcion Problem: Adverary

### An Analysis of Tax Revenue Forecast Errors

An Analysis of Tax Revenue Forecas Errors Marin Keene and Peer Thomson N EW Z EALAND T REASURY W ORKING P APER 07/02 M ARCH 2007 NZ TREASURY WORKING PAPER 07/02 An Analysis of Tax Revenue Forecas Errors

### Why Did the Demand for Cash Decrease Recently in Korea?

Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

### A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities *

A Universal Pricing Framework for Guaraneed Minimum Benefis in Variable Annuiies * Daniel Bauer Deparmen of Risk Managemen and Insurance, Georgia Sae Universiy 35 Broad Sree, Alana, GA 333, USA Phone:

### Dependent Interest and Transition Rates in Life Insurance

Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies

### Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

### Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising

Real Time Bid Opimizaion wih Smooh Budge Delivery in Online Adverising Kuang-Chih Lee Ali Jalali Ali Dasdan Turn Inc. 835 Main Sree, Redwood Ciy, CA 94063 {klee,ajalali,adasdan}@urn.com ABSTRACT Today,

### Modeling a distribution of mortgage credit losses Petr Gapko 1, Martin Šmíd 2

Modeling a disribuion of morgage credi losses Per Gapko 1, Marin Šmíd 2 1 Inroducion Absrac. One of he bigges risks arising from financial operaions is he risk of counerpary defaul, commonly known as a

### MODEL AND ALGORITHMS FOR THE REAL TIME MANAGEMENT OF RESIDENTIAL ELECTRICITY DEMAND. A. Barbato, G. Carpentieri

MODEL AND ALGORITHMS FOR THE REAL TIME MANAGEMENT OF RESIDENTIAL ELECTRICITY DEMAND A. Barbao, G. Carpenieri Poliecnico di Milano, Diparimeno di Eleronica e Informazione, Email: barbao@ele.polimi.i, giuseppe.carpenieri@mail.polimi.i

### 2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

.4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).

### Strategic Optimization of a Transportation Distribution Network

Sraegic Opimizaion of a Transporaion Disribuion Nework K. John Sophabmixay, Sco J. Mason, Manuel D. Rossei Deparmen of Indusrial Engineering Universiy of Arkansas 4207 Bell Engineering Cener Fayeeville,