# Reading material on the limit set of a Fuchsian group

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here follows T. Bedford, M. Keane and C. Series, Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, O.U.P. 1991, S. Katok, Fuchsian Groups, Chicago University Press, Many attractive pictures of limit sets and constructions related to those in these notes can be found in D. Mumford, C. Series, D. Wright, Indra s Pearls: The Vision of Felix Klein, C.U.P Prerequisites I have tried to keep these notes as independent from the lectures as possible. Due to the nature of the material, this has not always been possible so below there is a list describing at which point we will have covered the necessary background in the lectures for a given section of these notes to be readable. Section Prerequisites 1 3 Lecture 2 4 Lecture 9 (we cover most of this material in lectures 10 and 12) 5 Lecture Lecture Lecture 20 As with the lecture notes, please point out any mathematical or typographical mistakes. 1

2 1 Background Recall that the set of Möbius transformations forms a group Möb(H) under composition. This group has a very rich structure; for example, we shall see how to define a notion of distance on this group (so that we can say how far apart two Möbius transformations are). We shall also study a very important class of subgroups of Möb(H) called Fuchsian groups. The purpose of these notes is to discuss the action of a Fuchsian group on the boundary H in terms of its limit set. These sets are important and often intricate geometrical objects (for example, they are often of a fractal nature). 2 Metric spaces We will use several concepts from metric spaces. In this section we quickly review many of the necessary definitions. For more details, see almost any book on metric spaces (for example W.A. Sutherland, An Introduction to Metric and Topological Spaces, O.U.P., Oxford, 1975). In the course we saw how to define a notion of distance on the upper half-plane H. This distance function satisfies several nice properties (such as the triangle inequality). A metric space just abstracts these properties. Definition. Let X be a set. We say that a function d : X X R is a metric (or distance function) if: (i) for all x, y X, we have d(x, y) 0 and d(x, y) = 0 if and only if x = y; (ii) for all x, y X, we have d(x, y) = d(y, x); (iii) the triangle inequality holds: for all x, y, z X we have d(x, z) d(x, y) + d(y, z). We call the pair (X, d) a metric space. Examples. 1. Take X = R and define d(x, y) = x y. 2. Take X = R 2 and define d((x 1, x 2 ), (y 1, y 2 )) = y 1 x y 2 x Take X = H with d(z, z ) = inf{length H (σ) σ is a piecewise-differentiable path from z to z } 2

3 2.1 Convergence We know how to define convergence of sequences in R: if x n R then we say that x n x if for all ε > 0 there exists N N such that for all n N we have x n x < ε. That is, given any ε > 0 the distance (in R) between x n and x is less than ε provided n is sufficiently large. We can recast this definition in terms of metric spaces. Definition. Let (X, d) be a metric space. Let x n X be a sequence of points in X. We say that x n converges to x X (and write x n x) if for all ε > 0 there exists N N such that for all n N we have d(x n, x) < ε. 2.2 Open and closed sets Let (X, d) be a metric space. Let x X and let ε > 0. The set B ε (x) = {y X d(x, y) < ε} of all points y that are distance at most ε from x is called the open ball of radius ε and centre x. We can think of B ε (x) as being a small neighbourhood around the point x. A subset U X is called open if for all x U there exists ε > 0 such that B ε (x) U, i.e. every point x in U has a small neighbourhood that is also contained in U. One can easily show that open balls B ε (x) are open subsets. (This is not a tautology! Our choice of terminology strongly suggests that an open ball will indeed be an open set; however one does need to check that an open ball is open.) Let x X. An open set U containing x is called a neighbour- Definition. hood of x. The idea is that a neighbourhood of x contains all points that are sufficiently close to x. Recall that a sequence x n X converges to x if x n is arbitrarily close to x for all sufficiently large n. With this in mind, the following should not be a surprising result. Lemma 2.1 Let (X, d) be a metric space. Let x n, x X. Then the following are equivalent: (i) x n x as n ; (ii) if U is a neighbourhood of x then there exists N N such that for all n N we have x n U. Proof. This is a case of unravelling the definitions. 3

4 A set F is said to be closed if its complement X \ F is open. There are other ways of defining closed sets: Proposition 2.2 Let (X, d) be a metric space and let F X. Then the following are equivalent: (i) F is closed (i.e. X \ F is open); (ii) if x n F is a sequence of points in F such that x n x for some x X then x F (i.e. any convergent sequence of points in F has its limit in F ). Let us give some examples. Examples. (i) Take X = R and let I = (a, b) be the interval I = {x R a < x < b}. Then I is an open set. To see this, take x I and let ε = min{x a, b x}. Then B ε (x) = (x ε, x + ε) I (draw a picture). This is why we call (a, b) an open interval. (ii) Take X = R and let I = [a, b] = {x R a x b}. Then I is a closed set as its complement is R \ I = (, a) (b, ), the union of two open sets. (iii) Take X = R and let I = [a, b) = {x R a x < b}. Then I is neither open nor closed. It is not open because no small neighbourhood (a ε, a + ε) of a is not contained in I. It is not closed because the sequence x n = b 1/n lies inside I, but x n b and b is not in I. In practice, sets defined by strict inequalities (<, >) normally give open sets, and sets defined by weak inequalities (, ) normally give closed sets. Consider the usual Euclidean metric on R 2 defined by d R 2((x 1, x 2 ), (y 1, y 2 )) = y 1 x y 2 x 2 2. Let x = (x 1, x 2 ). The open ball B ε (x) around a point x is a Euclidean disc of Euclidean radius ε and centre x. In contrast, if we work in the upper half-plane H with the hyperbolic metric d H then the open ball B ε (z) is a hyperbolic disc centred on z and with hyperbolic radius ε. However, in Exercise 5.4 we will see that a hyperbolic disc is a Euclidean disc (albeit with a different centre and radius). In particular, one can prove: Lemma 2.3 The open sets in H defined using the hyperbolic metric d H are the same as the open sets in the upper half-plane using the Euclidean metric. (For those of you familiar with the terminology: this just says that the topology generated by the hyperbolic metric is the same as the usual Euclidean topology.) 4

5 2.3 Compactness A compact metric spaces is, roughly speaking, one in which sequences of points cannot escape. There are two ways in which a sequence could escape: (i) the sequence could tend to infinity (that is, the set is unbounded ), or (ii) the sequence could tend to a limit that is outside the set, as happens in Example (iii) in 2.2 (that is, the set is not closed ). Let (X, d) be a metric space. We say that X is (sequentially) compact if every sequence x n X has a convergent subsequence, i.e. there exist n j such that x nj x for some x X. Examples. 1. [0, 1] is compact. 2. (0, 1) is not compact (because x n = 1/n does not have a convergent subsequence in (0, 1)). Remark. There are other, equivalent, definitions of compactness, such as compactness in terms of open covers. The characterisation of compactness is terms of the set being closed and bounded is only valid for subsets of R n. In a general metric space, a compact set is always closed and bounded, but the converse is not necessarily true. We will often restrict our attention to the following class of metric spaces. Definition. A metric space is proper if every closed ball B ε (x) = {y X d(x, y) ε} is compact. Subsets of R n, the upper half-plane, the Poincarè disc, Möb(H) are all proper metric spaces. The set of continuous real-valued functions defined on [0, 1] with the metric d(f, g) = sup x [0,1] f(x) g(x) is not a proper metric space. Exercise 2.1 Let (X, d) be a metric space. Let K X be a compact subset and let F K be a closed subset of K. By using Proposition 2.2 show that F is itself compact. 2.4 Continuity Continuity is a key idea in metric spaces. Let (X, d) and (Y, ρ) be metric spaces and let f : X Y. Definition. We say that a function f : X Y is continuous at a X if: for all ε > 0 there exists δ > 0 such that if d(x, a) < δ then ρ(f(x), f(a)) < ε. We say that f is continuous if it is continuous at a X for all a X. 5

6 Thus a function f : X Y is continuous at a if points that are close to a X get mapped by f to points that are close to f(a) Y. A function is continuous if it is continuous at each point. If X and Y are subsets of R (with the usual metric) has its usual meaning: one can draw the graph of f without any breaks or jumps. There are many other ways of characterising continuity. We give some below. First recall that if f : X Y is a function and U Y then the pre-image of Y under f is the set: f 1 (U) = {x X f(x) U. We do not assume that f is invertible here: this definition makes sense for any function f. (For example, if f : R R is given by f(x) = x 2 then f 1 ({b}) = { b, b} if b > 0, f 1 (0) = {0}, and f 1 ({b}) = if b < 0.) Lemma 2.4 Let (X, d) and (Y, ρ) be metric spaces and let f : X Y. Then the following are equivalent: (i) f is continuous; (ii) if x n X is such that x n x for some x X then f(x n ) f(x); (iii) if U Y is any open set then f 1 (U) X is an open set. Note that Lemma 2.4(iii) does not say that if U X is open then f(u) Y is open (this is false in general). Continuity also works well with compactness. The following result says that the continuous image of a compact set is compact: Lemma 2.5 Let (X, d) and (Y, ρ) be metric spaces and let f : X Y be continuous. Let K X be a compact set. Then f(k) = {f(x) x K} Y is compact. Note that this does not say that the pre-image f 1 (L) of a compact subset L Y is a compact subset of X (this is false in general). 2.5 Discreteness Let ε > 0 and x X. We call B ε (x) = {y X d(x, y) < ε} the ε-ball around x, or simply a neighbourhood of x. Definition. Let Y X be a subset of X. We say that a point x Y is isolated in Y if there exists ε > 0 such that B ε (x) Y = {x}, i.e. there are no points of Y (other than x itself) within distance ε of x. Definition. Let Y X be a subset of X. We say that Y is discrete if every element of Y is isolated in Y. 6

7 Examples. 1. Take X = R and let Y = {1/n n = 1, 2, 3,...}. Then Y is discrete (notice that in the definition of discreteness, the value of ε chosen is allowed to depend on the point x Y ). 2. Take X = R and let Y = {1/n n = 1, 2, 3,...} {0}. Then Y is not discrete as the point 0 is not isolated : there are points of the form 1/n arbitrarily close to 0. Exercise 2.2 Let (X, d) be a metric space and let Y X. Show that the following are equivalent: (i) Y is a discrete subset; (ii) if x n Y is a sequence in Y such that x n x Y as n, then there exists N N such that x n = x for all n N. 2.6 Limit points Definition. Let Y X be an arbitrary subset of X. We say that a point x X is a limit point of Y if every neighbourhood of x contains a point y Y such that y x. We let Λ(Y ) denote the set of all limit points of the subset Y. Example. Take X = R and Y = {( 1) n + 1/n n = 1, 2,...}. Then Y has two limit points: 1 and 1. Example. Take X = R and Y = Q. As any real number can be arbitrarily well-approximated by a rational, we see that every real number is a limit point of Y. Example. Let Y be a finite subset of a metric space X. Then there are no limit points. 3 Properly discontinuous group actions Let (X, d) be a metric space. For example, we could have X = R 2 with the usual Euclidean metric, or X = H with the hyperbolic metric. Recall that a map γ : X X is an isometry if d(γ(x), γ(y)) = d(x, y) for all x, y X. Exercise 3.1 Prove that an isometry is continuous. Let Γ be a group of isometries of X and let x X. 7

8 Definition. The orbit of x under Γ is the set Γ(x) = {γ(x) γ Γ} X. That is, the orbit Γ(x) of x under Γ is the set of points one can reach starting at x and applying every possible element of Γ. Definition. The stabiliser of x under Γ is the set Stab Γ (x) = {γ Γ γ(x) = x} Γ. That is, the stabilister Stab Γ (x) of x under Γ is the set of isometries in Γ that leave x fixed. Exercise 3.2 Show that, for each x X, Stab Γ (x) is a subgroup of Γ. Examples. (i) Let X = R 2 with the Euclidean metric. Let Γ = {γ n,m γ n,m (x, y) = (x + n, y + m), (n, m) Z 2 } denote the group of isometries of R 2 given by integer translations. Then the orbit of the origin is Γ(0, 0) = {(n, m) (n, m) Z 2 }, i.e. the integer lattice. The stabiliser of the origin is Stab Γ (0, 0) = {γ 0,0 }, i.e. the only isometry in Γ that fixes the origin is the identity. (ii) Let X = D with the hyperbolic metric d D. Let Γ = {γ θ γ θ (z) = e 2πiθ z, θ [0, 1)} denote the group of rotations around the origin in D. Let z = re iθ D. Then the orbit Γ(z) of z is the (Euclidean) circle in D of radius r. If z 0 then the stabiliser Stab Γ (z) of z contains just the identity transformation. As every transformation in Γ fixes 0, the stabiliser of the origin is Γ: Stab Γ (z) = Γ. (iii) Let X = R 2 with the Euclidean metric. Let Γ = {id, γ 1, γ 2, γ 3 } where id, γ 1, γ 2, γ 3 denote the identity and rotations around the origin through angles 90, 180, 270 degrees, respec tively. Then the orbit of (x, y) R 2 contains either 4 points forming a square (if (x, y) (0, 0)) or is the origin (if (x, y) = (0, 0). If (x, y) (0, 0) then Stab Γ (x, y) = {id}; however, Stab Γ (0, 0) = Γ. (iv) Let X = H with the hyperbolic metric d H. Let Γ = {γ n γ n (z) = z + n, n Z} denote the group of integer translations. Then, for any z H, the orbit of z is Γ(z) = {z + n n Z, the set of integer translations of z. As no translation, other than the identity, fixes any point we have that Stab Γ (z) = {id}. 8

9 Exercise 3.3 Let X = H with the hyperbolic metric d H. Let Γ = Möb(H) be the group of all Möbius transformations. Calculate the orbit of i and the stabiliser of i. In the first, third and fourth examples above we have the following property: the orbit of every point in X is a discrete subset of X, and the stabiliser of every point is finite. Heuristically, this means the following: if x X, then γ(x) is moved a long way from x, except for possibly finitely many γ that leave x fixed. Contrast this with the second example. Here, the orbit of z can contain points other than z that are arbitrarily close to z; moreover, for some points (actually, just the origin) there are infinitely many transformations that fix z. This motivates the following definition. Definition. Let (X, d) be a metric space and let Γ be a group of isometries of X. Then Γ acts properly discontinuously on X if: for all x X and for all non-empty compact subsets K X the set {γ Γ γ(x) K} is finite. Heuristically we think of a compact set containing x as being a small closed set around x. Thus Γ acts properly discontinuously if, given any point x X, all but finitely many isometries in Γ move the point x a long way from where it started. Exercise 3.4 Let X = R 2 equipped with the Euclidean metric d. Let Γ = {γ n,m γ n,m (x, y) = (x + n, y + m), (n, m) Z 2 } denote the subgroup of isometries given by integer translations. Show that Γ acts properly discontinuously on R 2. There are many equivalent ways of defining what it means for a group of isometries to act properly discontinuously. The following will be the most important for our purposes. Lemma 3.1 Let (X, d) be a proper metric space and let Γ be a group of isometries of X. Then the following are equivalent: (i) Γ acts properly discontinuously on X; (ii) for all x X, (a) the orbit Γ(x) is a discrete subset of X, and (b) the stabiliser Stab Γ (x) is a finite subgroup of Γ. Before proving this lemma we need the result contained in the following exercise. 9

10 Exercise 3.5 Let (X, d) be a metric space and suppose that Γ is a group of isometries that acts on X. Let x X. (i) Suppose that the orbit Γ(x) of x is discrete. Show that one can find ε > 0 such that B ε (γ(x)) Γ(x) = {γ(x)} for all γ Γ. (That is, the ε in the definition of discreteness can be chosen to be independent of the point in the orbit.) (ii) Conclude that if Γ(x) is discrete and K is compact that K Γ(x) is finite. Proof of Lemma 3.1. We prove (ii) implies (i). Let x X and let K be a non-empty compact subset of X. As Γ(x) is discrete and K is compact, it follows that Γ(x) K = {x 1,..., x m } is a finite set. For each j {1,..., m} we show that the set Γ j = {γ Γ γ(x) = x j } is finite. As {γ Γ γ(x) K} = m j=1 Γ j, statement (i) will follow. For each j fix a choice of γ j Γ j so that γ j (x) = x j. Let Stab Γ (x) = {g 1,..., g n }. Let γ Γ j. Then γ(x) = x j. Hence γj 1 γ(x) = x so that γj 1 γ Stab Γ (x). Hence γj 1 γ = g i for some 1 i n. Hence γ = γ j g i, and so Γ j is finite. We prove (i) implies (ii). Suppose that Γ acts properly discontinuously on the proper metric space X. Let x X and suppose, for a contradiction, that the orbit Γ(x) is not discrete. Then there exists γ n Γ and a point x X such that γ n (x) x but γ n (x) x for all n and the γ n are all pairwise distinct. Fix a choice of ε > 0 and let K = B ε (x). As X is proper, we have that K is compact. As γ n (x) x as n, there exists N N such that γ n (x) K for all n N. As there are infinitely many such n, this contradicts (i). Suppose that Γ acts properly discontinuously. Let x X and suppose that, for a contradiction, Stab Γ (x) is infinite. Choose γ n Stab Γ (x) to be pairwise distint. Let K = {x}; then K is compact. Note that γ n (x) = x K for all n. This contradicts (i). Here is another equivalent condition for a group of isometries to act properly discontinuously. Proposition 3.2 Let (X, d) be a proper metric space and let Γ be a group of isometries of X. Then the following are equivalent: (i) Γ acts properly discontinuously; 10

11 (ii) each point x X has a neighbourhood U containing x such that γ(u) U for only finitely many γ Γ. Proof. Recall from Lemma 3.1 that a group Γ of isometries acts on X properly discontinuously if and only if the orbit Γ(x) of each point x X is discrete and the stabiliser Stab Γ (x) is finite. We prove (i) implies (ii). Let x X. As the orbit Γ(x) of x is discrete, there exists ε > 0 such that B ε (x) does not contain any points of Γ(x) other than x. Let U B ε/2 (x) be any neighbourhood of x. Suppose that γ(u) U. Let y γ(u) U. Then, as y U, we have that d(x, y) < ε/2. As y γ(u) we have d(y, γ(x)) < ε/2. Hence by the triangle inequality, d(x, γ(x)) d(x, y) + d(y, γ(x)) ε. Hence γ(x) B ε (x). As B ε (x) does not contain any points in Γ(x) other than x, it follows that γ(x) = x, i.e. γ Stab Γ (x). Hence there are only finitely many γ Γ for which γ(u) U. We prove that (ii) implies (i). Let x X and suppose, for a contradiction, that Γ(x) is not discrete. Choose pairwise distinct γ n such that γ n (x) x for some x X but γ n (x) x. Let U be the neighbourhood of x given by (ii). Then there exists N N such that if n N then γ n (x) U. Now if n N then γ n (x) U and γ N (x) U. Hence x γn 1 U γ 1 U. Hence N N (U γ Nγn 1 U) = γ 1 N U γ 1 n U. γ 1 By (ii), there are only finitely many possibilities for γ N γn 1, n N, contradicting the fact that the γ n are pairwise distinct. Let x X and suppose that Stab Γ (x) is infinite. Then there exist infinitely many distinct γ n Γ such that γ n (x) = x. Let U be the neighbourhood of x in (ii). Then x = γ n (x) γ n (U). Hence x γ n (U) U. But there are only finitely many γ n with this property, a contradiction. 4 Fuchsian groups Recall that the collection of Möbius transformations Möb(H) of H forms a group. We shall show how to define a metric on Möb(H) (thus we will be able to say how far apart two Möbius transformations are). We can then use this metric to define an important class of subgroups of H, namely Fuchsian groups. 4.1 A metric on Möb(H) Intuitively, it is clear what we mean for two Möbius transformations to be close: two Möbius transformations are close if the coefficients (a, b; c, d) defining them are close. However, things are not quite so simple because different coefficients (a, b; c, d) can give the same Möbius transformation. 11

12 To see this, notice that if is a Möbius transformation, then γ(z) = az + b cz + d z λaz + λb λcz + λd gives the same Möbius transformation (provided λ 0). Thus, by taking λ = 1/ (ad bc) we can always assume that ad bc = 1. Definition. The Möbius map γ(z) = (az +b)/(cz +d) is said to be written in normalised form (or γ is normalised) if ad bc = 1. However, even if we insist on writing Möbius transformations in normalised form, then there is still some ambiguity: different normalised coefficients can still give the same Möbius transformation. To see this, note that if γ(z) = az + b cz + d is normalised, then so is γ(z) = az b cz d and this gives the same Möbius transformation. This, however, is the only ambiguity. Thus we will say that the (normalised) Möbius maps γ 1 (z) = (a 1 z + b 1 )/(c 1 z+d 1 ) and γ 2 (z) = (a 2 z+b 2 )/(c 2 z+d 2 ) are close if either (a 1, b 1, c 1, d 1 ), (a 2, b 2, c 2, d 2 ) are close or (a 1, b 1, c 1, d 1 ), ( a 2, b 2, c 2, d 2 ) are close. If we wanted to make this precise and in particular have a formula, then we could define a metric on the space Möb(H) of Möbius transformations by setting d Möb (γ 1, γ 2 ) = min{ (a 1, b 1, c 1, d 1 ) (a 2, b 2, c 2, d 2 ), (a 1, b 1, c 1, d 1 ) ( a 2, b 2, c 2, d 2 ) }. (Here is the Euclidean norm in R 4 defined by (a, b, c, d) = a 2 + b 2 + c 2 + d 2.) However, we will never use an explicit metric on Möb(H) and prefer instead to think of Möbius transformations being close if they look close (secure in the knowledge that we could fill in the details using the metric given above if we had to!). 12

13 4.2 Fuchsian groups Definition. A subgroup Γ < Möb(H) of Möbius transformations is called a Fuchsian group if it is discrete subset of Möb(H). Thus if Γ is a Fuchsian group and γ n Γ is such that γ n γ Γ then γ n = γ for all sufficiently large n. Similar definitions continue to hold for the Poincaré disc model D of the hyperbolic plane. A transformation γ : D D of the form γ(z) = αz + β βz + ᾱ where α, β C and α 2 β 2 > 0 is called a Möbius transformation of D. The collection of all such transformations is denoted by Möb(D). There is no loss in assuming that γ Möb(D) is normalised, namely that α 2 β 2 = 1. A metric can be defined in a similar way as above. Let us recall some examples of Fuchsian groups. Examples. 1. The subgroup Γ = {γ n γ n (z) = z + n, n Z} < Möb(H) of all integer translations of H is a Fuchsian group. 2. The subgroup Γ = {γ n γ n (z) = 2 n z, n Z} < Möb(H) is a Fuchsian group. 3. Let θ R. Consider the subgroup Γ = {γ n θ γ θ(z) = e 2πiθ z, n Z} of Möb(D). If θ is rational then this is a finite group, and so a Fuchsian group. If θ is irrational then this group is infinite; one can check that in this case Γ is not a Fuchsian group. 4. The modular group { PSL(2, Z) = z az + b } a, b, c, d Z, ad bc = 1 < Möb(H) cz + d is a Fuchsian group. 5. Let q N. The level-q modular group { z az + b a, b, c, d Z, ad bc = 1, cz + d b, c are divisible by q is a Fuchsian group. } < Möb(H) 6. Let q N. The principle congruence subgroup of level q is the group az + b a, b, c, d Z, ad bc = 1, z cz + d b, c are divisible by q, < Möb(H) a, d 1 mod q is a Fuchsian group. 13

14 4.3 Fuchsian groups and properly discontinuous group actions The goal of this subsection is to prove the following result. Theorem 4.1 Let Γ be a subgroup of Möb(H) (or Möb(D)). Then Γ is a Fuchsian group if and only if Γ acts properly discontinuously on H (or D). For convenience we will work in H. We first need the following lemma. Lemma 4.2 Fix z 0 H and let K H be a non-empty compact set. Then E = {γ Möb(H) γ(z 0 ) K} (i.e. the set of all Möbius transformations that map z 0 into K) is a compact subset of Möb(H). Proof. Let Sl(2, R) denote the group of 2 2 matrices with real coefficients and determinant 1. Recall the map θ : Sl(2, R) Möb(H) given by ( ) a b θ = γ c d A where γ A Möb(H) is the Möbius transformation with coefficient given by the matrix A: γ A (z) = (az + b)/(cz + d). The map θ is continuous. Let {( ) E a b = Sl(2, R) az } 0 + b c d cz 0 + d K. Then θ(e ) = E. If we can prove that E is a compact subset of Sl(2, R) then it follows that E, as the continuous image of a compact set, is a compact subset of Möb(H). ( ) a b Now Sl(2, R) can be regarded as a subset of R 4 (via the map c d (a, b, c, d)). Hence to prove that E is compact it is sufficient to prove that E is closed and bounded. Define ψ : Sl(2, R) H by ( ) a b ψ c d = az 0 + b cz 0 + d. Then ψ is continuous. Moreover, E = ψ 1 (K). As K H is compact, and so closed, it follows that E is closed. As K H is compact, in particular it is bounded. Hence there exists M 1 > 0 such that ( ) az 0 + b a b cz 0 + d M 1 for all E. c d 14

15 Moreover, as K H is compact, it is bounded away from the real axis. Hence there exists M 2 > 0 such that ( ) ( ) az0 + b a b Im M 2 for all E. cz 0 + d c d Now It follows that and Im ( ) az0 + b = cz 0 + d cz 0 + d 1 cz 0 + d 2 Im(z 0). Im z0 M 2 (4.1) az 0 + b M 1 Im z0 M 2. (4.2) Call the constants appearing on the right-hand side of (4.1) and (4.2) C 1 and C 2 respectively, and note that they are independent of a, b, c, d. Let z 0 = x 0 + iy 0. Then from (4.1) we have that (cx 0 + d) 2 + c 2 y 2 0 = cz 0 + d 2 2 C 2 1 from which it follows that c C 1 /y 0 and so is bounded. We also have that cx 0 + d C 1, hence C 1 C 1x 0 y 0 C 1 cx 0 d C 1 cx 0 C 1 + C 1x 0 y 0 so that d is also bounded. From (4.2) it follows that a, b are also bounded. We will also need the following technical property. Proposition 4.3 Let Γ be a subgroup of Möb(H) that acts properly discontinuously on H. Suppose that p H is fixed by some element of Γ. Then there exists a neighbourhood W of p such that no other point of W is fixed by an element of Γ other than the identity. In other words, if p is fixed for some γ Γ, then near p no other point is fixed not just by γ, but by any non-trivial element of Γ. Remark. In particular, it follows from Proposition 4.3 that if Γ acts properly discontinuously then there exists p H such that γ(p) p for all γ Γ \ {id}. In Lecture 14 we use this property to give an algorithm that generates a fundamental domain for a given Fuchsian group. 15

16 Proof of Proposition 4.3. Suppose that γ(p) = p for some p X and γ Γ, γ id. Suppose, for a contradiction, that in any neighbourhood of p there exists a fixed point for some non-trivial transformation in Γ, i.e. there exists a sequence of distinct points p n X and γ n Γ \ {id} such that p n p and γ n (p n ) = p n. Hence γ n is an elliptic Möbius transformation with a fixed point at p n ; hence the γ n are pairwise distinct. Let B 3ε (p) be the closed 3ε-ball centred on p. This set is compact. From the definition of a properly discontinuous group action it follows that {γ Γ γ(p) B 3ε (p)} is finite. Hence only finitely many of the γ n belong to this set. Hence there exists N 1 N such that if n N 1 then d H (γ n (p), p) > 3ε. As p n p, it follows that there exists N 2 N such that if n N 2 then d H (p n, p) < ε. Choose n max{n 1, N 2 }. Then d H (γ n (p), p) d H (γ n (p), γ n (p n )) + d H (γ n (p n ), p) = d H (p, p n ) + d H (p n, p) 2ε (as γ n is an isometry, and γ n (p n ) = p n ), a contradiction. Exercise 4.1 Given an example of a metric space (X, d) and a group Γ of isometries that acts properly discontinuously on X for which the conclusion of Proposition 4.3 fails, i.e. there exists a point p X which is fixed by some nontrivial element of Γ and for which there are points arbitrarily close (but not equal) to p that are also fixed under some non-trivial elements of Γ. (Hint: where did we use the fact that we are working with Möbius transformations in the above proof?) We can now prove Theorem 4.1. Proof of Theorem 4.1. Let Γ be a Fuchsian group. We prove that Γ acts properly discontinuously on H. Let z H and let K H be a non-empty compact set. Then {γ Γ γ(z) K} = {γ Möb(H) γ(z) K} Γ. (4.3) The first set on the right-hand side of (4.3) is compact by Lemma 4.2, and the second set is discrete. Hence {γ Γ γ(z) K} is finite. Hence Γ acts properly discontinuously. Conversely, suppose that Γ acts properly discontinuously but is not discrete. By Proposition 4.3 and the remark following it, there exists p H that is not fixed by any element in Γ other than the identity. As Γ is not discrete, there exists pairwise distinct γ n Γ such that γ n id. Hence γ n (p) p and γ n (p) p. 16

17 Let U be any neighbourhood of p. Then γ n (p) U for sufficiently large n. Clearly γ n (p) γ n (U). Hence there exist infinitely many γ n Γ such that γ n (U) U, contradicting Proposition 3.2. Recall that Lemma 3.1 says that a group acts properly discontinuously if and only if each orbit is discrete and each stabiliser is finite. For Fuchsian groups, we do not need to check that stabiliser of each point is finite (heuristically, this isn t surprising: for γ is in Stab Γ (z) if and only if z is a fixed point of γ, and we know that Möbius transformations have very few fixed points). Proposition 4.4 Let Γ < Möb(H) be a subgroup of the Möbius group. Then the following are equivalent: (i) Γ acts properly discontinuously on H; (ii) for all z H, the orbit Γ(z) H is a discrete subset of H. Proof. We prove (i) implies (ii). If Γ acts properly discontinuously then, by Lemma 3.1, the orbit Γ(z) of every z H is discrete. Conversely, we prove (ii) implies (i). We work in D for convenience. By Lemma 3.1 we need only prove that the stabiliser of each point z 0 D is finite. Let γ Stab Γ (z 0 ). Then γ(z 0 ) = z 0, so that γ has fixed point at z 0 ; hence γ is either elliptic or the identity. Recall that a Möbius transformation is elliptic if and only if it is conjugate to a rotation about 0 D. Thus Stab Γ (z 0 ) is conjugate to S, a subgroup of {γ θ γ θ (z) = e 2πiθ z, θ [0, 1]}. That is, there exists g Möb(D) such that g Stab Γ (z 0 )g 1 = S. Suppose that Stab Γ (z 0 ) is infinite. Then S is infinite and there exist infinitely many distinct θ j [0, 1] for which γ θj S. As [0, 1] is compact, we can choose a convergent subsequence θ jn θ, for some θ [0, 1]. Fix any z 1 D, z 0. Then γ thetajn (z 1 ) γ θ (z 1 ) as n. Let γ n = g 1 γ θjn g Stab Γ (z 0 ). Then γ n (g 1 z 1 ) g 1 z 1, so that the orbit of z 1 is not discrete, a contradiction. Remark. It is important to realise that Proposition 4.4 fails if we consider the orbit of a point z H. For example, take Γ = PSL(2, Z); this is a Fuchsian group. However, it is easy to see that Γ(0), the orbit of the point 0 H, is equal to Q { }, which is not discrete. In particular, we have the following important corollary. 17

18 Corollary 4.5 Let Γ be a Fuchsian group and let z H. Then Γ(z) has no limit points inside H. Thus if Γ(z) has any limit points, then they must lie on the boundary. 5 The limit set of a Fuchsian group For convenience, we will work in the Poincaré disc model of the hyperbolic plane. Let Γ be a Fuchsian group acting on the Poincaré disc D. We will be interested in the orbit Γ(z) of a point z D. We shall view Γ(z) as a subset of D D. Note that D D = {z C z 1}, the closed unit disc in C. We give D D the Euclidean topology: a sequence points z n D D converges to z D D if z n z 0 as n, where denotes the modulus of a complex number. Remark. If we are working in D then d D (z n, z) 0 if and only if z n z 0. However, when we are working with limit sets we are often looking at convergence in D D. As points on D are an infinite distance away from points in D, it does not make sense to consider convergence using the hyperbolic metric D. Definition. Let Γ be a Fuchsian group acting on the Poincaré disc D and let z D. Let Λ(Γ)(z) denote the set of limit points in D D of the orbit Γ(z). Remarks. (i) Let z D. Thus a point ζ D is an element of Λ(Γ)(z) if: there exists γ n Γ such that γ n (z) ζ as n. (ii) By Corollary 4.5, we know that for a Fuchsian group Γ any limit point of Γ(z) lies on the boundary. Thus Λ(Γ)(z) D. It appears from the above definition that the sets Λ(Γ)(z) depend on the choice of point z. This is not the case, as the following result shows. Proposition 5.1 Let Γ be a Fuchsian group and let z 1, z 2 D. Then Λ(Γ)(z 1 ) = Λ(Γ)(z 2 ). Definition. Let Γ be a Fuchsian group acting on the Poincaré disc D. We define the limit set Λ(Γ) of Γ to be the set Λ(Γ)(z) for any z D. 18

19 Proof. One can prove that the following formula holds for two points z 1, z 2 D: sinh d z 1 z 2 2 D(z 1, z 2 ) = (1 z 1 2 )(1 z 2 2 ). (Recall that Proposition 5.1 in the lecture notes gives a formula for cosh d H (z 1, z 2 ) in the upper half-plane. One can prove a similar formula in the Poincaré disc using the same method.) Let γ Γ. As γ is an isometry, it follows that sinh d D(z 1, z 2 ) = sinh d D(γ(z 1 ), γ(z 2 )) = γ(z 1 ) γ(z 2 ) 2 (1 γ(z 1 ) 2 )(1 γ(z 2 ) 2 ). Hence for any γ Γ we have γ(z 1 ) γ(z 2 ) (1 γ(z 1 ) 2 ) 1/2 sinh 1 2 d D(z 1, z 2 ). (5.1) Let ζ Λ(Γ)(z 1 ). We show that ζ Λ(Γ)(z 2 ). As ζ Λ(Γ)(z 1 ), there exists a sequence of group elements γ n Γ such that γ n (z 1 ) ζ as n. Consider (5.1) for γ n : γ n (z 1 ) γ n (z 2 ) (1 γ n (z 1 ) 2 ) 1/2 sinh 1 2 d D(z 1, z 2 ). (5.2) As ζ D, we have that γ n (z 1 ) ζ = 1 as n. It follows from (5.2) that γ n (z 2 ) ζ as n. Hence ζ Λ(Γ)(z 2 ). Thus we have shown that Λ(Γ)(z 1 ) Λ(Γ)(z 2 ). By reversing z 1 and z 2 in the above argument, we see that Λ(Γ)(z 2 ) Λ(Γ)(z 1 ). Hence Λ(Γ)(z 1 ) Λ(Γ)(z 2 ). Remark. There is, of course, a corresponding notion of limit set in the upper half-plane model of the hyperbolic plane. The definition is as above (with D replaced by H), but a small amount of care has to be taken when one defines convergence in H = R { }. Recall the map η : H D that we used in Lecture 6 to transfer results between the upper half-plane and Poincaré disc models of hyperbolic space. Let Γ < Möb(H) be a Fuchsian group and let Λ H (Γ) denote its limit set. Then η(γ) < Möb(D) is a Fuchsian group in the Poincaré disc model with limit set Λ D (η(γ)) = η(λ H (Γ)). Examples. (i) Let us work in the upper half-plane model. Take Γ = {γ n γ n (z) = 2 n z, n Z}. Consider the point i H. Then γ n (i) as n, and γ n (i) 0 as n. It is easy to see that Λ(Γ) = {0, }. 19

20 (ii) Working again in the upper half-plane model, take Γ to be the modular group PSL(2, Z). Then Λ(Γ) = H. We shall see several proofs of this later. Exercise 5.1 In the upper half-plane, take Γ = {γ n γ n (z) = z + n, n Z}. Find Λ(Γ). 6 Properties of the limit set In this section we derive some basic properties of the limit set Λ(Γ) of a Fuchsian group Γ. More specifically, we shall see that Λ(Γ) is a compact Γ-invariant subset of D. 6.1 Conjugate Fuchsian groups Recall that we say that two Möbius transformations γ 1, γ 2 Möb(H) are conjugate if there exists g Möb(H) such that γ 2 = g 1 γ 1 g. Recall that we think of conjugate Möbius transformations as representing the same transformation but with respect to different co-ordinate systems. Definition. Let Γ 1 and Γ 2 be Fuchsian groups. We say that Γ 1 and Γ 2 are conjugate if there exists g Möb(H) such that Γ 2 = g 1 Γ 1 g = {g 1 γ 1 g γ 1 Γ 1 }. Again, we think of conjugacy as a change of co-ordinates. The following result relates the limit sets of conjugate Fuchsian groups. Proposition 6.1 Let Γ 1 be a Fuchsian group and let Γ 2 = g 1 Γ 1 g be a conjugate Fuchsian group. Then Λ(Γ 2 ) = g 1 (Λ(Γ 1 )). Proof. Let ζ Λ(Γ 1 ). Then there exists z D and a sequence γ n Γ 1 such that γ n (z) ζ as n. Notice that γ n = g 1 γ n g Γ 2. (Note: here we re using γ n to denote some element of Γ 2 ; we re not using it to denote the derivative of γ n.) Hence γ n(g 1 z) = g 1 γ n g(g 1 z) = g 1 (γ n (z)) g 1 (ζ) so that g 1 (Λ(Γ 1 )) Λ(Γ 2 ). The reverse inequality follows similarly. 20

### 14. Dirichlet polygons: the construction

14. Dirichlet polygons: the construction 14.1 Recap Let Γ be a Fuchsian group. Recall that a Fuchsian group is a discrete subgroup of the group Möb(H) of all Möbius transformations. In the last lecture,

### 7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

### Notes on metric spaces

Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

### Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

### DIFFERENTIAL GEOMETRY HW 2

DIFFERENTIAL GEOMETRY HW 2 CLAY SHONKWILER 2 Prove that the only orientation-reversing isometries of R 2 are glide reflections, that any two glide-reflections through the same distance are conjugate by

### Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

### Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### CHAPTER 1 BASIC TOPOLOGY

CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is

### Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

### Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS

1 Lecture 4 DISCRETE SUBGROUPS OF THE ISOMETRY GROUP OF THE PLANE AND TILINGS This lecture, just as the previous one, deals with a classification of objects, the original interest in which was perhaps

### Introduction to Topology

Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### 2. Length and distance in hyperbolic geometry

2. Length and distance in hyperbolic geometry 2.1 The upper half-plane There are several different ways of constructing hyperbolic geometry. These different constructions are called models. In this lecture

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### Structure of Measurable Sets

Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

University of Oslo MAT2 Project The Banach-Tarski Paradox Author: Fredrik Meyer Supervisor: Nadia S. Larsen Abstract In its weak form, the Banach-Tarski paradox states that for any ball in R, it is possible

### ON FIBER DIAMETERS OF CONTINUOUS MAPS

ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there

### Compactness in metric spaces

MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the

### PART I. THE REAL NUMBERS

PART I. THE REAL NUMBERS This material assumes that you are already familiar with the real number system and the representation of the real numbers as points on the real line. I.1. THE NATURAL NUMBERS

### D-MATH Algebra I HS 2013 Prof. Brent Doran. Solution 5

D-MATH Algebra I HS 2013 Prof. Brent Doran Solution 5 Dihedral groups, permutation groups, discrete subgroups of M 2, group actions 1. Write an explicit embedding of the dihedral group D n into the symmetric

### Cylinder Maps and the Schwarzian

Cylinder Maps and the Schwarzian John Milnor Stony Brook University (www.math.sunysb.edu) Bremen June 16, 2008 Cylinder Maps 1 work with Araceli Bonifant Let C denote the cylinder (R/Z) I. (.5, 1) fixed

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### Math 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko

Math 563 Measure Theory Project (Funky Functions Group) Luis Zerón, Sergey Dyachenko 34 Let C and C be any two Cantor sets (constructed in Exercise 3) Show that there exists a function F: [,] [,] with

### MATH41112/61112 Ergodic Theory Lecture Measure spaces

8. Measure spaces 8.1 Background In Lecture 1 we remarked that ergodic theory is the study of the qualitative distributional properties of typical orbits of a dynamical system and that these properties

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### 13 Solutions for Section 6

13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution

### REAL ANALYSIS I HOMEWORK 2

REAL ANALYSIS I HOMEWORK 2 CİHAN BAHRAN The questions are from Stein and Shakarchi s text, Chapter 1. 1. Prove that the Cantor set C constructed in the text is totally disconnected and perfect. In other

### 6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

### TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS

TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms

### G = G 0 > G 1 > > G k = {e}

Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

### NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

### Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

### BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS. Proof. We shall define inductively a decreasing sequence of infinite subsets of N

BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS SIMON THOMAS 1. The Finite Basis Problem Definition 1.1. Let C be a class of structures. Then a basis for C is a collection B C such that for

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### ON ISOMORPHISMS OF BERS FIBER SPACES

Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 22, 1997, 255 274 ON ISOMORPHISMS OF BERS FIBER SPACES Chaohui Zhang State University of New York, Mathematics Department, Stony Brook, NY 11794,

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Surface bundles over S 1, the Thurston norm, and the Whitehead link

Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In

### The Three Reflections Theorem

The Three Reflections Theorem Christopher Tuffley Institute of Fundamental Sciences Massey University, Palmerston North 24th June 2009 Christopher Tuffley (Massey University) The Three Reflections Theorem

### This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

### Infinite product spaces

Chapter 7 Infinite product spaces So far we have talked a lot about infinite sequences of independent random variables but we have never shown how to construct such sequences within the framework of probability/measure

### INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### vertex, 369 disjoint pairwise, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 466 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

### SOLUTIONS TO ASSIGNMENT 1 MATH 576

SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts

### Tangent and normal lines to conics

4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

### Weak topologies. David Lecomte. May 23, 2006

Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such

### ANDREA HEYMAN, HAOYUAN LI, CORINA RAY

POLYGONL OUTER ILLIRDS IN THE HYPEROLI PLNE NDRE HEYMN, HOYUN LI, ORIN RY bstract. This project was conducted at the summer REU at Penn State University in 009 under the supervision of ndrey Gogolev and

### UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE

UNIFORMLY DISCONTINUOUS GROUPS OF ISOMETRIES OF THE PLANE NINA LEUNG Abstract. This paper discusses 2-dimensional locally Euclidean geometries and how these geometries can describe musical chords. Contents

### Chapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces

Chapter 1. Metric Spaces Metric Spaces MA222 David Preiss d.preiss@warwick.ac.uk Warwick University, Spring 2008/2009 Definitions. A metric on a set M is a function d : M M R such that for all x, y, z

### Continuous first-order model theory for metric structures Lecture 2 (of 3)

Continuous first-order model theory for metric structures Lecture 2 (of 3) C. Ward Henson University of Illinois Visiting Scholar at UC Berkeley October 21, 2013 Hausdorff Institute for Mathematics, Bonn

### Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

### Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem. Senior Exercise in Mathematics. Jennifer Garbett Kenyon College

Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem Senior Exercise in Mathematics Jennifer Garbett Kenyon College November 18, 010 Contents 1 Introduction 1 Primitive Lattice Triangles 5.1

### Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

### 3. Equivalence Relations. Discussion

3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,

### Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher

Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished

### Classification and Structure of Periodic Fatou Components

Classification and Structure of Periodic Fatou Components Senior Honors Thesis in Mathematics, Harvard College By Benjamin Dozier Adviser: Sarah Koch 3/19/2012 Abstract For a given rational map f : Ĉ Ĉ,

### Axiom A.1. Lines, planes and space are sets of points. Space contains all points.

73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach

### MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2016 47 4. Diophantine Equations A Diophantine Equation is simply an equation in one or more variables for which integer (or sometimes rational) solutions

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

### 1. Sigma algebras. Let A be a collection of subsets of some fixed set Ω. It is called a σ -algebra with the unit element Ω if. lim sup. j E j = E.

Real Analysis, course outline Denis Labutin 1 Measure theory I 1. Sigma algebras. Let A be a collection of subsets of some fixed set Ω. It is called a σ -algebra with the unit element Ω if (a), Ω A ; (b)

### God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

### Sets and functions. {x R : x > 0}.

Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

### DECOMPOSING SL 2 (R)

DECOMPOSING SL 2 R KEITH CONRAD Introduction The group SL 2 R is not easy to visualize: it naturally lies in M 2 R, which is 4- dimensional the entries of a variable 2 2 real matrix are 4 free parameters

### Geometric Transformations

Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

### Polish spaces and standard Borel spaces

APPENDIX A Polish spaces and standard Borel spaces We present here the basic theory of Polish spaces and standard Borel spaces. Standard references for this material are the books [143, 231]. A.1. Polish

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

### = 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

### PSEUDOARCS, PSEUDOCIRCLES, LAKES OF WADA AND GENERIC MAPS ON S 2

PSEUDOARCS, PSEUDOCIRCLES, LAKES OF WADA AND GENERIC MAPS ON S 2 Abstract. We prove a Bruckner-Garg type theorem for the fiber structure of a generic map from a continuum X into the unit interval I. We

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers

Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers Amnon Yekutieli Department of Mathematics Ben Gurion University email: amyekut@math.bgu.ac.il Notes available at http://www.math.bgu.ac.il/~amyekut/lectures

### Limits and convergence.

Chapter 2 Limits and convergence. 2.1 Limit points of a set of real numbers 2.1.1 Limit points of a set. DEFINITION: A point x R is a limit point of a set E R if for all ε > 0 the set (x ε,x + ε) E is

### ORIENTATIONS. Contents

ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### 9 More on differentiation

Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

### The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite: