Sample Problems cos 2 x = tan2 x tan 2 = csc 2 tan sec x + tan x = cos x sin 4 x cos 4 x = 1 2 cos 2 x


 Beverly Gallagher
 2 years ago
 Views:
Transcription
1 Lecture Notes Trigonometric Identities page Sample Problems Prove each of the following identities.. tan x x + sec x 2. tan x + tan x x 3. x x 3 x x 6. 2 sec + x 2 tan x csc x tan x + cot x 0. 2 tan2 x tan 2 x +. tan 2 csc 2 tan 2 2. sec x + tan x x 3. csc cot tan 4. 4 x 4 x 2 5. ( x ) 2 + ( x + ) x 4 x x x x 8. tan 2 x tan 2 x + 2 x 7. x tan x sec x 9. x + x 8. tan 2 x + + tan x sec x + x c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
2 Lecture Notes Trigonometric Identities page 2 Practice Problems Prove each of the following identities.. tan x + + x. cot x cot x + tan x + tan x 2. tan 2 x + sec 2 x 2. ( x + ) (tan x + cot x) sec x + csc x 3. x + x 2 tan x sec x 3. 3 x + 3 x x + x 4. tan x + cot x sec x csc x 5. + tan 2 x tan 2 x x csc x + x x x + x 4 tan x sec x 6. tan 2 x tan 2 x 6. csc 4 x cot 4 x csc 2 x + cot 2 x 7. x + x 2 csc x sec x sec x tan x + tan y cot x + cot y tan x tan y 9. + cot 2 x csc 2 x 0. csc 2 x csc 2 x 9. + tan x tan x + x x 20. ( x tan x) ( cot x) ( x ) ( ) c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
3 Lecture Notes Trigonometric Identities page 3 Sample Problems  Solutions. tan x x + sec x We will only use the fact that + for all values of x. LHS tan x x + x x + 2 x + 2 x + 2 x 2 x + RHS 2. tan x + tan x x We will only use the fact that + for all values of x. 3. x x 3 x LHS + tan x tan x x + x 2 x + x We will only use the fact that + for all values of x. x RHS LHS x x x x RHS sec We will only use the fact that + for all values of x. 5. LHS x ( + )2 + ( + ) ( + ) 2 + ( + ) 2 ( + ) ( + ) ( + ) 2 ( + ) ( + ) sec RHS + x 2 tan x ( + ) We will start with the lefthand side. First we bring the fractions to the common denominator. Recall that + for all values of x. LHS x ( + x) ( x) ( x) ( + x) 2 x + x ( + x) ( x) ( + x) 2 tan x RHS ( x) ( x) ( + x) + x + x 2 x c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
4 Lecture Notes Trigonometric Identities page 4 6. csc x tan x + cot x We will start with the righthand side. We will rewrite everything in terms of x and and simplify. We will again run into the Pythagorean identity, +. RHS csc x tan x + cot x x x x x + x 2 x x x + LHS 2 x x x + x x x x 4 x We can factor the numerator via the di erence of squares theorem. LHS 4 x 4 2 x 2 x () 2 + RHS tan 2 x tan 2 x + 2 x 2 x + LHS tan 2 x tan 2 x x 2 x x 2 x + 2 x RHS 9. x + x LHS x x x ( + x) + x RHS + x + x ( x) ( + x) ( + x) ( + x) c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
5 Lecture Notes Trigonometric Identities page tan2 x tan 2 x + RHS tan2 x tan 2 x + 2 x + 2 x + 2 x + 2 x + 2 x + 2 x 2 LHS. tan 2 csc 2 tan 2 RHS csc 2 tan tan 2 LHS 2. sec x + tan x x 3. csc RHS cot tan x x x + x + x ( + x) ( x) ( + x) ( + x) ( + x) 2 + x x + x LHS We will start with the lefthand side. We will rewrite everything in terms of and and simplify. We will again run into the Pythagorean identity, + for all angles x. LHS csc 2 2 cot tan 4. 4 x 4 x RHS LHS 4 x 4 x RHS c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
6 Lecture Notes Trigonometric Identities page 6 5. ( x ) 2 + ( x + ) 2 2 LHS ( x ) 2 + ( x + ) x x RHS x x x LHS 2 x + 4 x + 3 ( x + ) ( x + 3) ( x + ) ( x + 3) ( + x) ( x) x + 3 x RHS 7. x LHS tan x sec x x tan x 2 x + x ( x) x x 2 x x ( x) ( x) x ( x) RHS 2 x x + ( x) 8. tan 2 x + + tan x sec x + x LHS tan 2 x + + tan x sec x 2 x + + x 2 x + 2 x + x 2 x + + x + x RHS For more documents like this, visit our page at and click on Lecture Notes. questions or comments to c copyright Hidegkuti, Powell, 2009 Last revised: May 8, 203
Sample Problems. Practice Problems
Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x
More informationLesson Two. Pre Calculus Math 40S: Explained! 152
Lesson Two Pre Calculus Math 40S: Eplained! www.math40s.com 5 PART I MULTIPLICATION & DIVISION IDENTITLES Algebraic proofs of trigonometric identities In this lesson, we will look at various strategies
More information5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
More informationSample Problems. Practice Problems
Lecture Notes Factoring by the ACmethod page 1 Sample Problems 1. Completely factor each of the following. a) 4a 2 mn 15abm 2 6abmn + 10a 2 m 2 c) 162a + 162b 2ax 4 2bx 4 e) 3a 2 5a 2 b) a 2 x 3 b 2 x
More informationSection 5.2 Trigonometric Functions of Real Numbers
Section. Trigonometric Functions of Real Numbers The Trigonometric Functions EXAMPLE: Use the Table below to find the six trigonometric functions of each given real number t. a) t = π b) t = π 1 EXAMPLE:
More informationy = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions
MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y
More informationRight Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring
Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest
More informationALGEBRA 2/ TRIGONOMETRY
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Friday, June 14, 2013 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Practice Papers Question 28.......................
More informationRight Triangle Trigonometry
Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned
More information11 Trigonometric Functions of Acute Angles
Arkansas Tech University MATH 10: Trigonometry Dr. Marcel B. Finan 11 Trigonometric Functions of Acute Angles In this section you will learn (1) how to find the trigonometric functions using right triangles,
More information4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles
4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred
More informationSample Problems. Practice Problems
Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these
More informationSample Problems. Lecture Notes Similar Triangles page 1
Lecture Notes Similar Triangles page 1 Sample Problems 1. The triangles shown below are similar. Find the exact values of a and b shown on the picture below. 2. Consider the picture shown below. a) Use
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationTrigonometric Functions: The Unit Circle
Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry
More information1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
More information6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
More informationAlgebra and Trig. I. where 1 is the radius of the circle and t is the radian measure of the central angle.
Algebra and Trig. I 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle
More informationSection 63 DoubleAngle and HalfAngle Identities
63 DoubleAngle and HalfAngle Identities 47 Section 63 DoubleAngle and HalfAngle Identities DoubleAngle Identities HalfAngle Identities This section develops another important set of identities
More informationTrigonometry LESSON TWO  The Unit Circle Lesson Notes
(cosθ, sinθ) Trigonometry Example 1 Introduction to Circle Equations. a) A circle centered at the origin can be represented by the relation x 2 + y 2 = r 2, where r is the radius of the circle. Draw each
More informationPreCalculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.
PreCalculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle
More informationG E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide
G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...
More informationTrigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
More informationSemester 2, Unit 4: Activity 21
Resources: SpringBoard PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities
More informationRIGHT TRIANGLE TRIGONOMETRY
RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will
More informationSample Problems. Practice Problems
Lecture Notes Circles  Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points
More informationUnit 6 Trigonometric Identities, Equations, and Applications
Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean
More informationInverse Circular Function and Trigonometric Equation
Inverse Circular Function and Trigonometric Equation 1 2 Caution The 1 in f 1 is not an exponent. 3 Inverse Sine Function 4 Inverse Cosine Function 5 Inverse Tangent Function 6 Domain and Range of Inverse
More informationGive an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179
Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.
More informationSolution Guide for Chapter 6: The Geometry of Right Triangles
Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab
More informationMPE Review Section II: Trigonometry
MPE Review Section II: Trigonometry Review similar triangles, right triangles, and the definition of the sine, cosine and tangent functions of angles of a right triangle In particular, recall that the
More information1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
More informationDear Accelerated PreCalculus Student:
Dear Accelerated PreCalculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, collegepreparatory mathematics course that will also
More informationApplications of Fermat s Little Theorem and Congruences
Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4
More informationHere the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and
Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More informationGeometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017
Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles,
More information4.1 Radian and Degree Measure
Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position
More informationChapter 6 Trigonometric Functions of Angles
6.1 Angle Measure Chapter 6 Trigonometric Functions of Angles In Chapter 5, we looked at trig functions in terms of real numbers t, as determined by the coordinates of the terminal point on the unit circle.
More informationFunctional Dependencies and Finding a Minimal Cover
Functional Dependencies and Finding a Minimal Cover Robert Soulé 1 Normalization An anomaly occurs in a database when you can update, insert, or delete data, and get undesired sideeffects. These side
More informationInverse Trig Functions
Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More informationThe Deadly Sins of Algebra
The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.
More informationTrigonometric Identities and Equations
LIALMC07_0768.QXP /6/0 0:7 AM Page 605 7 Trigonometric Identities and Equations In 8 Michael Faraday discovered that when a wire passes by a magnet, a small electric current is produced in the wire. Now
More informationy 1 x dx ln x y a x dx 3. y e x dx e x 15. y sinh x dx cosh x y cos x dx sin x y csc 2 x dx cot x 7. y sec 2 x dx tan x 9. y sec x tan x dx sec x
Strateg for Integration As we have seen, integration is more challenging than differentiation. In finding the derivative of a function it is obvious which differentiation formula we should appl. But it
More information3. Right Triangle Trigonometry
. Right Triangle Trigonometry. Reference Angle. Radians and Degrees. Definition III: Circular Functions.4 Arc Length and Area of a Sector.5 Velocities . Reference Angle Reference Angle Reference angle
More information5.2 Unit Circle: Sine and Cosine Functions
Chapter 5 Trigonometric Functions 75 5. Unit Circle: Sine and Cosine Functions In this section, you will: Learning Objectives 5..1 Find function values for the sine and cosine of 0 or π 6, 45 or π 4 and
More informationMathematics PreTest Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics PreTest Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {1, 1} III. {1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
More informationGRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
More informationSection 3.1 Radian Measure
Section.1 Radian Measure Another way of measuring angles is with radians. This allows us to write the trigonometric functions as functions of a real number, not just degrees. A central angle is an angle
More informationAngles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
More informationQuestion Bank Trigonometry
Question Bank Trigonometry 3 3 3 3 cos A sin A cos A sin A 1. Prove that cos A sina cos A sina 3 3 3 3 cos A sin A cos A sin A L.H.S. cos A sina cos A sina (cosa sina) (cos A sin A cosa sina) (cosa sina)
More informationCopyright 2013 wolfssl Inc. All rights reserved. 2
  Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 2 Copyright 2013 wolfssl Inc. All rights reserved. 3 Copyright 2013 wolfssl Inc. All rights reserved.
More informationopp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are welldefined for all angles
Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to
More informationFind the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.
SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.
More informationChapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationIntegration Involving Trigonometric Functions and Trigonometric Substitution
Integration Involving Trigonometric Functions and Trigonometric Substitution Dr. Philippe B. Laval Kennesaw State University September 7, 005 Abstract This handout describes techniques of integration involving
More information1. Introduction circular deﬁnition Remark 1 inverse trigonometric functions
1. Introduction In Lesson 2 the six trigonometric functions were defined using angles determined by points on the unit circle. This is frequently referred to as the circular definition of the trigonometric
More informationy cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
More informationComplex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers
Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Identify the number as real, complex, or pure imaginary. 2i The complex numbers are an extension
More information46 Inverse Trigonometric Functions
Find the exact value of each expression, if it exists. 1. sin 1 0 Find a point on the unit circle on the interval with a ycoordinate of 0. 3. arcsin Find a point on the unit circle on the interval with
More informationSimple trigonometric substitutions with broad results
Simple trigonometric substitutions with broad results Vardan Verdiyan, Daniel Campos Salas Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution.
More information5 =5. Since 5 > 0 Since 4 7 < 0 Since 0 0
a p p e n d i x e ABSOLUTE VALUE ABSOLUTE VALUE E.1 definition. The absolute value or magnitude of a real number a is denoted by a and is defined by { a if a 0 a = a if a
More informationRight Triangles 4 A = 144 A = 16 12 5 A = 64
Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right
More informationLecture Notes Order of Operations page 1
Lecture Notes Order of Operations page 1 The order of operations rule is an agreement among mathematicians, it simpli es notation. P stands for parentheses, E for exponents, M and D for multiplication
More informationMathematics Higher Tier, Algebraic Fractions
These solutions are for your personal use only. DO NOT photocopy or pass on to third parties. If you are a school or an organisation and would like to purchase these solutions please contact Chatterton
More informationGraphing Trigonometric Skills
Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE
More informationCourse outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems)
Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.11.2Review (9 problems) Functions, domain and range Domain and range of rational and algebraic
More informationa cos x + b sin x = R cos(x α)
a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationLesson Plan. Students will be able to define sine and cosine functions based on a right triangle
Lesson Plan Header: Name: Unit Title: Right Triangle Trig without the Unit Circle (Unit in 007860867) Lesson title: Solving Right Triangles Date: Duration of Lesson: 90 min. Day Number: Grade Level: 11th/1th
More information1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationSOLVING TRIGONOMETRIC EQUATIONS
Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC
More informationTrigonometry Chapter 3 Lecture Notes
Ch Notes Morrison Trigonometry Chapter Lecture Notes Section. Radian Measure I. Radian Measure A. Terminology When a central angle (θ) intercepts the circumference of a circle, the length of the piece
More informationGeometry Notes RIGHT TRIANGLE TRIGONOMETRY
Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right
More informationSolve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.
Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationChapter 5 The Trigonometric Functions
P a g e 40 Chapter 5 The Trigonometric Functions Section 5.1 Angles Initial side Terminal side Standard position of an angle Positive angle Negative angle Coterminal Angles Acute angle Obtuse angle Complementary
More informationPythagorean Triples and Rational Points on the Unit Circle
Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns
More information1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic
1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single
More informationIntegration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla
Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A selfcontained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk
More informationREVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
More information4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.
4.6 GRAPHS OF OTHER TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of tangent functions. Sketch the graphs of cotangent functions. Sketch
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationPythagorean Theorem: 9. x 2 2
Geometry Chapter 8  Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2
More informationUsing Trigonometry to Find Missing Sides of Right Triangles
Using Trigonometry to Find Missing Sides of Right Triangles A. Using a Calculator to Compute Trigonometric Ratios 1. Introduction: Find the following trigonometric ratios by using the definitions of sin(),
More informationALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, June 14, 013 1:15 to 4:15 p.m., only Student Name: School Name: The possession
More informationExamples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
More informationPYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
More informationIntegrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
More informationInstructions for SA Completion
Instructions for SA Completion 1 Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive
More informationYou can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure
Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve
More informationALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession
More informationChapter 5: Trigonometric Functions of Angles
Chapter 5: Trigonometric Functions of Angles In the previous chapters we have explored a variety of functions which could be combined to form a variety of shapes. In this discussion, one common shape has
More informationIntermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)
Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING
More informationPythagorean Triples. Chapter 2. a 2 + b 2 = c 2
Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More information