Light. What is light?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Light. What is light?"

Transcription

1 Light What is light? 1. How does light behave? 2. What produces light? 3. What type of light is emitted? 4. What information do you get from that light?

2 Methods in Astronomy Photometry Measure total amount of light within a certain filter Study distribution and extent of object Spectroscopy Slit up light into its wavelength components Study particular absorption and emission lines Need to understand astrophysical radiation processes Understand some of the relevant physics Be able to interpret the measured light information

3 Today s Overview and Concepts 1) What is Light? Properties? 2) Analyze Black Body Radiation and understand correlations between: color dominant wavelength surface temperature flux luminosity magnitude radius 2) How can you determine those properties of stars? 3) The Hertzsprung-Russel Diagram

4 Electromagnetic Radiation Newton: Beam of light separated into rainbow colors

5 The spectrum has a much wider range; ranging from Gamma to Radio Waves The "visual" part is only a small fraction of the entire electromagnetic spectrum. Visual: 4000 to 7000 Å (1 Å = m) This is also in your toolkit.

6

7

8 Infra-Red Radiation night animals

9 How do Waves behave? Ocean Waves Interference Pattern Does light also show an Interference Pattern??

10 How do we know that light is wave? It behaves like waves What happens when two waves are interfering?

11 Demo of Joung s Double Slit Experiment

12

13 Medium? ---- Ether? Light waves in what?? Light is electromagnetic radiation. What is that? It is a self-perpetuation wave, where the electric field gives rise to a magnetic field which in turn gives rise to an electric field What is propagating? Space around an electric charge may be characterized by an electric field, E, which manifests itself as a force on a test charge placed nearby. If an electromagnetic wave encounters such a test charge, that charge will oscillate. Maxwell s equations say that a time varying electric field produced a perpendicular time-varying magnetic field B. This disturbance in B then gives rise to a time varying E, which in turn this therefore is a self-propagating wave of electric and magnetic fields in a vacuum.

14 Waves Wavelength is the distance from crest to crest Frequency is the number of crests passing per second Velocity of light is 300,000 km/sec h = h o sin 2πx λ c = λ ν How do we know that light is wave? It behaves like waves

15 Light Waves E B = = E B o o 2π sin λ 2π sin λ ( x ct) ( y ct) Light is electromagnetic radiation. It is a self-perpetuation disturbance, where the electric field gives rise to a magnetic field which in turn gives rise to an electric field

16 But.. How do you get shadows with waves??? How do you get photos? (do waves make photos?) Is light a particle?

17 The Photoelectric Effect Light is a Particle called "Photon"

18 The Photoelectric Effect In 1905 Einstein made 4 main discoveries: Brownian motion Photo-electric effect Special Relativity E=mc 2 He got the Nobel prize for the Photo-Electric Effect.

19 Einstein showed that: light is a particle, called "Photon" light is quantized (more later) the energy of a photon is related to the frequency of light E = hν Energy frequency

20 Relationship between the velocity of light, its wavelength and its frequency is: c = λ ν ν E = h = h c λ More Energy Frequency of light = ν Wavelength of light = λ Energy of light = E Planck s constant = h Speed of light = c Shorter Wavelength Faster rate of waves passing

21 Paradox? Can Proof that Light is a Wave Can Proof that Light is a Particle Which is correct? A Particle with a Wavelength??? (What type of animal is that?)

22 Paradox? The experiment shows that light has a wave character The experiment shows that light has a particle character Which statement is correct? We determine reality by experimenting. The experiment itself determines reality. The experiments give contradictory results How, then, do we know what is really true in Life?

23 Energy and Intensity of Light E = hν = h c λ

24 What produces light? hot bodies Today: Experiment & Theory hot gases Today: Experiment only shocks and friction electric fields magnetic fields chemical reactions nuclear reactions

25 The Light Bulb Radiation from a dense body, i.e., from the Iron Wire inside the bulb To be compared later to the and

26 What is a Black Body? A Perfect Absorber no Reflection Perfect Emitter Def: A black body is an object that absorbs ALL radiation that is incident upon it. this makes it black

27 The Spectrum of a Light bulb Red light disappears Less light More light Less light Blue light disappears

28 The Black Body Spectrum Less light Most light Black Bodies emit Light with a characteristic Spectrum This shape is meant by that Less light Blue light disappears Red light disappears

29 The Black Body Spectrum Black Bodies emit Light with a characteristic Spectrum Empirical formula = = kt h kt hc e c h I e hc I ν ν λ λ ν λ

30 The Light-bulb experiment Decrease electricity supply total amount of light decreases color gets redder (relatively less blue light) temperature gets colder Have a relationship between: Color, Temperature & Brightness

31

32

33 Experimental Findings for Black Body 1) Hotter Bodies emit more light Temp 4 Flux This is Stefan-Bolzman s law F = σ T 4 2) Hotter bodies emit bluer light Temp 1/wavelength This is Wien s law λ max = T

34 Graphical Illustration Hotter bodies emit bluer light Temp 1/wavelength [Inverse relationship] This is Wien s law λ max = T

35 Total Flux Total energy density radiated at all wavelengths Area under the curve Integrate over all wavelengths Flux = 0 F( λ) dλ

36 T F e x dx from Tables Integral T e x dx c h k hc kt x Substitute hc kt e hc kt hc kt d hc hc kt by Multiply e d hc d F F Integrate e hc F x x kt hc kt hc kt hc σ π λ λ λ λ λ λ λ λ λ λ λ λ = = = = = = = =

37 Stars have colors

38 HST image of Quintuplet Cluster - almost real colors

39 Stars are roughly black bodies

40 Do not see this light

41 Bolometric correction λ λ = A A V d F L ) ( Since know the shape of the a Black Body Curve know how much light missing Apply so-called bolometric correction V A A Bol m d F d F m L L m m + = = ) ( ) ( 2.5log 2.5log λ λ λ λ

42 Determining the Temperature Method 1: By Eye Figure out the colors; Get λ max ; Use Wien s law to get temperature. How do you determine the dominant wavelength? Betelgeuse: color red λ max Rigel: color blue λ max

43 Rigel: λ max is around 4000Å this is in the blue part of the spectrum Betelgeuse: λ max is around 7000Å this is in the red part of the spectrum.

44 Which star is hotter? By how much? Betelgeuse: color red λ max = 7000Å Rigel: color blueish λ max = 4000Å Recall Wien's law: T = λ max But watch out for UNITS Temperature has to be in Kelvin Wavelength in meters (e.g. 7000Å = 7000 x m = 7 x 10-7 m)

45 Temperature scale Absolute Zero In Astronomy we always use the Kelvin Scale. Why? Absolute Zero corresponds to Zero Energy

46 Recall Wien's law: T = λ max First convert units: Betelgeuse: color red λ max = 7000Å = 7 x 10-7 m Rigel: color blueish λ max = 4000Å = 4 x 10-7 m Betelgeuse Rigel TB = = 4000K m ( λ ) max ( λ ) B TR = = 7000K m max R Calculation easier in ratios T T B R ( λ ) ( λ ) o ( λmax ) R 4000 A 4 = = ( λ ) 7 max B = = o max B max R 7000 A Betelgeuse is 4/7 times as hot as Rigel

47 Quiz Question 1: Hot Human Bodies Temperature? About 37 o Celsius = 310 Kelvin λ 0 6 max = = = T K m λ λ max max = meters = 9.4 micro meters Humans emit at ~ 9µm Humans emit light at INFRA RED wavelengths

48 Quiz Question 2: Ice & Cold Dust Temperature? About 0 o Celsius = 273 Kelvin λ 0 6 max = = = T λ λ max max K = meters = 10.4 micro meters m Ice emit light at near INFRA RED wavelengths Dust has temp of ~ K And thus emits at ~ µm Which is at near to far IR wavelengths

49 Other objects

50 Filters & Experiments with Pictures (Photometry Lab) Determining the "color index Quantitative Method a) Measure the magnitudes using filters, e.g., B & V b) Determine the color index (B-V) c) Then use Wien s law to get Temperature

51 First Look at the Spectra of Stars Then look at the entire Electromagnetic Spectrum in your Toolkit The Visual Part of the Spectrum is marked in the picture below Spectrum (a): We see relatively more red light Spectrum (c): We see relatively more blue light Correlating Colors and Dominant Wavelengths Spectrum (a): Dominant Wavelength is at Long Wavelengths here in the IR Spectrum (c): Dominant Wavelength is at Short Wavelengths here in the UV Red yellow λ max in IR λ max in Visual blue λ max in UV

52 How do your "measure" colors? Use filters, take black and white pictures (not color), then measure magnitude in each filter

53 HST image of Quintuplet Cluster -- almost real colors

54 Horsehead Nebula

55 Nebulosity in Sagittarius

56 How do your "measure" colors? Use filters & take (black and white ) pictures, then measure magnitude in each filter; Then calculate the Difference in Magnitude in two Filter Bands.

57 Blue star: much light in blue filter relatively less light in red filter Red star: less red light than blue star but relatively more light in red filter than blue star

58 Color = λ λ λ λ λ λ d R Flux d R Flux V B B V ) ( ) ( ) ( ) ( 2.5log T V B = 0 + Color index = B-V = Magnitude in B Magnitude in V Empirical relationship for solar like stars:

59 The Hertzsprung Russel Diagram For all stars can determine their absolute magnitudes and color Make a plot of absolute and color Luminosity M V Temperature B-V

60 The Hertzsprung Russel Diagram For all stars can determine their Luminosities and their Temperatures Make a plot of Stellar Luminosity and Temperature Luminosity M V Temperature or B-V

61 The Hertzsprung Russel Diagram (HRD) Plot of Luminosity and Temperature Most stars are so-called main-sequence stars

62 If both stars have the same color Color and Temperature Wien s law λ max = T Color is the same Temperature is the same Temperature and Flux Stefan-Bolzman s law Flux = σ Temp 4 Temperature is the same Flux is the same

63 Which star is more luminous? Luminosity and Size The Flux the amount of light passing through the green square is the SAME. BIG Star SMALL Star Which star is more luminous? The larger or smaller?

64 Recall Definitions Luminosity: Luminosity is an intrinsic quantity of the star. It is the energy per second emitted from the entire star. This quantity is the flux Units: Watts (or Joules/sec) Flux: The energy per second passing through a certain area. It is the energy per second per square meter. Units: Watts/m 2 (or Joules/sec/m 2 )

65 Luminosity and Size The Luminosity of a star is the total amount of light emitted from its surface. Thus the luminosity is obtained by multiplying the flux by the area of the star. Luminosity = Flux Area

66 Luminosity Luminosity = Flux Area L = F 4πR 2 Recall Stefan-Bolzman's law: F = σ T 4 Insert the value for Flux into the above equation: L = 2 2 4πR F = 4πR σ T 4 L = 2 4πσ R T 4 The Luminosity of a star depends on its Radius and its Temperature

67 Recall: redder stars are cooler Wien s law cooler stars emit less flux Stephan Bolzman s law get more light from bigger stars For Stars: Have a relationship between: Temperature, Luminosity, & Size

68 Determining the Radii of Stars Can figure out radius of a star if know luminosity and temperature. L = 2 4 4πσ R T Aside: In general always compare the stars. Stick to SOLAR units. Why? The sun is a meaningful star for us -- so compare other stars to the sun L L sun = 4πσ 4πσ R 2 4 R T 2 sun T 4 sun = 2 4 R T R 2 sun T 4 sun = R R sun 2 T T sun 4 For easier calculations you can use these L L sun R R sun R = R = sun or L L 2 sun T T T T sun sun 2 4

69 What about the size of a Star? Can you use the small angle formula? size of star = distance angle 206,265" If the angle is measured in arc seconds Angle size of star Distance to the star

70 Example: Betelgeuse Betelgeuse is 100,000 times as luminous as the sun. 5 L Betelgeuse = 10 L Sun Betelgeuse s color is red, the suns, color is yellow. Red color Temp ~ 3000K Yellow colors Temp ~ 6000K Could put the values of the luminosities and temperatures into these formulae: L Sun = 2 4 4πσ RSun TSun L Betel = 2 4 4πσ RBetel TBetel But there is an easier method. Again use ratios.

71 Example: Calculation L Betel L Sun = = 2 4 4πσ RBetel TBetel 2 4 4πσ RSun TSun Procedure (on right): Write down both formulae; Add two lines to turn this into ratios; Cancel constants L L 10 Betel sun 5 R = R R = R Betel sun Betel sun 2 2 T T Betel sun K 6000K K 6000K 10 R R R R R Betel = = = 2 16 Betel Betel sun sun Betel R R = 2 sun = = 1300R = 1300 sun 1 16

72 So Betelgeuse is 1300 times bigger than the sun. How big is that? The Earth Sun distance is 1AU 1300R sun ~ 6AU Betelgeuse is 6 times as big as the Earth Sun distance. Betelgeuse is a Red Supergiant!

73 The Hertzsprung Russel Diagram (HRD) Betelgeuse has a red color (T~3000K) and is very luminous L B =10 5 L sun. This puts Betelgeuse into the top right in the HRD Betelgeuse is much bigger than the sun Big stars are in the top RH Small stars are in the bottom LH

74 BIG Radius increases from bottom left to top right SMALL

75 Mass increases along main sequence from bottom right to top left

76 Frequencies of Stars Most are Main Sequence Stars Smaller Main sequence stars are much more numerous than luminous m.s. stars Next: What are Spectral Types?

77 Summary of Rules: 1) Hotter Bodies emit more light Temp 4 Flux This is Stefan-Bolzman s law F = σ T 4 2) Hotter bodies emit bluer light Temp 1/wavelength This is Wien s law λ max = T 3) Luminosity of a star is light emitted from its surface. Lum Temp 4 and R 2 L = 2 4πσ R T 4

Methods in Astronomy. Light. Electromagnetic Radiation. Today s Overview and Concepts. Newton: Beam of light separated into rainbow colo.

Methods in Astronomy. Light. Electromagnetic Radiation. Today s Overview and Concepts. Newton: Beam of light separated into rainbow colo. What is light? ight. How does light behave?. What produces light? 3. What type of light is emitted?. What information do you get from that light? Methods in Astronomy Photometry Measure total amount of

More information

Astronomy 114 Summary of Important Concepts #1 1

Astronomy 114 Summary of Important Concepts #1 1 Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semi-major axis of the ellipse) is simply related to sidereal period of the

More information

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

More information

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

More information

Determining the Sizes & Distances of Stars Using the H-R Diagram

Determining the Sizes & Distances of Stars Using the H-R Diagram Determining the Sizes & Distances of Stars Using the H-R Diagram Activity UCIObs 11 College Level Source: Copyright (2009) by Tammy Smecker-Hane & Michael Hood. Contact tsmecker@uci.edu with questions.

More information

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance

More information

Today. Electromagnetic Radiation. Light & beyond. Thermal Radiation. Wien & Stefan-Boltzmann Laws

Today. Electromagnetic Radiation. Light & beyond. Thermal Radiation. Wien & Stefan-Boltzmann Laws Today Electromagnetic Radiation Light & beyond Thermal Radiation Wien & Stefan-Boltzmann Laws 1 Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes

More information

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current

Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current Pressure Lecture 17 : Incandescent lightbulbs How they work Why they are inefficient Lightbulbs How many scientists does it take to change a lightbulb? Undergraduates: None Bright light - hurts... must

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key) Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

More information

Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

Inverse Square Law, Blackbody Radiation

Inverse Square Law, Blackbody Radiation Inverse Square aw, lackbody Radiation The Inverse Square aw for Radiation The amount of energy emitted in one second by a source of light is called its luminosity and is measured in watts. A source of

More information

How Matter Emits Light: 1. the Blackbody Radiation

How Matter Emits Light: 1. the Blackbody Radiation How Matter Emits Light: 1. the Blackbody Radiation Announcements n Quiz # 3 will take place on Thursday, October 20 th ; more infos in the link `quizzes of the website: Please, remember to bring a pencil.

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

The Nature of Light. As a particle

The Nature of Light. As a particle The Nature of Light Light is radiant energy. Travels very fast 300,000 km/sec! Can be described either as a wave or as a particle traveling through space. As a wave A small disturbance in an electric field

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

More information

Investigating electromagnetic radiation

Investigating electromagnetic radiation Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Astrophysics for Icarus

Astrophysics for Icarus Astrophysics for Icarus Kelly Lepo 1. Black Body Radiation Like lots of things in astronomy, black body radiation is a terrible name. When you see the phrase, think hot, glowing thing. For example, an

More information

Light bulbs. How does a light bulb work? Light bulbs. The goal of this class: Making sense of waves. Midterm 2 results. Ave: 31.8/40.

Light bulbs. How does a light bulb work? Light bulbs. The goal of this class: Making sense of waves. Midterm 2 results. Ave: 31.8/40. Light bulbs Midterm 2 results Number of people Ave: 31.8/40 Score out of 40 Lecture 17 : Incandescent light bulbs How they work Why they are inefficient Reminders: No HW was due yesterday HW for next week,

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

Newton s laws of motion and gravity

Newton s laws of motion and gravity Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

The Experimental Basis of Quantum Theory

The Experimental Basis of Quantum Theory The Experimental Basis of Quantum Theory Preliminary Remarks New theories do not appear from nowhere, they are usually based on (unexplained) experimental results. People have to be ready for it, e.g.

More information

Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

More information

How is E-M Radiation Produced?

How is E-M Radiation Produced? How is E-M Radiation Produced? 1. Accelerate charged particle back and forth like they do at the radio station. 2. All solids or liquids with temperature above Absolute Zero emit E-M radiation. Absolute

More information

3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X

3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X 3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X 3-2. True or False: Different colors of light are waves with different wavelengths. a.) True X b.)

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Astronomy 421. Lecture 8: Stellar Spectra

Astronomy 421. Lecture 8: Stellar Spectra Astronomy 421 Lecture 8: Stellar Spectra 1 Key concepts: Stellar Spectra The Maxwell-Boltzmann Distribution The Boltzmann Equation The Saha Equation 2 UVBRI system Filter name Effective wavelength (nm)

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Stars Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions.

What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions. What Are Stars? How are stars formed? Stars are formed from clouds of dust and gas, or nebulas, and go through different stages as they age. star: a large celestial body that is composed of gas and emits

More information

The Greenhouse Effect

The Greenhouse Effect The Greenhouse Effect THE GREENHOUSE EFFECT To understand the greenhouse effect you first need to know a bit about solar radiation what it is, where it comes from and what happens when it reaches Earth.

More information

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

More information

Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

More information

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013 Name: 1 Introduction Read through this information before proceeding on with the lab. 1.1 Spectral Classification of Stars 1.1.1 Types of Spectra Astronomers are very interested in spectra graphs of intensity

More information

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions 1a) Table 1 gives the spectral class and luminosity class of each of the 20 stars. The luminosity class of a star can (at least in principle)

More information

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689 Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

LIGHT AND ELECTROMAGNETIC RADIATION

LIGHT AND ELECTROMAGNETIC RADIATION LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

More information

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick.

We know the shape of the solar spectrum. Let s consider that the earth atmosphere is 8000 km thick. We know the shape of the solar spectrum. How is this spectral shape and irradiance of the solar light affected by the earth s atmosphere? Let s consider that the earth atmosphere is 8000 km thick. The

More information

TOPIC 5 (cont.) RADIATION LAWS - Part 2

TOPIC 5 (cont.) RADIATION LAWS - Part 2 TOPIC 5 (cont.) RADIATION LAWS - Part 2 Quick review ELECTROMAGNETIC SPECTRUM Our focus in this class is on: UV VIS lr = micrometers (aka microns) = nanometers (also commonly used) Q1. The first thing

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

Heat Transfer: Radiation

Heat Transfer: Radiation Heat Transfer: Radiation Heat transfer occurs by three mechanisms: conduction, convection, and radiation. We have discussed conduction in the past two lessons. In this lesson, we will discuss radiation.

More information

Lecture 1. The nature of electromagnetic radiation.

Lecture 1. The nature of electromagnetic radiation. Lecture 1. The nature of electromagnetic radiation. 1. Basic introduction to the electromagnetic field: Dual nature of electromagnetic radiation Electromagnetic spectrum. Basic radiometric quantities:

More information

Some Basic Principles from Astronomy

Some Basic Principles from Astronomy Some Basic Principles from Astronomy The Big Question One of the most difficult things in every physics class you will ever take is putting what you are learning in context what is this good for? how do

More information

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM PROJECT 4 THE HERTZSPRUNG RUSSELL DIGRM Objective: The aim is to measure accurately the B and V magnitudes of several stars in the cluster, and plot them on a Colour Magnitude Diagram. The students will

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

Earth s Energy Balance & the Greenhouse Effect

Earth s Energy Balance & the Greenhouse Effect Earth s Energy Balance & the Greenhouse Effect Outline: The Earth s Energy Balance: Electromagnetic Spectrum: Ultraviolet (UV) Visible Infrared (IR) Blackbody Radiation Albedo (reflectivity) Greenhouse

More information

Chapter 7. Quantum Theory and Atomic Structure

Chapter 7. Quantum Theory and Atomic Structure Chapter 7. Quantum Theory and Atomic Structure A problem arose in Rutherford s nuclear model. A nucleus and electron attract each other; to remain apart the electron must move. The energy of the electron

More information

Electromagnetic Radiation and Atomic Physics

Electromagnetic Radiation and Atomic Physics Electromagnetic Radiation and Atomic Physics Properties of Electrons, Protons, and Neutrons (The Main Constituents of Ordinary Matter) Mass Electrons have a mass of 9.11 10-31 kg. The mass of a proton

More information

Stars. Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram

Stars. Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram Stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram Classifying stars We now have two properties of stars that we can

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Physics 221 Lab 14 Transformers & Atomic Spectra

Physics 221 Lab 14 Transformers & Atomic Spectra Physics 221 Lab 14 Transformers & Atomic Spectra Transformers An application of Inductance The point of a transformer is to increase or decrease the voltage. We will investigate a simple transformer consisting

More information

HR Diagram Student Guide

HR Diagram Student Guide Name: HR Diagram Student Guide Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the following questions

More information

Spectra in the Lab ATOMS AND PHOTONS

Spectra in the Lab ATOMS AND PHOTONS Spectra in the Lab Every chemical element has a unique ``signature'' which can be revealed by analyzing the light it gives off. This is done by spreading the light out into a rainbow of color. It may seem

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Astrophysics Syllabus

Astrophysics Syllabus Astrophysics Syllabus Center for Talented Youth Johns Hopkins University Text: Astronomy Today: Stars and Galaxies, Volume II Author: Chaisson and McMillan Course Objective: The purpose of this course

More information

Interactions Between Electromagnetic Wave and Targets

Interactions Between Electromagnetic Wave and Targets Interactions Between Electromagnetic Wave and Targets Electromagnetic radiation wavelength λ, frequency ν and the velocity υ have the following relation. λ = υ/ν by: Dr. Kiyoshi Honda Space Technology

More information

Chapter 5. Mendeleev s Periodic Table

Chapter 5. Mendeleev s Periodic Table Chapter 5 Perodicity and Atomic Structure Mendeleev s Periodic Table In the 1869, Dmitri Mendeleev proposed that the properties of the chemical elements repeat at regular intervals when arranged in order

More information

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f

Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f Ch 6: Light and Telescope Wave and Wavelength..\..\aTeach\PhET\wave-on-a-string_en.jar Wavelength, Frequency and Speed Wave and Wavelength A wave is a disturbance that moves through a medium or through

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Wave - a traveling disturbance, e.g., displacement of water surface (water waves), string (waves on a string), or position of air molecules (sound waves). [ π λ ] h = h sin (

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Lecture 2: Radiation/Heat in the atmosphere

Lecture 2: Radiation/Heat in the atmosphere Lecture 2: Radiation/Heat in the atmosphere TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we

More information

11-2. What is the most dense element formed in the cores of any stars? a) helium b) lead c) iron X d) carbon

11-2. What is the most dense element formed in the cores of any stars? a) helium b) lead c) iron X d) carbon Quiz Oct 31 2012 Chapter 11 11-1. A nova is believed to occur when which of the following pairs of stars are in a binary system? a) white dwarf, main sequence star X b) white dwarf, neutron star c) neutron

More information

Astronomy 100 Exam 2

Astronomy 100 Exam 2 1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

More information

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Purpose: 1) To understand the H-R Diagram; 2) To understand how the H-R Diagram can be used to follow

More information

Astro 102 Practice Test 3

Astro 102 Practice Test 3 Class: Date: Astro 102 Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Interstellar gas clouds may collapse to form stars if they a. have

More information

The Early History of Quantum Mechanics

The Early History of Quantum Mechanics Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple box spectroscope capable of measuring wavelengths of visible light. To use this spectroscope

More information

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes.

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

More information

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

More information

4.5 Orbits, Tides, and the Acceleration of Gravity

4.5 Orbits, Tides, and the Acceleration of Gravity 4.5 Orbits, Tides, and the Acceleration of Gravity Our goals for learning: How do gravity and energy together allow us to understand orbits? How does gravity cause tides? Why do all objects fall at the

More information

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

More information

Light bulbs. Lightbulbs. How does a light bulb work? Light bulbs. Midterm 2 results. End of semester grade policy. Ave: 31.8/40.

Light bulbs. Lightbulbs. How does a light bulb work? Light bulbs. Midterm 2 results. End of semester grade policy. Ave: 31.8/40. Light bulbs Lightbulbs How many scientists does it take to change a lightbulb? Undergraduates: None right light - hurts... must go back to bed. Postgraduates: Funding for a new lightbulb ran out six months

More information

III. Radiation and the Greenhouse Effect

III. Radiation and the Greenhouse Effect III. Radiation and the Greenhouse Effect A. The electromagnetic spectrum consists of radiation we can see (visible light, the colors of the rainbow), radiation we can feel (the infrared), radiation we

More information

Greenhouse Effect and the Global Energy Balance

Greenhouse Effect and the Global Energy Balance Greenhouse Effect and the Global Energy Balance Energy transmission ( a a refresher) There are three modes of energy transmission to consider. Conduction: the transfer of energy in a substance by means

More information

Astro Lecture 15. Light and Matter (Cont d) 23/02/09 Habbal_Astro Lecture 15

Astro Lecture 15. Light and Matter (Cont d) 23/02/09 Habbal_Astro Lecture 15 Astro110-01 Lecture 15 Light and Matter (Cont d) 1 What have we learned? Three basic types of spectra continuous spectrum emission line spectrum absorption line spectrum Light tells us what things are

More information

Polarization and Photon Concept A. Polarization

Polarization and Photon Concept A. Polarization Polarization and Photon Concept A. Polarization Physics 102 Workshop #8A Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three.

More information