LOCAL AND REGIONAL PATTERNS OF SPECIES RICHNESS

Size: px
Start display at page:

Download "LOCAL AND REGIONAL PATTERNS OF SPECIES RICHNESS"

Transcription

1 Folia Geobotanica 8: 9, LOCAL AND REGIONAL PATTERNS OF SPECIES RICHNESS IN CENTRAL EUROPEAN VEGETATION TYPES ALONG THE ph/calcium GRADIENT Milan Chytrý, Lubomír Tichý & Jan Roleèek Department of Botany, Masaryk University, Kotláøská, CZ-6 7 Brno, Czech Republic; fax +, chytry@sci.muni.cz, tichy@sci.muni.cz, honza.rolecek@centrum.cz Abstract: We investigated the relationship between soil ph/calcium content and species richness of vascular plants in seven broadly defined Central European vegetation types, using Ellenberg indicator values for soil reaction and a phytosociological data set of, vegetation sample plots from the Czech Republic. The vegetation types included (A) broad-leaved deciduous forests, (B) meadows, (C) dry grasslands, (D) reed-bed and tall-sedge vegetation, (E) fens and transitional mires, (F) perennial synanthropic vegetation and (G) annual synanthropic vegetation. Relationships between local species richness (alpha diversity) and ph/calcium were positive for vegetation types A and C, negative for D and G, unimodal for E, and insignificant for B and F. Ellenberg soil reaction values explained 7% of variation in local species richness for vegetation type E, % for A, % for D, but only less than % for the others. Species pool size, i.e., the number of species that can potentially occur in a given habitat, was calculated for each plot using Beals index of sociological favourability applied to a large phytosociological database. For most vegetation types, the relationships between species pool size and ph/calcium were similar to the relationships between local species richness and ph/calcium, with the exception of meadows (weak unimodal) and perennial synanthropic vegetation (weak negative). These patterns suggest that for those types of Central European vegetation that developed independently of human influence in the Pleistocene or early Holocene (dry grasslands, deciduous forests), there are larger pools of calcicole than calcifuge species. This pattern is also found at the level of local species richness, where it is, however, less clearly pronounced, possibly due to the predominance of a few widespread and generalist calcifuges in acidic habitats. The unimodal pattern found in mires may result from similar underlying mechanisms, but in high ph environments mineral-rich spring waters probably decrease species richness by having toxic effects on plant growth. By contrast, vegetation types developed under direct human influence (meadows, synathropic vegetation) show weak negative or no relationships of local species richness or species pool to ph/calcium gradient. These results support the hypothesis of PÄRTEL (Ecology 8: 6 66, ) and EWALD (Folia Geobot. 8: 7 66, ), that the modern calcicole/calcifuge disparity in the species pool of Central European flora has resulted from historical and evolutionary processes that took place on high ph soils. In the Pleistocene, calcareous soils dominated both the dry continental landscapes of Central Europe and glacial refugia of temperate flora, which were mostly situated in southern European mountain ranges with abundant limestone and dolomite. The negative pattern of species richness along the ph/calcium gradient found in reed-bed and tall-sedge vegetation, however, is not consistent with this historical explanation. Keywords: Calcareous, Calcicole, Calcifuge, Ellenberg indicator values, Historical and evolutionary processes, Soil acidity, Species pool, Vascular plants INTRODUCTION Soil ph and calcium content are among the most important factors controlling species composition and diversity in plant communities. A possible explanation for patterns of local species richness (alpha diversity) along the ph/calcium gradient is the disparity existing in

2 M. Chytrý et al. regional floras between calcicoles and calcifuges, i.e., species adapted respectively to high or low ph soils. This disparity has been suggested to result from evolutionary and historical processes operating on a regional scale (GRIME 97, 979, GRUBB 987, PÄRTEL, EWALD ). Such an explanation follows the species pool concept (TAYLOR et al. 99, ZOBEL 99, 997, ERIKSSON 99, PÄRTEL et al. 996), which stresses the role of the regional species pool as the major determinant of local species richness, while it ascribes less importance to local interspecific interactions (see also CORNELL &LAWTON 99, RICKLEFS & SCHLUTER 99, CALEY & SCHLUTER 997). Using a global review of plant ecological literature, PÄRTEL () demonstrated that positive relationships between local species richness and ph are more frequent at higher latitudes, where the Pleistocene evolutionary centres were in areas with rejuvenated calcareous soils. For the Central European forest flora, EWALD () pointed out that its pool of calcicoles by far exceeds the pool of calcifuges, which is in sharp contrast to the predominance of acidic soils in modern Central European landscapes. He also hypothesized that this pattern is a result of evolutionary and historical processes. Different habitats in modern landscape harbour specific species pools that vary in their evolutionary and migration histories. New insights into the relationships between local species richness, species pool and soil ph or calcium content can therefore be gained by analyses performed separately in different vegetation types. The analyses presented in this paper make use of a large phytosociological data set and Ellenberg indicator values. They aim at identifying vascular plant diversity patterns in major vegetation types of Central Europe along the ph/calcium gradient, with focus on to local species richness and species pool. MATERIALS AND METHODS Data set We used vegetation-plot data (relevés) from the Czech National Phytosociological Database (CHYTRÝ & RAFAJOVÁ ) for seven broadly delimited vegetation types, defined by phytosociological classes according to MORAVEC et al. (99): (A) broad-leaved deciduous forests (class Querco-Fagetea), (B) meadows (Molinio-Arrhenatheretea), (C) dry grasslands (Festuco-Brometea), (D) reed-bed and tall-sedge vegetation (Phragmito- -Magnocaricetea), (E) fens and transitional mires (Scheuchzerio-Caricetea fuscae), (F) perennial synanthropic vegetation (Artemisietea vulgaris, Galio-Urticetea, Agropyretea repentis, Plantaginetea majoris), and (G) annual synanthropic vegetation (Chenopodietea, Secalietea). Main characteristics of these vegetation types in the Czech Republic are summarized in Table. Only relevés from plots of m for forests and 9 m for herbaceous vegetation were used. As the geographical coverage of the relevé sites was not uniform across the country, we made a geographical stratification of the data set, taking only one relevé per each phytosociological association in each cell of a grid dividing the Czech Republic into quadrats of. longitudinal.7 latitudinal minute (ca... km). Traditional phytosociological associations as indicated by the relevé authors were used for this stratification. We excluded all cryptogam records and merged multiple species records in different layers of the same relevé. Resulting relevé numbers per vegetation type ranged between 9 (Table ).

3 Local and regional patterns of species Table. Characteristics of distribution, altitudinal belts, degree of naturalness and period of origin of the studied vegetation types in the Czech Republic. Vegetation type Distribution Altitudes Naturalness Origin (A) Broad-leaved deciduous common lowland - montane natural early Holocene forests (B) Meadows common lowland - montane managed mid Holocene (C) Dry grasslands scattered lowland - colline managed, natural Pleistocene (D) Reed-bed and tall-sedge scattered lowland - montane natural Pleistocene vegetation (E) Fens and transitional mires scattered lowland - subalpine managed, natural Pleistocene (F) Perennial synanthropic common lowland - montane intensively managed mid Holocene vegetation (G) Annual synanthropic common lowland - montane intensively managed mid Holocene vegetation Estimating soil reaction For each relevé, we calculated the average Ellenberg indicator value for soil reaction (ELLENBERG et al. 99), using the JUICE program (TICHÝ ). As suggested by SCHAFFERS & SÝKORA (), Ellenberg soil reaction value best corresponds to a combined gradient of soil ph and calcium content. When calculating Ellenberg values, it was important to avoid the effect of an uneven number of species assigned to different indicator values by ELLENBERG et al. (99; see also EWALD ). Since the pool of calcicoles as defined by ELLENBERG et al. (99) is larger than the pool of calcifuges, one may suppose accidental occurrences of calcicoles in acidic sites to be more frequent than accidental occurrences of calcifuges in basic sites. If so, average indicator values calculated for acidic sites would be biased towards the basic end of the gradient, especially in species-rich vegetation with many accidental species. To remove this element of circularity from the analysis, we used the procedure proposed by SCHAFFERS & SÝKORA () and calculated average indicator values for relevés using negative weighting by the number of species assigned to particular values on Ellenberg scale. The weights were determined separately in each of the vegetation types A G, considering only species occurring in particular data sets. In such a way, our calculations of mean values for relevés were only based on species ranking along the soil reaction gradient and were not influenced by the putative higher pool of calcicoles in Central European flora presumed by ELLENBERG et al. (99). Nevertheless, our pilot analyses showed that calculations based on weighted and unweighted averages gave roughly similar results. Estimating species pool The species pool was estimated by the probabilistic method proposed by EWALD (). This method makes use of the Beals index of sociological favourability (BEALS 98, MCCUNE 99), which estimates the probability of encountering species in a relevé from

4 M. Chytrý et al. actual species composition of the relevé and the pattern of species co-occurrence in a large database: b ij M =. S N i k jk k where b ij is the estimated probability of species j to occur in relevé i, S i the number of species in relevé i, M jk the number of joint occurrences of species j and k in the whole database and N k the number of occurrences of species k in the whole database. We used a database of,79 geographically stratified phytosociological relevés that included all major vegetation types of the Czech Republic. For each relevé used in this study, we calculated the probability of occurrence for each species present in the database, using the JUICE program (TICHÝ ). Then we estimated the size of the species pool for each relevé as the number of species whose probability of occurrence in the given relevé exceeded the value of b ij =.. Mean values of estimated species pool size for particular vegetation types are given in Table. Statistical analysis of the relationship between species richness and soil reaction Local species richness (alpha diversity, number of species per relevé) of vascular plants and the estimated size of species pool per relevé were regressed against the Ellenberg soil reaction values for relevés. In both cases, species numbers were square-rooted in order to get an appropriate transformation for counts (SOKAL & ROHLF 99). The fact that the relevés came from plots of unequal size could influence the analysis of local species richness. Therefore we removed the area effect by calculating linear regressions of the local species richness on log-transformed plot size. Logarithmic transformation was used in order to fit the empirical species-area relationship (ROSENZWEIG 99). Then we used standardized residuals from these regression and regressed them against Ellenberg soil reaction values. In the analysis of species pool, controlling for the area effect was not necessary, however, we standardized the values of estimated species pool to zero mean and unit variance so as to make them directly comparable with the standardized residuals of local species richness. In each regression, we first fitted the linear term and then we possibly added the quadratic term, provided the following two conditions were simultaneously fulfilled: () quadratic term explained, in addition to the linear term, a significant portion of the residual sum of squares (F-test, P <.); () the fitted quadratic curve attained its maximum within the studied range of soil reaction values, suggesting a unimodal relationship. Equality of regression slopes for local species richness and for species pool was tested for each of the vegetation types A G, using factor and interaction term in a general linear model. Regression analyses were calculated in the STATISTICA program (STATSOFT Inc. ). RESULTS The relationships between local species richness and Ellenberg soil reaction values (Table ) were positive for broad-leaved deciduous forests and dry grasslands (Fig. A, C), unimodal for fens and transitional mires (Fig. E), and negative for reed-bed and tall-sedge vegetation and annual synanthropic vegetation (Fig. D, G). There were no significant

5 Local and regional patterns of species Table. Regressions of local species richness on Ellenberg soil reaction values for relevés. Dependent variable was standardized residuals from regressions of local species richness on log-transformed relevé area. n number of relevés, mean SD mean and standard deviation of the local species richness, R coefficient of determination. Regression coefficients and coefficients of determination reported are significant at P <.. Asterisks in brackets (**) are given where quadratic term explained significant variation in addition to the variation explained by linear term, but it was not included into the model because the quadratic curve peaked outside the range of the soil reaction values studied. n.s. not significant. Vegetation type n mean SD Regression coefficients R linear quadratic (A) Broad-leaved deciduous forests (**). (B) Meadows.. n.s. n.s. n.s. (C) Dry grasslands (**). (D) Reed-bed and tall-sedge vegetation n.s.. (E) Fens and transitional mires (F) Perennial synanthropic vegetation n.s. n.s. n.s. (G) Annual synanthropic vegetation n.s.. Table. Regressions of species pool size on Ellenberg soil reaction values for relevés. Dependent variable, number of species in the species pool, was standardized to zero mean and unit standard deviation. n number of relevés, mean SD mean and standard deviation of the estimated number of species in the species pool, R coefficient of determination. Regression coefficients and coefficients of determination reported are significant at P <.. Asterisks in brackets (**) are given where quadratic term explained significant variation in addition to the variation explained by linear term, but it was not included in the model because the quadratic curve peaked outside the range of the soil reaction values studied. n.s. not significant. Vegetation type n mean SD Regression coefficients R linear quadratic (A) Broad-leaved deciduous forests (**).7 (B) Meadows (C) Dry grasslands (**).6 (D) Reed-bed and tall-sedge vegetation (**).8 (E) Fens and transitional mires (F) Perennial synanthropic vegetation n.s.. (G) Annual synanthropic vegetation n.s.. relationships for meadows and perennial synanthropic vegetation (Fig. B, F). The proportion of variation in local species richness explained by Ellenberg soil reaction values (Table ) was % for broad-leaved deciduous forests, 7% for fens and transitional mires and % for reed-bed and tall-sedge vegetation. For the other vegetation types, the explained variation was very low (<. %). For most of the studied vegetation types, the relationships between species pool and Ellenberg soil reaction values (Table ) were similar to the relationships detected for local species richness. For broad-leaved deciduous forests and dry grasslands, the relationships remained positive but with a significantly steeper slope (F-test, P <.) (Fig. A, C). For fens and transitional mires and reed-bed and tall-sedge vegetation, there were no significant changes in the parameters of the regression relationships as compared with the relationships

6 M. Chytrý et al. A. Broad-leaved deciduous forests B. Meadows C. Dry grasslands D. Reed-bed and tall-sedge vegetation Standardized residuals of local species richness E. Fens and transitional mires F. Perennial synanthropic vegetation G. Annual synanthropic vegetation Ellenberg soil reaction value Ellenberg soil reaction value Fig.. Relationships between local species richness and ph/calcium gradient, with the area effect removed. Standardized residuals from the linear regressions of local species richness on log-transformed size of relevé plots are plotted against Ellenberg soil reaction values for relevés. Curves are not fitted in cases where regression coefficients are not significant. See Table for regression parameters.

7 Local and regional patterns of species A. Broad-leaved deciduous forests B. Meadows C. Dry grasslands D. Reed-bed and tall-sedge vegetation Standardized size of species pool E. Fens and transitional mires F. Perennial synanthropic vegetation G. Annual synanthropic vegetation Ellenberg soil reaction value Ellenberg soil reaction value Fig.. Relationships between estimated number of species in species pool for particular relevés and ph/calcium gradient. Dependent variable is standardized to zero mean and unit standard deviation and plotted against the Ellenberg soil reaction values for relevés. See Table for regression parameters.

8 6 M. Chytrý et al. of local species richness (Fig. D, E). For annual synanthropic vegetation, the relationship remained negative but with a significantly steeper slope (F-test, P <.) (Fig. G). Unlike in the regression for local species richness, regression for species pool detected significant relationships for meadows (unimodal, Fig. B) and for perennial synanthropic vegetation (negative, Fig. F). The proportion of variation in species pool explained by the regressions (Table ) was generally higher than in case of local species richness due to the effect of data smoothing by Beals function. However, except for broad-leaved deciduous forests and fens and transitional mires, less than % of the total variation was explained. DISCUSSION Local species richness along the ph/calcium gradient Our results show that among the broadly defined vegetation types of Central Europe, there is no single form of the relationship between local species richness and ph/calcium content (Table, Fig. ). A pronounced positive relationship was detected for broad-leaved deciduous forests, a pronounced unimodal relationship for fens and transitional mires, and a negative relationship for reed-bed and tall-sedge vegetation. In the other vegetation types, ph/calcium gradient explained only a very low proportion of variation in local species richness. Some of these patterns correspond to the patterns already reported from temperate or boreal vegetation types. For deciduous forests, local species richness was found to have positive relationships to ph or exchangeable cation concentrations, e.g. in southern Sweden (BRUNET et al. 997), Belgium (DUMORTIER et al. ), North Carolina (PEET & CHRISTENSEN 98) and Wisconsin (BROSOFSKE et al. ). Positive relationships were also reported from coniferous forests, e.g. in British Columbia (REY BENAYAS 99), Wisconsin (BROSOFSKE et al. ) and the Austrian Alps (EXNER et al. ). Unimodal patterns were also found in deciduous forests (see DUPRÉ et al. for a review of local studies from northern and Central Europe). Occasionally reported negative relationships between forest species richness and ph can be explained by sampling performed along short gradients, situated in the basic part of the entire ph/calcium gradient, a small number of study plots or confounding effects of other factors (DUPRÉ et al. ). The evidence for a unimodal relationship between local species richness of vascular plants and ph/calcium gradient in mires is supported by the study of GLASER et al. (99) from Minnesota. The results of other studies showing positive relationships in bogs and poor fens (GUNNARSSON et al. central Sweden; HÁJKOVÁ & HÁJEK Western Carpathians) are not contradictory to the unimodal pattern presumably existing over the entire range of different mire types. In our data set, a decrease in species richness in high ph fens was due to species-poor communities dominated by Juncus subnodulosus, Schoenus ferrugineus and S. nigricans. In the extremely high ph habitats, e.g. under the influence of mineral-rich springs or brackish water, species richness may be reduced due to high concentration of toxic compounds, as reported from saline meadows or coastal marshes (REY BENAYAS & SCHEINER 99, GOUGH et al. 99). Evidence for the unimodal pattern of species richness along the ph/calcium gradient in mires was provided also for bryophytes (VITT et al. 99, HÁJKOVÁ &HÁJEK ).

9 Local and regional patterns of species 7 For the other herbaceous vegetation types analyzed in this study, ph/calcium gradient explained a very low proportion of variation in local species richness (% for reed-bed and tall-sedge vegetation and less than % for the other vegetation types). These weak relationships were either negative, positive or insignificant. It is possible that the species richness of these vegetation types mainly depends on other factors than ph/calcium, in particular on the disturbance regime (management) and productivity (GRIME 979, HUSTON 99, GRACE 999). Nevertheless, several observational and experimental studies from temperate grasslands report a positive relationship between species richness and soil ph (SILVERTOWN 98, TILMAN & OLFF 99, OLDE VENTERINK et al. ). Species pool along the ph/calcium gradient Additional insights into species richness patterns can be obtained by comparing local species richness with the species pool size (Fig. ). We endorse the statement that the correlation between local species richness and species pool size does not necessarily imply that the former is determined by the latter, as the two are interdependent: not only can the species pool influence local species richness, but also local processes can affect the formation of the species pool (HERBEN, GRACE, LEPŠ, WILSON &ANDERSON ). In our case, patterns of species pool size along the ph/calcium gradient do not differ from the patterns of local species richness for reed-bed and tall-sedge vegetation and for fens and transitional mires (Figs. D, E, D, E, Tables, ). However, particularly interesting and worth studying can be those cases where local and regional species richness follow different patterns. In broad-leaved deciduous forests and dry grasslands, both the local species richness and the species pool increased with increasing soil reaction, but the increase in species pool size was steeper (Figs. A, C, A, C, Tables, ). These results suggest that species adapted to these habitats are mainly calcicoles, but on more acidic soils local species richness is higher than would be expected from the species pool, possibly due to the comparatively high proportion of a restricted number of widespread calcifuges occurring in local communities. For annual synanthropic vegetation, both local species richness and species pool were negatively related to the ph/calcium gradient, but the decrease was steeper for the species pool (Figs. G, G, Tables, ). Annual synanthropic vegetation is mainly typical of arable fields and the patterns detected in this study probably reflect disproportional effects of intensive agricultural management on acidic and basic soils. In the Czech Republic, basic soils are generally found at lower altitudes. Due to more favourable climate at low altitudes, these soils were rather early subjected to intensive agricultural management and effective methods of weed control, which resulted in a decrease in species richness (PYŠEK et al., unpubl. data). By contrast, intensification was delayed on more acidic soils at higher altitudes, where arable fields could host more species, including some perennial herbs from adjacent meadows and pastures. Regression of species pool size on the ph/calcium gradient for meadows and perennial synanthropic vegetation (Figs. B, F, Tables ) explained a very low proportion of the total variation (< %). These weak relationships can be presumably due to large heterogeneity of these vegetation types, which is caused by other factors than ph/calcium.

10 8 M. Chytrý et al. Historical interpretations One possible explanation of the modern predominance of calcicoles over calcifuges in some temperate ecosystems is based on the historical predominance of calcareous soils, on which the evolution and formation of modern floras took place (GRUBB 987, PÄRTEL, EWALD ). During the Pleistocene, several rather long periods of cold and dry climate alternated with much shorter periods of warm and humid climate (LANG 99, BERGLUND et al. 996, ROBERTS 998). The cold and dry climate, which has been rather typical of the past million years, supported the development of calcareous soils by such processes as cryoturbation, erosion, loess deposition and decreased leaching (WALKER et al. ). In the modern arctic landscape, which may be considered as a partial analogue of the Central European Ice Age tundra or cold steppe, soil ph was repeatedly reported to be strongly positively correlated with species richness (GOUGH et al., WALKER et al., PÄRTEL ), although this relationship can be modified by the effects of other factors (e.g. GOULD &WALKER 999 reported unimodal relationship in sites where high ph was maintained by soil disturbances). Both palaeoecological data and modern analogies from high-latitude ecosystems suggest that evolution of modern species, which started ca. million years before present (BEHRENSMEYER et al. 99), took place in the epoch with rather strong ph gradients developed on large spatial and temporal scales. In the analysis of phylogenetic conservatism of species niche for Central European flora, PRINZING et al. () demonstrated that more than % of variance in species niche positions along the ph gradient can be explained at the level of species, while less than % at the levels of genera or families. This analysis supports the hypothesis that the remarkable calcicole/calcifuge differentiation existing among extant species of Central European flora is the result of rather young evolutionary processes, which took place on high ph soils in periglacial areas. The higher extinction of calcifuge than calcicole species in Pleistocene environments, proposed by EWALD (), may also have played a role. Our results seem to be consistent with the above considerations at least for two vegetation types whose origin can be traced back to the Ice Age, i.e., dry grasslands, which at least partly correspond to species-rich, cold and dry Pleistocene steppes (WALKER et al. ), and fens and transitional mires, which correspond to wet depressions of Pleistocene tundra with draining impeded by underlying permafrost. For historical interpretations of modern species pools in Central Europe, not just the historical predominance of calcareous soils in situ must be taken into account, but also soil conditions in the presumed glacial refugia of temperate flora. Many species of modern Central European flora had their glacial refugia in southern European mountain ranges (HUNTLEY & BIRKS 98, LANG 99, BERGLUND et al. 996), which are mostly formed from limestone or dolomite. Some refugia may have also been on calcareous bedrocks of the Outer Alps (NIKLFELD 97). Limestone is a suitable bedrock for refugia as it creates more rugged topography than siliceous bedrocks, thus with more habitats which are able to host more species. Limestone predominance in the glacial refugia may have been the reason why the species pool of forest flora that immigrated to Central Europe after the retreat of the last

11 Local and regional patterns of species 9 glaciation is rich in calcicoles, as shown by EWALD () and confirmed by the present study. The hypothesis that the modern predominance of calcicoles in some vegetation types of Central Europe results from Pleistocene evolutionary and migration processes is further supported by the absence of clear patterns in those vegetation types that originated relatively recently under human impact, since the mid-holocene. In our analysis, meadows and synanthropic vegetation types showed only weak, negative or no relationships of their local species richness or species pool to the ph/calcium gradient. These vegetation types are composed partly of native species assembled from different natural habitats, partly of naturalized aliens (PYŠEK et al. ), but have no direct relationships to the Pleistocene vegetation of Central Europe. From the historical perspectives outlined above, however, it is difficult to explain the negative relationship of reed-bed and tall-sedge vegetation to the ph/calcium gradient. This species-poor vegetation did presumably occur in Pleistocene landscapes, but its species richness is possibly influenced by overriding effects of other factors, such as competition. Methodological aspects Making use of large phytosociological databases (EWALD, HENNEKENS & SCHAMINÉE ) is an attractive option for analyzing local species richness and species pools over wide ranges of habitats and large areas. Such analyses provide more general results than small-scale studies describing diversity patterns in a restricted ecological or geographical space. However, there are difficulties with estimating both species richness and base status of the soils from phytosociological data. Relevés in phytosociological databases are biased towards high species richness, as phytosociologists tend either to avoid species-poor stands or to sample species-poor stands in larger plots in order to obtain species-richer relevés (CHYTRÝ ). This fact, however, does not so much concern the analyses done in the present paper, as we only used relative comparisons and such biases presumably affect relevés from both acidic and base-rich soils to a similar extent. In addition, we used only relevés from a rather narrow range of plot sizes. A more severe problem is that relevés in the databases are rarely furnished with soil ph measurements, and if they are, then the values given by different authors may not be directly comparable. In Central Europe, Ellenberg indicator values (ELLENBERG et al. 99) for soil reaction are sometimes used as a substitute for direct soil ph measurements. These values proved to be sufficiently robust in several studies (HILL & CAREY 997, DIEKMANN & LAWESSON 999, SCHAFFERS & SÝKORA ), though using them instead of direct soil ph measurement has some disadvantages. Ellenberg indicator values are based on field-experienced species relationships to particular ecological factors and species co-occurrence patterns, i.e., on the realized rather than fundamental niches. Thus, they are not independent of local processes. Moreover, there is no precise information on the scaling of Ellenberg ordinal scale: a higher number of calcicoles might merely result from an artifact created by an expert judgement, i.e., intervals for individual values at the basic end of the scale might be set broader than at the acidic end. If this is true, a high proportion of species with a high Ellenberg indicator value for soil reaction,

12 M. Chytrý et al. accepted by EWALD () as evidence for the predominance of calcicoles in the Central European flora, might simply be a projection of this eventual artifact. Such scaling inconsistencies of Ellenberg indicator values were revealed by WAMELINK et al. () who compared average Ellenberg indicator values for relevés with measured ph. They showed that Ellenberg indicator values were biased towards either higher or lower ph for different vegetation types, but performed well within individual vegetation types. Fortunately, the issue of possibly unequal ranges for individual values on the Ellenberg ordinal scale can be fixed by the procedure proposed by SCHAFFERS & SÝKORA (), as used in the current study. This procedure includes calculating site averages of Ellenberg indicator values with negative weighting by the number of species assigned to particular values. Then the only information used from the Ellenberg indicator values is species ranking along the gradient that seems to be more or less reliable, provided the analyses are done separately within individual vegetation types (WAMELINK et al. ), which was also the case of the current study. Therefore we believe that the results obtained in our study are rather robust, in particular due to using large relevé data sets, which covered an extensive area and a broad range of different habitats. Acknowledgements: We thank Jörg Ewald for his thought-provoking paper. Stimulating comments on this study were provided by Michal Hájek, Petra Hájková, Petr Pokorný, students in our doctoral seminar and two anonymous reviewers. This research was supported by the grant MSM. REFERENCES BEALS E.W. (98): Bray-Curtis-ordination: an effective strategy for analysis of multivariate ecological data. Advances Ecol. Res. :. BEHRENSMEYER A.K., DAMUTH J., DIMICHELE W., POTTS R., SUES H.D. & WING S. (99): Terrestrial ecosystems through time. Chicago University Press, Chicago. BERGLUND B.E., BIRKS H.J.B., RALSKA-JASIEWICZOWA M. & WRIGHT H.E. (996): Palaeoecological events during the last years. Wiley, Chichester. BROSOFSKE K.D., CHEN J.& CROW T.R. (): Understory vegetation and site factors: implications for a managed Wisconsin landscape. Forest Ecol. Managem. 6: BRUNET J., FALKENGREN-GRERUP U., RÜHLING A.& TYLER G. (997): Regional differences in floristic change in South Swedish oak forests as related to soil chemistry and land use. J. Veg. Sci. 8: 9 6. CALEY M.J. & SCHLUTER D. (997): The relationship between local and regional diversity. Ecology 78: 7 8. CHYTRÝ M. (): Phytosociological data give biased estimates of species richness. J. Veg. Sci. : 9. CHYTRÝ M. & RAFAJOVÁ M. (): Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 7:. CORNELL H.V. & LAWTON J.H. (99): Species interactions, local and regional processes, and limits to the richness of ecological communities a theoretical perspective. J. Anim. Ecol. 6:. DIEKMANN M. & LAWESSON J.E. (999): Shifts in ecological behaviour of herbaceous forests species along a transect from northern Central to North Europe. Folia Geobot. : 7. DUMORTIER M., BUTAYE J., JACQUEMYN H., VAN CAMP N., LUST N.& HERMY M. (): Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. Forest Ecol. Managem. 8: 8. DUPRÉ C., WESSBERG C.& DIEKMANN M. (): Species richness in deciduous forests: Effects of species pools and environmental variables. J. Veg. Sci. : 6. ELLENBERG H., WEBER H.E., DÜLL R., WIRTH W., WERNER W. & PAULIßEN D. (99): Zeigerwerte von Pflanzen in Mitteleuropa. Ed.. Scripta Geobot. 8: 8. ERIKSSON O. (99): The species-pool hypothesis and plant community diversity. Oikos 68: 7 7.

13 Local and regional patterns of species EWALD J. (): Der Beitrag pflanzensoziologischer Datenbanken zur vegetationsökologischen Forschung. Ber. Reinhold-Tüxen-Ges. : 69. EWALD J. (): A probabilistic approach to estimating species pools from large compositional matrices. J. Veg. Sci. : EWALD J. (): The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobot. 8: 7 66 (this issue). EXNER A., WILLNER W.& GRABHERR G. (): Picea abies and Abies alba forests of the Austrian Alps: numerical classification and ordination. Folia Geobot. 7: 8. GLASER P.H., JANSSENS J.A. & SIEGEL D.I. (99): The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. J. Ecol. 78: 8. GOUGH L., GRACE J.B. & TAYLOR K.L. (99): The relationship between species richness and community biomass: the importance of environmental variables. Oikos 7: GOUGH L, SHAVER G.R., CARROLL J., ROYER D.L. & LAUNDRE J.A. (): Vascular plant species richness in Alaskan arctic tundra: the importance of soil ph. J. Ecol. 88: 66. GOULD W.& WALKER M.D. (999): Plant communities and landscape diversity along a Canadian Arctic river. J. Veg. Sci. : 7 8. GRACE J.B. (999): The factors controlling species density in herbaceous plant communities. Perspect. Pl. Ecol. Evol. Syst. : 8. GRACE J.B. (): Difficulties with estimating and interpreting species pools and the implications for understanding patterns of diversity. Folia Geobot. 6: 7 8. GRIME J.P. (97): Control of species density in herbaceous vegetation. J. Environm. Managem. : 67. GRIME J.P. (979): Plant strategies and vegetation processes. Wiley, Chichester. GRUBB P.J. (987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In: GEE J.H.R. & GILLER P.S. (eds.), Organization of communities, Past and present, Blackwell, Oxford, pp GUNNARSSON U., RYDIN H. & SJÖRS H. (): Diversity and ph changes after years on the boreal mire Skattlosbergs Stormosse, Central Sweden. J. Veg. Sci. : HÁJKOVÁ P.& HÁJEK M. (): Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry. Preslia 7: HENNEKENS S.M. & SCHAMINÉE J.H.J. (): TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. : HERBEN T. (): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect. J. Veg. Sci. : 6. HILL M.O. & CAREY P.D. (997): Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. J. Veg. Sci. 8: HUNTLEY B.&BIRKS H.J.B. (98): An atlas of past and present pollen maps for Europe: years ago. Cambridge University Press, Cambridge. HUSTON M.A. (99). Biological diversity. The coexistence of species on changing landscapes. Cambridge Univ. Press, Cambridge. LANG G. (99): Quartäre Vegetationsgeschichte Europas. G. Fischer, Jena, Stuttgart, New York. LEPŠ J. (): Species-pool hypothesis: limits to its testing. Folia Geobot. 6:. MCCUNE B. (99): Improving community analysis with the Beals smoothing function. Écoscience : MORAVEC J., BALÁTOVÁ-TULÁÈKOVÁ E., BLAZ KOVÁ D., HADAÈ E., HEJNÝ S., HUSÁK Š., JENÍK J., KOLBEK J., KRAHULEC F., KROPÁÈ Z., NEUHÄUSL R., RYBNÍÈEK K., ØEHOØEK V.& VICHEREK J. (99): Rostlinná spoleèenstva Èeské republiky a jejich ohroz ení (Red list of plant communities of the Czech Republic and their endangerment). Ed.. Severoèeskou Pøír., Suppl. 99: 6. NIKLFELD H. (97): Der niederösterreichische Alpenostrand ein Glazialrefugium montaner Pflanzensippen. Verein zum Schutze der Alpenpflanzen und -Tiere, München. OLDE VENTERINK H., WASSEN M.J., BELGERS J.D.M. & VERHOEVEN J.T.A. (): Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass. J. Ecol. 89:. PÄRTEL M. (): Local plant diversity patterns and evolutionary history at the regional scale. Ecology 8: 6 66.

14 M. Chytrý et al. PÄRTEL M., ZOBEL M., ZOBEL K. & VAN DER MAAREL E. (996): The species pool and its relation to species richness: evidence from Estonian plant communities. Oikos 7: 7. PEET R.K. & CHRISTENSEN N.L. (98): Hardwood forest vegetation of the North Carolina piedmont. Veröff. Geobot. Inst. ETH Stiftung Rübel, Zürich 69: 9. PRINZING A., DURKA W., KLOTZ S.& BRANDL R. (): The niche of higher plants: evidence for phylogenetic conservatism. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 68: PYŠEK P., SÁDLO J.& MANDÁK B. (): Catalogue of alien plants of the Czech Republic. Preslia 7: REY BENAYAS J.M. (99): Patterns of diversity in the strata of boreal montane forest in British Columbia. J. Veg. Sci. 6: REY BENAYAS J.M. & SCHEINER S.M. (99): Diversity patterns of wet meadows along geochemical gradients in central Spain. J. Veg. Sci. : 8. RICKLEFS R.E. & SCHLUTER D. (99): Species diversity in ecological communities. Historical and geographical perspectives. Univ. Chicago Press, Chicago, London. ROBERTS N. (998): The Holocene. An environmental history. Ed.. Blackwell, Oxford. ROSENZWEIG M.L. (99): Species diversity in space and time. Cambridge University Press, Cambridge. SCHAFFERS A.P. & SÝKORA K.V. (): Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. :. SILVERTOWN J.W. (98): The dynamics of a grassland ecosystem: botanical equilibrium in the Park grass experiment. J. Appl. Ecol. 7: 9. SOKAL R.R. & ROHLF F.J. (99): Biometry. Ed.. W.H. Freeman and Company, New York. STATSOFT INC. (): STATISTICA (data analysis software system), version 6. TAYLOR D.R., AARSEN L.W. & LOEHLE C. (99): On the relationship between r/k selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 8: 9. TICHÝ L. (): JUICE, software for vegetation classification. J. Veg. Sci. :. TILMAN D. & OLFF H. (99): An experimental study of the effects of ph and nitrogen on grassland vegetation. Acta Oecol. : 7. VITT D.H, LI Y. & BELLAND R.J. (99): Patterns of bryophyte diversity in peatlands of continental western Canada. Bryologist 98: 8 7. WALKER D.A., BOCKHEIM J.G., CHAPIN III F.S., EUGSTER W., NELSON F.E. & PING C.L. (): Calcium-rich tundra, wildlife, and the Mammoth Steppe. Quatern. Sci. Rev. : 9 6. WAMELINK G.W.W., JOOSTEN V., VAN DOBBEN H.F. & BERENDSE F. (): Validity of Ellenberg indicator values judged from physico-chemical field measurements. J. Veg. Sci. : WILSON J.B. & ANDERSON B.J. (): Species-pool relations: like a wooden light bulb? Folia Geobot. 6:. ZOBEL M. (99): Plant species coexistence: the role of historical, evolutionary and ecological factors. Oikos 6:. ZOBEL M. (997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol. Evol. : Received March, revision received September, accepted September

SPECIES-POOL HYPOTHESIS: LIMITS TO ITS TESTING

SPECIES-POOL HYPOTHESIS: LIMITS TO ITS TESTING Folia Geobotanica 36: 45 52, 2001 SPECIES-POOL HYPOTHESIS: LIMITS TO ITS TESTING Jan Lepš Department of Botany, Faculty of Biological Sciences, University of South Bohemia and Institute of Entomology,

More information

Phytosociological data give biased estimates of species richness

Phytosociological data give biased estimates of species richness Journal of Vegetation Science 12: 439-444, 2001 IAVS; Opulus Press Uppsala. Printed in Sweden - Phytosociological data give biased estimates of species richness - 441 Phytosociological data give biased

More information

Formalized approaches to Central European phytosociology

Formalized approaches to Central European phytosociology Formalized approaches to Central European phytosociology David Zelený Masaryk University Brno, Czech Republic Formalized approaches to Central European phytosociology Standard methods of field sampling

More information

THE ECOSYSTEM - Biomes

THE ECOSYSTEM - Biomes Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.

More information

Invasion pathways, species invasion. success and habitat invasibility in Europe

Invasion pathways, species invasion. success and habitat invasibility in Europe Invasion pathways, species invasion success and habitat invasibility in Europe Ingolf Kühn Helmholtz Centre for Environmental Research UFZ Dept. Community Ecology ingolf.kuehn@ufz.de Biological Invasions

More information

Communities, Biomes, and Ecosystems

Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

defined largely by regional variations in climate

defined largely by regional variations in climate 1 Physical Environment: Climate and Biomes EVPP 110 Lecture Instructor: Dr. Largen Fall 2003 2 Climate and Biomes Ecosystem concept physical and biological components of environment are considered as single,

More information

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS

REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS Period Date REVIEW UNIT 10: ECOLOGY SAMPLE QUESTIONS A. Sample Multiple Choice Questions Complete the multiple choice questions to review this unit. 1. All of the following are density-dependent factors

More information

Habitat suitability modeling of boreal biodiversity: predicting plant species richness and rarity

Habitat suitability modeling of boreal biodiversity: predicting plant species richness and rarity Nordia Geographical Publications Volume 40:1 Habitat suitability modeling of boreal biodiversity: predicting plant species richness and rarity Miia Parviainen ACADEMIC DISSERTATION to be presented with

More information

Aquatic Biomes, Continued

Aquatic Biomes, Continued Aquatic Biomes, Continued Introduction Extent of Marine biomes Issues & challenges Factors influencing distribution Dynamics in time & space Depth Tour of marine biomes Issues (by biome) Freshwater biomes

More information

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.

GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS. GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au

More information

Hardness Comparisons

Hardness Comparisons Hardness Comparisons Hardness Adapted from: An original Creek Connections activity. Creek Connections, Box 10, Allegheny College, Meadville, Pennsylvania 16335. Grade Level: all Duration: 50 minutes Setting:

More information

Multi-scale upscaling approaches of soil properties from soil monitoring data

Multi-scale upscaling approaches of soil properties from soil monitoring data local scale landscape scale forest stand/ site level (management unit) Multi-scale upscaling approaches of soil properties from soil monitoring data sampling plot level Motivation: The Need for Regionalization

More information

FLORA AND VEGETATION OF THE CZECH REPUBLIC FLÓRA A VEGETACE ČESKÉ REPUBLIKY

FLORA AND VEGETATION OF THE CZECH REPUBLIC FLÓRA A VEGETACE ČESKÉ REPUBLIKY Preslia 84: 391 862 Special issue dedicated to the centenary of the Czech Botanical Society (1912 2012) FLORA AND VEGETATION OF THE CZECH REPUBLIC FLÓRA A VEGETACE ČESKÉ REPUBLIKY Edited by Petr Pyšek,

More information

Peer review on manuscript "Predicting environmental gradients with..." by Peer 410

Peer review on manuscript Predicting environmental gradients with... by Peer 410 Peer review on manuscript "Predicting environmental gradients with..." by Peer 410 ADDED INFO ABOUT FEATURED PEER REVIEW This peer review is written by Dr. Richard Field, Associate Professor of Biogeography

More information

Association Between Variables

Association Between Variables Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

More information

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES Narong Chinabut Office of Science for Land Development Land Development Department, Ministry of Agriculture and Cooperatives, Bangkok

More information

Although greatly MOUNTAINS AND SEA BRITISH COLUMBIA S AWIDE RANGE OF. Environment. Old Forests. Plants. Animals

Although greatly MOUNTAINS AND SEA BRITISH COLUMBIA S AWIDE RANGE OF. Environment. Old Forests. Plants. Animals BRITISH COLUMBIA is Canada s westernmost province. From island-dotted Pacific coast to spectacular Rocky Mountain peak, and from hot dry grassland to moist and majestic coastal forest, British Columbia

More information

Red-listed plants in semi-natural landscapes

Red-listed plants in semi-natural landscapes Red-listed plants in semi-natural landscapes Esgo Kuiper & Anders Bryn Norwegian Forest and Landscape Institute, PO Box 115, Raveien 9, NO-1431 Aas, Norway. Phone: +47 64948000, e-mail: Esgo.Kuiper@gmail.com

More information

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011

Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:

More information

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B?

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B? NAME DATE WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST 1. The diagram below shows a meandering stream. Measurements of stream velocity were taken along straight line AB. Which graph best shows the

More information

WATER AND DEVELOPMENT Vol. II - Types Of Environmental Models - R. A. Letcher and A. J. Jakeman

WATER AND DEVELOPMENT Vol. II - Types Of Environmental Models - R. A. Letcher and A. J. Jakeman TYPES OF ENVIRONMENTAL MODELS R. A. Letcher and A. J. Jakeman Centre for Resource and Environmental Studies, The Australian National University, Australia Keywords: environmental models, environmental

More information

Climate, Vegetation, and Landforms

Climate, Vegetation, and Landforms Climate, Vegetation, and Landforms Definitions Climate is the average weather of a place over many years Geographers discuss five broad types of climates Moderate, dry, tropical, continental, polar Vegetation:

More information

Environmentally Significant Areas of Alberta. Volume 3. Prepared by: Sweetgrass Consultants Ltd. Calgary, AB. for:

Environmentally Significant Areas of Alberta. Volume 3. Prepared by: Sweetgrass Consultants Ltd. Calgary, AB. for: Environmentally Significant Areas of Alberta Volume 3 Prepared by: Calgary, AB for: Resource Data Division Alberta Environmental Protection Edmonton, Alberta March 1997 EXECUTIVE SUMMARY Large portions

More information

WSDOT Wetland Mitigation Site Monitoring Methods

WSDOT Wetland Mitigation Site Monitoring Methods WSDOT Wetland Mitigation Site Monitoring Methods WSDOT Updated 6/12/08 Purpose As science warrants and as customer needs evolve, WSDOT seeks to keep pace with the best available science with regard to

More information

APPENDIX D. EXAMPLES OF OTHER FORMATION-LEVEL CLASSIFICATIONS

APPENDIX D. EXAMPLES OF OTHER FORMATION-LEVEL CLASSIFICATIONS APPENDIX D. EXAMPLES OF OTHER FORMATION-LEVEL CLASSIFICATIONS Main World Terrestrial Biome Types (Box and Fujiwara 2005, Table 4.4,) The authors provide 18 major biome types recognized by most modern treatments

More information

Other forms of ANOVA

Other forms of ANOVA Other forms of ANOVA Pierre Legendre, Université de Montréal August 009 1 - Introduction: different forms of analysis of variance 1. One-way or single classification ANOVA (previous lecture) Equal or unequal

More information

Coppicing systems: current knowledge from the perspective of vegetation ecology

Coppicing systems: current knowledge from the perspective of vegetation ecology Coppicing systems: current knowledge from the perspective of vegetation ecology Radim Hédl, Jakub Houška, Markéta Chudomelová, Martin Kopecký, Péter Szabó, Jan Šipoš, Ondřej Vild Coppice pařezina / chồi

More information

Natural Resources and Landscape Survey

Natural Resources and Landscape Survey Landscape Info Property Name Address Information Contact Person Relationship to Landscape Email address Phone / Fax Website Address Landscape Type (private/muni/resort, etc.) Former Land Use (if known)

More information

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1) CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

More information

Key Words Forest Ecosystem, Carbon Dynamics, Boreal Forests, Tropical Forests, Plots Network

Key Words Forest Ecosystem, Carbon Dynamics, Boreal Forests, Tropical Forests, Plots Network 1 - i Global Environment Research Account for National Institutes Advancement of East Asia Forest Dynamics Plots Network -Monitoring forest carbon cycling for the development of climate change adaptation-(abstract

More information

AP Biology Unit I: Ecological Interactions

AP Biology Unit I: Ecological Interactions AP Biology Unit I: Ecological Interactions Essential knowledge 1.C.1: Speciation and extinction have occurred throughout the Earth s history. Species extinction rates are rapid at times of ecological stress.

More information

National Inventory of Landscapes in Sweden

National Inventory of Landscapes in Sweden Key messages Approaching the landscape perspective in monitoring experiences in the Swedish NILS program Johan Svensson, Future Forest Monitoring, 091112 Landscape level approaches are necessary to deal

More information

Species-of-the-Week. Blanding s Turtle (Emydoidea blandingii) Species of Special Concern in Michigan

Species-of-the-Week. Blanding s Turtle (Emydoidea blandingii) Species of Special Concern in Michigan Species-of-the-Week Blanding s Turtle (Emydoidea blandingii) Habitat Productive & clean shallow water (soft substrates) = ponds, marshes, swamps, bogs, wet prairies, slow rivers Spring & summer = terrestrial

More information

Chapter 3 Communities, Biomes, and Ecosystems

Chapter 3 Communities, Biomes, and Ecosystems Communities, Biomes, and Ecosystems Section 1: Community Ecology Section 2: Terrestrial Biomes Section 3: Aquatic Ecosystems Click on a lesson name to select. 3.1 Community Ecology Communities A biological

More information

How to assess the development of 6000 habitats of national importance on the national, regional and local scale?

How to assess the development of 6000 habitats of national importance on the national, regional and local scale? Monitoring the Effectiveness of Habitat Conservation in Switzerland: How to assess the development of 6000 habitats of national importance on the national, regional and local scale? Klaus Ecker & Team

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

HYDROLOGICAL CYCLE Vol. I - Anthropogenic Effects on the Hydrological Cycle - I.A. Shiklomanov ANTHROPOGENIC EFFECTS ON THE HYDROLOGICAL CYCLE

HYDROLOGICAL CYCLE Vol. I - Anthropogenic Effects on the Hydrological Cycle - I.A. Shiklomanov ANTHROPOGENIC EFFECTS ON THE HYDROLOGICAL CYCLE ANTHROPOGENIC EFFECTS ON THE HYDROLOGICAL CYCLE I.A. Shiklomanov Director, State Hydrological Institute, St. Petersburg, Russia Keywords: hydrological cycle, anthropogenic factors, afforestation, land

More information

Economic and Social Council

Economic and Social Council United Nations Economic and Social Council ECE/EB.AIR/WG.1/2013/10 Distr.: General 30 July 2013 English only Economic Commission for Europe Executive Body for the Convention on Long-range Transboundary

More information

Name Date Hour. Plants grow in layers. The canopy receives about 95% of the sunlight leaving little sun for the forest floor.

Name Date Hour. Plants grow in layers. The canopy receives about 95% of the sunlight leaving little sun for the forest floor. Name Date Hour Directions: You are to complete the table by using your environmental text book and the example given here. You want to locate all the abiotic (non-living) and biotic (living) factors in

More information

6.4 Taigas and Tundras

6.4 Taigas and Tundras 6.4 Taigas and Tundras In this section, you will learn about the largest and coldest biomes on Earth. The taiga is the largest land biome and the tundra is the coldest. The taiga The largest land biome

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

The Wildland-Urban Interface in the United States

The Wildland-Urban Interface in the United States The Wildland-Urban Interface in the United States Susan I. Stewart Northern Research Station, USDA Forest Service, Evanston, IL (sistewart@fs.fed.us) Volker C. Radeloff Department of Forestry, University

More information

Analysing Ecological Data

Analysing Ecological Data Alain F. Zuur Elena N. Ieno Graham M. Smith Analysing Ecological Data University- una Landesbibliothe;< Darmstadt Eibliothek Biologie tov.-nr. 4y Springer Contents Contributors xix 1 Introduction 1 1.1

More information

Course Agenda. First Day. 4 th February - Monday 14.30-19.00. 14:30-15.30 Students Registration Polo Didattico Laterino

Course Agenda. First Day. 4 th February - Monday 14.30-19.00. 14:30-15.30 Students Registration Polo Didattico Laterino Course Agenda First Day 4 th February - Monday 14.30-19.00 14:30-15.30 Students Registration Main Entrance Registration Desk 15.30-17.00 Opening Works Teacher presentation Brief Students presentation Course

More information

Vulnerability Assessment of New England Streams: Developing a Monitoring Network to Detect Climate Change Effects

Vulnerability Assessment of New England Streams: Developing a Monitoring Network to Detect Climate Change Effects Vulnerability Assessment of New England Streams: Developing a Monitoring Network to Detect Climate Change Effects National Water Quality Monitoring Council 2012 Meeting Britta Bierwagen, National Center

More information

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT

More information

BayVegBase Start of a collaborative vegetation database as a powerful tool for ecological research in Bavaria and beyond

BayVegBase Start of a collaborative vegetation database as a powerful tool for ecological research in Bavaria and beyond BayVegBase Start of a collaborative vegetation database as a powerful tool for ecological research in Bavaria and beyond What is a vegetation plot record (relevé)? - documentation of vegetation of an area

More information

DATA MINING SPECIES DISTRIBUTION AND LANDCOVER. Dawn Magness Kenai National Wildife Refuge

DATA MINING SPECIES DISTRIBUTION AND LANDCOVER. Dawn Magness Kenai National Wildife Refuge DATA MINING SPECIES DISTRIBUTION AND LANDCOVER Dawn Magness Kenai National Wildife Refuge Why Data Mining Random Forest Algorithm Examples from the Kenai Species Distribution Model Pattern Landcover Model

More information

What is Landscape Ecology?

What is Landscape Ecology? Introduction to Landscape Ecology By Kevin McGarigal Disclaimer: Some of the material in this document was borrowed from Turner et al. (2001) and Dean Urban s Landscape Ecology course notes, Duke University.

More information

Robust procedures for Canadian Test Day Model final report for the Holstein breed

Robust procedures for Canadian Test Day Model final report for the Holstein breed Robust procedures for Canadian Test Day Model final report for the Holstein breed J. Jamrozik, J. Fatehi and L.R. Schaeffer Centre for Genetic Improvement of Livestock, University of Guelph Introduction

More information

INTERNATIONAL COMPARISONS OF PART-TIME WORK

INTERNATIONAL COMPARISONS OF PART-TIME WORK OECD Economic Studies No. 29, 1997/II INTERNATIONAL COMPARISONS OF PART-TIME WORK Georges Lemaitre, Pascal Marianna and Alois van Bastelaer TABLE OF CONTENTS Introduction... 140 International definitions

More information

Biodiversity Concepts

Biodiversity Concepts Biodiversity Concepts WHAT IS BIODIVERSITY? Biodiversity is the variety of life on Earth. For any kind of animal or plant each individual is not exactly the same as any other; nor are species or ecosystems.

More information

Predict the Popularity of YouTube Videos Using Early View Data

Predict the Popularity of YouTube Videos Using Early View Data 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

More information

Plants, like all other living organisms have basic needs: a source of nutrition (food),

Plants, like all other living organisms have basic needs: a source of nutrition (food), LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal

More information

DESCRIBING DESERT, TAIGA, AND TUNDRA BIOMES

DESCRIBING DESERT, TAIGA, AND TUNDRA BIOMES Lesson B5 1 DESCRIBING DESERT, TAIGA, AND TUNDRA BIOMES Unit B. Science and Technology in Wildlife Management Problem Area 5. Desert, Taiga, and Tundra Biomes National Academic Standard. NS.9-12.1 Science

More information

Biomes An Overview of Ecology Biomes Freshwater Biomes

Biomes An Overview of Ecology Biomes Freshwater Biomes Biomes An Overview of Ecology Ecology is the scientific study of the interactions between organisms and their environments. Ecology can be divided into four increasingly comprehensive levels: Organismal

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological

More information

CLIMATE CHANGE & FORESTS; STATUS OF SCIENCE, POLICY & RESEARCH. Prof. Ravindranath Indian Institute of Science Bangalore

CLIMATE CHANGE & FORESTS; STATUS OF SCIENCE, POLICY & RESEARCH. Prof. Ravindranath Indian Institute of Science Bangalore CLIMATE CHANGE & FORESTS; STATUS OF SCIENCE, POLICY & RESEARCH Prof. Ravindranath Indian Institute of Science Bangalore Forests and climate change 1. Deforestation and land use change contribute to CO

More information

Biodiversity changes in forest ecosystems with varied fire incidence frequency in Zante Island

Biodiversity changes in forest ecosystems with varied fire incidence frequency in Zante Island () & Prosilva Europe &, - & - & - - ,,,,,,, -, -, -, -, -, & -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,, Biodiversity changes in forest ecosystems with varied fire incidence frequency in

More information

FORESTED VEGETATION. forests by restoring forests at lower. Prevent invasive plants from establishing after disturbances

FORESTED VEGETATION. forests by restoring forests at lower. Prevent invasive plants from establishing after disturbances FORESTED VEGETATION Type of strategy Protect General cold adaptation upland and approach subalpine forests by restoring forests at lower Specific adaptation action Thin dry forests to densities low enough

More information

Vegetation Resources Inventory

Vegetation Resources Inventory Vegetation Resources Inventory Guidelines for Preparing a Project Implementation Plan for Photo Interpretation Prepared by Ministry of Sustainable Resource Management Terrestrial Information Branch for

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology Name Period Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect on the species involved. 1. What is a community? List six organisms that would be found in your

More information

The importance of Lebanon for the migratory soaring birds & the flyway. April 2012. Bassima Khatib SPNL Assistant Director General

The importance of Lebanon for the migratory soaring birds & the flyway. April 2012. Bassima Khatib SPNL Assistant Director General The importance of Lebanon for the migratory soaring birds & the flyway April 2012 Bassima Khatib SPNL Assistant Director General Outline Who is SPNL? IBA programme Importance of Lebanon for migratory soaring

More information

CIESIN Columbia University

CIESIN Columbia University Conference on Climate Change and Official Statistics Oslo, Norway, 14-16 April 2008 The Role of Spatial Data Infrastructure in Integrating Climate Change Information with a Focus on Monitoring Observed

More information

Economic inequality and educational attainment across a generation

Economic inequality and educational attainment across a generation Economic inequality and educational attainment across a generation Mary Campbell, Robert Haveman, Gary Sandefur, and Barbara Wolfe Mary Campbell is an assistant professor of sociology at the University

More information

Acidity and ph of apple juice

Acidity and ph of apple juice Acidity and ph of apple juice Claude Jolicoeur 197 Aberdeen, Quebec, Quebec, Canada G1R 2C9 cjoli@gmc.ulaval.ca http://cjoliprsf.awardspace.biz/ Acidity is an important property of apple juices, and is

More information

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Materials and Methods Overview Forest cover change is calculated using a sample of 102 observations distributed

More information

Agroforestry and climate change. Emmanuel Torquebiau FAO webinar 5 February 2013

Agroforestry and climate change. Emmanuel Torquebiau FAO webinar 5 February 2013 Agroforestry and climate change Emmanuel Torquebiau FAO webinar 5 February 2013 Agroforestry: well-known buffering and resilience effects Climate variability is well buffered by agroforestry because of

More information

Biology 3998 Seminar II. How To Give a TERRIBLE PowerPoint Presentation

Biology 3998 Seminar II. How To Give a TERRIBLE PowerPoint Presentation Biology 3998 Seminar II How To Give a TERRIBLE PowerPoint Presentation How to Give a TERRIBLE PowerPoint Presentation [Don t use a summary slide to keep the audience oriented throughout the presentation]

More information

Tropical Rainforests in the Pleistocene. Tropical Rainforests in the Pleistocene. Tropical Rainforests in the Pleistocene

Tropical Rainforests in the Pleistocene. Tropical Rainforests in the Pleistocene. Tropical Rainforests in the Pleistocene Tropical Rainforests in the Pleistocene tropics stable during Pleistocene? 1 C temperature drop based on 1976 CLIMAP study of warm vs. cold loving forams (vs. 10 C in North Atlantic) Paleothermometers

More information

DEALING WITH THE DATA An important assumption underlying statistical quality control is that their interpretation is based on normal distribution of t

DEALING WITH THE DATA An important assumption underlying statistical quality control is that their interpretation is based on normal distribution of t APPLICATION OF UNIVARIATE AND MULTIVARIATE PROCESS CONTROL PROCEDURES IN INDUSTRY Mali Abdollahian * H. Abachi + and S. Nahavandi ++ * Department of Statistics and Operations Research RMIT University,

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Forest Fire Research in Finland

Forest Fire Research in Finland International Forest Fire News (IFFN) No. 30 (January June 2004, 22-28) Forest Fire Research in Finland Effective wildfire suppression and diminished use of prescribed burning in forestry has clearly eliminated

More information

Module 5: Multiple Regression Analysis

Module 5: Multiple Regression Analysis Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

More information

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science. A SHORT GUIDE TO climate science This is a short summary of a detailed discussion of climate change science. For more information and to view the full report, visit royalsociety.org/policy/climate-change

More information

Using Excel for inferential statistics

Using Excel for inferential statistics FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied

More information

NATURAL RESOURCES DEGREES AND CERTIFICATES. Environmental Conservation A.S. Degree (formerly Natural Resources)

NATURAL RESOURCES DEGREES AND CERTIFICATES. Environmental Conservation A.S. Degree (formerly Natural Resources) Area: Science and Engineering Dean: Dr. Rina Roy Phone: (916) 484-8107 Counseling: (916) 484-8572 DEGREES AND CERTIFICATES Environmental Conservation A.S. Degree (formerly Natural Resources) Environmental

More information

THE DETAILS OF REAL-TIME REPORT CARDING THROUGH LOUISIANA S COASTWIDE REFERENCE MONITORING SYSTEM

THE DETAILS OF REAL-TIME REPORT CARDING THROUGH LOUISIANA S COASTWIDE REFERENCE MONITORING SYSTEM THE DETAILS OF REAL-TIME REPORT CARDING THROUGH LOUISIANA S COASTWIDE REFERENCE MONITORING SYSTEM Sarai Piazza, Marc Comeaux, Craig Conzelmann, & Dona Weifenbach CEER July 30, 2014 CRMS - Coastal Wetlands

More information

OCEANS AND AQUATIC ECOSYSTEMS - Vol. I - Freshwater Wetland Resources and Biology - M. B. Jones FRESHWATER WETLAND RESOURCES AND BIOLOGY

OCEANS AND AQUATIC ECOSYSTEMS - Vol. I - Freshwater Wetland Resources and Biology - M. B. Jones FRESHWATER WETLAND RESOURCES AND BIOLOGY FRESHWATER WETLAND RESOURCES AND BIOLOGY M. B. Jones Trinity College, University of Dublin, Ireland Keywords: Carbon cycling, greenhouse gases, sustainability, wetlands, productivity, conservation, ecosystem

More information

Temperature and evolutionary novelty as forces behind the evolution of general intelligence

Temperature and evolutionary novelty as forces behind the evolution of general intelligence Available online at www.sciencedirect.com Intelligence 36 (2008) 99 108 Temperature and evolutionary novelty as forces behind the evolution of general intelligence Satoshi Kanazawa Interdisciplinary Institute

More information

Do termites enhance the invasion of southern African savannas by alien plants?

Do termites enhance the invasion of southern African savannas by alien plants? Do termites enhance the invasion of southern African savannas by alien plants? Mhosisi Masocha; Andrew. K. Skidmore; Herbert H.T. Prins; Milena Holmgren; & Jan de Leeuw 1 A plant community becomes more

More information

Chapter 5: Analysis of The National Education Longitudinal Study (NELS:88)

Chapter 5: Analysis of The National Education Longitudinal Study (NELS:88) Chapter 5: Analysis of The National Education Longitudinal Study (NELS:88) Introduction The National Educational Longitudinal Survey (NELS:88) followed students from 8 th grade in 1988 to 10 th grade in

More information

Patterns in the species/environment relationship depend on both scale and choice of response variables

Patterns in the species/environment relationship depend on both scale and choice of response variables OIKOS 105: 117/124, 2004 Patterns in the species/environment relationship depend on both scale and choice of response variables Samuel A. Cushman and Kevin McGarigal Cushman, S. A. and McGarigal, K. 2004.

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1117368/dc1 Supporting Online Material for Role of Land-Surface Changes in Arctic Summer Warming F. S. Chapin III, 1 * M. Sturm, 2 M. C. Serreze, 3 J. P. McFadden, 4

More information

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared jn2@ecs.soton.ac.uk Relationships between variables So far we have looked at ways of characterizing the distribution

More information

Plan Plus Volume 1 No 1 2002 (117-123)

Plan Plus Volume 1 No 1 2002 (117-123) Plan Plus Volume 1 No 1 2002 (117-123) APPLICATION OF GIS (GEOGRAPHIC INFORMATION SYSTEM) FOR LANDSLIDE HAZARD ZONATION AND MAPPING DISASTER PRONE AREA: A STUDY OF KULEKHANI WATERSHED, NEPAL Purna Chandra

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change?

COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change? Coastal Change Analysis Lesson Plan COASTAL MONITORING & OBSERVATIONS LESSON PLAN Do You Have Change? NOS Topic Coastal Monitoring and Observations Theme Coastal Change Analysis Links to Overview Essays

More information

Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning

Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning Woodland caribou (Rangifer tarandus caribou) in the Far North of Ontario: Background information in support of land use planning The Far North Caribou Project (FNCP) was initiated in 2008 to support land

More information

Estimating Asian Elephant Population in Dindugul, Kodaikanal and Theni Forest Divisions, Western Ghats Tamil Nadu

Estimating Asian Elephant Population in Dindugul, Kodaikanal and Theni Forest Divisions, Western Ghats Tamil Nadu Estimating Asian Elephant Population in Dindugul, Kodaikanal and Theni Forest Divisions, Western Ghats Tamil Nadu A. Kumaraguru 1, K. Karunanithi 2, S. Asokan 2 and N. Baskaran 3 1 CCMB, Mayiladuthurai,

More information

SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12

SENSITIVITY ANALYSIS AND INFERENCE. Lecture 12 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment.

STUDY GUIDE ECOLOGY. CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. STUDY GUIDE ECOLOGY CHAPTER 21: Populations 1. An overview of ecology. Ecology is the study of interactions between organisms and their environment. 2. A Hierarchy of interactions: cells tissues organs

More information

Fertilizer and Pesticide Taxes for Controlling Non-point Agricultural Pollution

Fertilizer and Pesticide Taxes for Controlling Non-point Agricultural Pollution Fertilizer and Pesticide Taxes for Controlling Non-point Agricultural Pollution David Pearce University College London, Environmental Science and Technology, Imperial College London; E-mail D.Pearce@Ucl.Ac.Uk

More information

Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales. Richard R. Harris University of California, Berkeley Cooperative Extension

Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales. Richard R. Harris University of California, Berkeley Cooperative Extension Prioritizing Riparian Restoration at the Watershed, Reach and Site Scales Richard R. Harris University of California, Berkeley Cooperative Extension Issues Riparian communities provide multiple benefits

More information

Module EN: Developing a Reference Level for Carbon Stock Enhancements

Module EN: Developing a Reference Level for Carbon Stock Enhancements USAID LEAF TECHNICAL GUIDANCE SERIES FOR THE DEVELOPMENT OF A FOREST CARBON MONITORING SYSTEM FOR REDD+ Module EN: Developing a Reference Level for Carbon Stock Enhancements USAID LEAF TECHNICAL GUIDANCE

More information

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

More information