# Number Patterns, Cautionary Tales and Finite Differences

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Learning and Teaching Mathematics, No. Page Number Patterns, Cautionary Tales and Finite Differences Duncan Samson St Andrew s College Number Patterns I recently included the following question in a scholarship examination for Grade 7 pupils: Consider the following number pattern in which only the first two numbers have been given: ; 8 ; ; ; ;... Create three different number patterns (each starting with ; 8) by writing out the next three numbers. In each case explain the rule that controls your number pattern. I was most pleasantly surprised not only by the diversity and originality of the responses, but in many instances by the clear articulation of the accompanying explanation. Most pupils included the two obvious patterns ( ; 8 ; ; ; 0 and ; 8 ; ; ; ) but the third pattern led to much creativity. I include the following by way of example: Thomas: ; 8 ; ; 9 ; 80 one number by the next by the next by and the next by 5 Benjamin: ; 8 ; ; ; The number you are adding is going up in twos Craig: ; 8 ; ; 9 ; The number you add from to 8 is so as it carries on you make the adding number higher., 5,, 7 Lochlan: ; 8 ; ; 8 ; Plus ; Jordan: ; 8 ; ; 8 ; Always double then multiply by Kopano: ; 8 ; 5 ; 0 ; 0 n ; n ; n 5 ; n 5 ; n Gary: ; 8 ; ; 8 ; The number pattern starts at and goes up in multiples of four until it reaches and then goes down in multiples of and reaches and carrys on like that Matthew: ; 8 ; 0 ; ; ½ ½ the number you plussed Ryan: ; 8 ; ; 0 ; 8 Both numbers are going up in s in a sequence. Adrian: ; 8 ; ; 0 ; Added numbers together (eg. 8 = )(8 = 0)( 0 = )

2 Page Learning and Teaching Mathematics, No. Cautionary Tales In the above examples only the first two numbers of each pattern were given. This necessarily, and indeed purposefully, allowed for great scope of creativity. Let us now limit the degree of freedom somewhat and consider the following sequence: ; ; 5 ; 8 ; ;... Asked to determine the next number in the above sequence, most pupils would probably respond with an answer of by observing that the difference between consecutive terms increases by each time. But is this the only possible sequence? Some pupils may have recognised that beginning with 5, each term is obtained by adding the two terms immediately preceding it. Following this alternative pattern, the 5 th term would be 5 8 =. But of course there are still other possibilities. Perhaps the sequence is nothing other than a continuous repetition of the first four terms: ; ; 5 ; 8 ; ; ; 5 ; 8 ; ; ; 5 ; 8 ; etc. In such a case the 5 th term would be. And of course there are countless other possibilities. A superb example of the necessity for caution and circumspection when looking for patterns is the following well-known scenario: Investigate the relationship between the number of dots on the circumference of a circle and the number of regions created when joining the dots. For dot there is obviously only region since the circle is still whole. The scenarios for,, and 5 dots are shown below. The investigation thus far is summarised in the following table: Number of dots 5 Number of regions

3 Learning and Teaching Mathematics, No. Page 5 One may well be excused for expecting regions for dots, but of course that isn t the answer! For dots the number of regions created is only. The following table summarises the situation for up to 8 dots: Number of dots Number of regions It is also interesting to note the beautiful connection between the above scenario and Pascal s triangle: The horizontal sums of the rows of Pascal s triangle to the right of the bold line are none other than: ; ; ; 8 ; ; ; 57 ; 99 ;... Although the exact position of the bold line may seem somewhat arbitrary, it is nonetheless a comforting and satisfying observation that such a number sequence should appear in a different, and seemingly unrelated, mathematical context. It is left to the reader to investigate this particular connection further. The Calculus of Finite Differences The calculus of finite differences is a useful intermediate step en route from algebra to calculus. At an elementary level it contains a number of procedures that are enormously useful when attempting to determine the general formula for a sequence of numbers. Let us consider the following scenario: Investigate the maximum number of pieces into which a pizza can be sliced by n straight cuts. In order to find a general formula in terms of n, let us look at the first few cases. If the general formula is not too complex then the method of differences may help us to find it somewhat empirically. Zero cuts obviously leaves piece. cut produces pieces. cuts produces pieces, etc.

4 Page Learning and Teaching Mathematics, No. cut pieces cuts pieces cuts 7 pieces cuts pieces The following table summarises the situation for up to 5 cuts. The rows of differences represent the differences between adjacent terms in the row directly above it. Number of cuts: 0 5 Number of pieces: 7 First difference: 5 Second difference: If the original series is generated by a linear function then the first set of differences will be constant. If the function is quadratic then the second set of differences will be constant. A cubic function will have a constant set of third differences, and so on. In the above example the second set of differences are all the same value, the defining function is thus quadratic. Since we now know that the general formula is of the form y = an bn c we can easily solve for a, b and c by substituting three different points e.g. (0;), (;) & (;) and solving simultaneously. The general formula thus works out to be: n n Let us now briefly re-visit the relationship between the number of dots (n ) on the circumference of a circle and the number of regions created when joining the dots. Let us assume we have diagrammatically confirmed the number of regions for up to dots: Number of dots Number of regions 8 First difference Second difference 7 Third difference 0 Fourth difference Since the fourth set of differences is constant, we have established that the defining function is a fourth power expression in n. Rather than determining the actual formula for the general term, we can simply continue the patterns in the rows of differences and hence work backwards to continue the pattern in the number of regions row. Since the fourth set of differences are each, the third difference sequence must continue with and then 5. Using a similar approach we can continue the sequence of second differences, first differences and ultimately the original sequence: Number of dots Number of regions First difference Second difference 7 Third difference 0 5 Fourth difference

5 Learning and Teaching Mathematics, No. Page 7 Rather than solving 5 equations simultaneously to determine a formula for the general term, we can make use of Newton s formula: cn( n ) dn( n )( n ) en( n )( n )( n ) a bn The formula is applicable to all cases, regardless of the degree of the defining function. However, it assumes that the series begins with the value of the function when n is zero. This number is a. The first number in the first row of differences is b, the first number in the second row of differences is c, and so on. The formula is used up to whichever row of differences is constant. Thereafter all differences would be zero and consequently all further additions to the formula would be zero. In our particular case we arrive at the following general formula: n n n 8n Newton s formula applied to quadratic equations yields a useful little trick which is well worth remembering.: Let us take the function y = x x 5 by way of example. Firstly substitute for x = 0, x = and x = in order to determine the three corresponding y values viz. 5, and. Next work out the first and second rows of differences: 5 7 The coefficient of x is always half the bottom number. The coefficient of x is obtained by subtracting half the bottom number from the first number of the middle row. The constant in the formula is simply the first number of the top row. Here are a few investigations for you to explore:. The maximum number of electrons that can occupy each shell of an atom creates the following sequence as we move outward from the nucleus: 0 ; ; 8 ; 8 ; ; 50. Determine the general formula.. Investigate the relationship between the number of dots on the circumference of a circle and the number of lines needed to join each dot to every other dot. Alternatively, if each person at a meeting shakes hands once with every other person, determine an expression for the number of handshakes there would be if n people were present at the meeting. These two problems are essentially equivalent.. Consider building tiers of cards as follows: Determine a formula to work out the total number of cards you will need for any given number of levels.

6 Page 8 Learning and Teaching Mathematics, No.. Imagine the following structures built up using solid cubes: Determine the general formula for the number of cubes needed as a function of the number of levels in the structure. Solutions:. n ( n )( n n. n n. n n. ) Newton s formula assumes that the series begins with the value of the function when n is zero. This zero value can often cause an upset to an otherwise relatively simple pattern. Consider the case of dividing a plane up into different parts by intersecting circles of the same size. Clearly with no circle there is part. However, the general formula for such a scenario is n n which would seem to suggest parts for zero circles, which of course is somewhat meaningless. Where the zero case causes an upset to the pattern, the easiest approach is to extrapolate backwards in the rows of differences and assume a suitable value for the zero case that produces the desired first number in the last row of differences. On a final note of caution, it is worth pointing out that for a finite sequence of numbers there is an infinite number of functions that could generate the sequence. This is equivalent to plotting a finite number of points in the Cartesian Plane where there would obviously be an infinity of curves that one could draw through the given points. By using the method of differences all we have determined is the lowest order curve that can be drawn through the given points. There is no guarantee that further observations will not require a modification of the general formula, although there are usually independent approaches one can use to prove a guessed formula. In the words of George Polya: Nature may answer Yes or No, but it whispers one answer and thunders the other. Its Yes is provisional, its No is definitive. References Bolt, B. (98) The Amazing Mathematical Amusement Arcade, Cambridge: Cambridge University Press. Gardner, M. (9) Martin Gardner s New Mathematical Diversions From Scientific American, London: George Allen and Unwin Ltd., pp.. Posamentier, A. S. and Hauptman, H. A. (00) 0 Great Ideas for Introducing Key Concepts in Mathematics A Resource for Secondary School Teachers, Thousand Oaks, Ca.: Corwin Press Inc., pp Sawyer, W. W. (9) Mathematician s Delight, Middlesex: Penguin, pp

### MEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.

MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.

Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### 2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Year 9 set 1 Mathematics notes, to accompany the 9H book.

Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

### 1.2. Successive Differences

1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Math 1B, lecture 5: area and volume

Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### 7.7 Solving Rational Equations

Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

### Squaring, Cubing, and Cube Rooting

Squaring, Cubing, and Cube Rooting Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@math.hmc.edu I still recall my thrill and disappointment when I read Mathematical Carnival [4], by

### Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

### Geometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.

Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### 1.7 Graphs of Functions

64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

### Solving simultaneous equations using the inverse matrix

Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### Kenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract

Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.

### Linear Equations ! 25 30 35\$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

### INTERSECTION MATH And more! James Tanton

INTERSECTION MATH And more! James Tanton www.jamestanton.com The following represents a sample activity based on the December 2006 newsletter of the St. Mark s Institute of Mathematics (www.stmarksschool.org/math).

### Row Echelon Form and Reduced Row Echelon Form

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### 8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

### Inequalities - Solve and Graph Inequalities

3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value

### Solving Systems of Two Equations Algebraically

8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Heron Triangles. by Kathy Temple. Arizona Teacher Institute. Math Project Thesis

Heron Triangles by Kathy Temple Arizona Teacher Institute Math Project Thesis In partial fulfillment of the M.S. Degree in Middle School Mathematics Teaching Leadership Department of Mathematics University

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Math 2443, Section 16.3

Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the

### Objectives. Materials

Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

### STRAND: ALGEBRA Unit 3 Solving Equations

CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

### Examples of Functions

Examples of Functions In this document is provided examples of a variety of functions. The purpose is to convince the beginning student that functions are something quite different than polynomial equations.

### Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

### IB Math Research Problem

Vincent Chu Block F IB Math Research Problem The product of all factors of 2000 can be found using several methods. One of the methods I employed in the beginning is a primitive one I wrote a computer

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Circumference of a Circle

Circumference of a Circle A circle is a shape with all points the same distance from the center. It is named by the center. The circle to the left is called circle A since the center is at point A. If

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### 7.6 Approximation Errors and Simpson's Rule

WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration

### LEARNING OBJECTIVES FOR THIS CHAPTER

CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

### Module1. x 1000. y 800.

Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

### 3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

### The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

### Trigonometric Functions and Equations

Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Sample Fraction Addition and Subtraction Concepts Activities 1 3

Sample Fraction Addition and Subtraction Concepts Activities 1 3 College- and Career-Ready Standard Addressed: Build fractions from unit fractions by applying and extending previous understandings of operations

### arxiv:0909.4913v2 [math.ho] 4 Nov 2009

IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least

### Student Outcomes. Lesson Notes. Classwork. Exercises 1 3 (4 minutes)

Student Outcomes Students give an informal derivation of the relationship between the circumference and area of a circle. Students know the formula for the area of a circle and use it to solve problems.

### CBA Fractions Student Sheet 1

Student Sheet 1 1. If 3 people share 12 cookies equally, how many cookies does each person get? 2. Four people want to share 5 cakes equally. Show how much each person gets. Student Sheet 2 1. The candy

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Chapter 13: Fibonacci Numbers and the Golden Ratio

Chapter 13: Fibonacci Numbers and the Golden Ratio 13.1 Fibonacci Numbers THE FIBONACCI SEQUENCE 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, The sequence of numbers shown above is called the Fibonacci

### ALGEBRA. Find the nth term, justifying its form by referring to the context in which it was generated

ALGEBRA Pupils should be taught to: Find the nth term, justifying its form by referring to the context in which it was generated As outcomes, Year 7 pupils should, for example: Generate sequences from

### Tom wants to find two real numbers, a and b, that have a sum of 10 and have a product of 10. He makes this table.

Sum and Product This problem gives you the chance to: use arithmetic and algebra to represent and analyze a mathematical situation solve a quadratic equation by trial and improvement Tom wants to find

### A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### SOLVING TRIGONOMETRIC EQUATIONS

Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### DRAFT. Further mathematics. GCE AS and A level subject content

Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Derive 5: The Easiest... Just Got Better!

Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

### VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

### Black Problems - Prime Factorization, Greatest Common Factor and Simplifying Fractions

Black Problems Prime Factorization, Greatest Common Factor and Simplifying Fractions A natural number n, such that n >, can t be written as the sum of two more consecutive odd numbers if and only if n

### The small increase in x is. and the corresponding increase in y is. Therefore

Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### LINEAR EQUATIONS IN TWO VARIABLES

66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that