DIMENSIONAL ANALYSIS #2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DIMENSIONAL ANALYSIS #2"

Transcription

1 DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we might say that the area of a room is 28 ft 2. Generally, when you see a unit of measure with an exponent of 2, it is a measurement of area. Similarly, volume is measured in cubic units. The volume of a tank might be written as 200 cubic feet or 200 ft. Generally, when you see a unit of measure with an exponent of, it is a measurement of volume. The technique of dimensional analysis can be used to convert from one unit of area or volume to another unit of area or volume. However, it is important to remember that more than one dimension is being considered. EXAMPLE : Determine the number of square inches in square foot. SOLUTION: This problem is equivalent to solving ft 2? in. 2 To solve this problem, remember that square foot means the area of a square that measures foot on each side. The area of the square is A lw ( ft)( ft) ft 2. ft ft 2 ft To convert from square feet to square inches, we must consider that each of the two dimensions of the square is foot, and each foot is equivalent to 2 inches. We can perform the conversion using unit fractions, but we must use the conversion factor of 2 inches twice, once for each dimension of the square. ft ft 2 ( ft)( ft) (2 in. )(2 in. ) ( ft)( ft) ()()(2)(2) in.2 ()() 44 in 2 So there are 44 square inches in square foot. Notice that the unit fraction we used to perform the conversion had foot twice in the denominator (equivalent to ft 2 ) and 2 inches twice in the numerator. REMEMBER: To convert from one unit of area to another unit of area, always use the conversion factor two times. The exponent of 2 on the unit is a reminder that there are two dimensions to consider. printed /6/2004 Copyright Linn-Benton Community College Mathematics Department. Used with permission.

2 Performing a conversion between two different units of volume is very similar. Volume involves three dimensions and is expressed in cubic units. For example, cubic meter means the volume of a cube that measures meter by meter by meter. The volume of that cube is given by V lwh ( m)( m)( m) m. m m m m When we perform a conversion using cubic meters, we must remember that there are three dimensions to the cube, each of which measures meter. So the conversion factor must be used three times, as shown in the next example. EXAMPLE 2: Convert 5,800,000 cubic millimeters to cubic meters. SOLUTION: This problem is equivalent to solving 5,800,000 mm? m. We begin by writing 5,800,000 mm 5,800, 000 mm as. Now we multiply by a unit fraction that relates mm to m and that has mm in the denominator. From the measurement and conversion table, we know that m 000 mm, so we write a unit fraction using the conversion factor of 000 three times, once for each dimension. 5,800, 000 mm ( m)( m)( m) (000 mm)(000 mm)(000 mm) (5,800,000)()()() m (000)(000)(000) m So 5,800,000 cubic millimeters is equivalent to cubic meters. The conversion we wrote above with the unit fraction relating mm and m can be written more briefly as shown below. 5,800, 000 mm m 000(000)(000) mm or even as 5,800,000() m (000)(000)(000) m 5,800, 000 mm m (000) mm 5,800,000() m (000)(000)(000) m The important thing is to be sure to use the conversion factor three times. REMEMBER: To convert from one unit of volume to another unit of volume, always use the conversion factor three times. The exponent of is a reminder that there are three dimensions to consider. printed /6/2004 Copyright Linn-Benton Community College Mathematics Department. Used with permission. 2

3 We can chain unit fractions to perform conversions with square and cubic units as we did in the earlier problems. The next example illustrates this process. EXAMPLE : The displacement of an engine is often measured in liters or in cubic inches. Suppose that a compact car has a.8 L engine. What is the displacement of this engine in cubic inches? SOLUTION: This problem is equivalent to the conversion:.8 L? in. Notice only the unit on the right-hand side has an exponent of. We can compare liters and cubic inches, however, since a liter is a measure of capacity. Remember that ml cm. We will use this relationship to perform the conversion. First we will convert from liters to cubic centimeters by multiplying by two unit fractions.. 8 L 000 ml L cm ml If we multiplied these fractions, liters and milliliters would cancel and we would be left with cubic centimeters. Now we must convert from cubic centimeters to cubic inches, so we multiply by a unit fraction with cubic inches in the numerator and cubic centimeters in the denominator.. 8 L 000 ml L cm ml in. (2.54) cm.8(000)()() in. ()()(2. 54) 0 in. Multiplying these fractions together gives us the equivalent displacement in cubic inches (rounded to the nearest whole number). Therefore, the displacement of the engine in the compact car is approximately 0 cubic inches. printed /6/2004 Copyright Linn-Benton Community College Mathematics Department. Used with permission.

4 PROBLEM SET 2 Answers to the odd-numbered problems are given at the end of the problem set. Dimensional Analysis #2, Continued WARM-UP EXERCISES Use dimensional analysis to perform the following conversions. Show the procedure that you used, including all of your unit fractions. If an answer is not exact, round to two decimal places.. 0 ft 2 to in in. 2 to cm mm to cm 4. m to L 5. 6 mi 2 to km gal to yd cm to qt acres to yd 2 PROBLEMS Use dimensional analysis to solve each of the following problems. Show the procedure that you used, including all of your unit fractions. Answer the question in a complete sentence. 9. Frank just moved to the U.S. and wants to buy a 40-hectare farm. How many acres should he tell the real estate agent he wants to buy? Round your answer to the nearest acre. 0. A room measures 6 ft by 2 ft. a. Find the area of the room in square yards. Round your answer up to the nearest whole number. b. What would it cost to carpet the room if the carpet sells for $2.99 per square yard? Round your answer to the nearest cent.. A basement for a 0 ft by 40 ft house is to be dug at a depth of 7 feet. How many cubic yards of earth need to be hauled away? Assume that the surface of the ground is level. Round your answer to the nearest cubic yard. 2. A cylindrical tank is 8 meters long and 4 meters in diameter. How many liters of liquid will the tank hold? Round your answer to the nearest thousand. EXTRA PROBLEMS Use dimensional analysis to perform the following conversions. Show the procedure that you used, including all of your unit fractions. If an answer is not exact, round to two decimal places.. 50 cm 2 to m yd to ft m to in in. to L Use dimensional analysis to solve each of the following problems. Show the procedure that you used, including all of your unit fractions. Answer the question in a complete sentence. Round your answers to the nearest whole number. 7. Ann s back yard is 60 feet by 70 feet. What is the area of her backyard in square meters? 8. A fish tank measures 25 inches by 6 inches by 2 inches. How many cubic feet of water will it hold? How many gallons will it hold? printed /6/2004 Copyright Linn-Benton Community College Mathematics Department. Used with permission. 4

5 ANSWERS TO ODD-NUMBERED PROBLEMS: (NOTE: For some of these problems there are several ways to set up the problem. Therefore, your unit fractions may look different from the sequence of unit fractions shown here. Your final answer, however, should be approximately the same as the one given below.). 0 ft2 (2)2 in. 2 ft in mm cm (0) mm cm 5. 6 mi2 (.609)2 km 2 mi km cm ml cm L 000 ml.057 qt L 2.64 qt ha 0,000 m2 ha (9.7) 2 in. 2 m 2 ft 2 (2) 2 in. 2 acre 4,560 ft 2 99 acres Frank needs a farm of approximately 99 acres.. Volume (0 ft)(40 ft)(7 ft) 8400 ft 8400 ft yd () ft yd Approximately cubic yards of dirt must be hauled away.. 50 cm2 m 2 (00) 2 cm m m (00) cm m in. (2.54) cm in. 7. Area (60 ft)(70 ft) 4200 square feet ft 2 (2)2 in. 2 ft 2 m 2 (9.7) 2 in m 2 The area of Ann s back yard is approximately 90 square meters. printed /6/2004 Copyright Linn-Benton Community College Mathematics Department. Used with permission. 5

Converting Units of Measure Measurement

Converting Units of Measure Measurement Converting Units of Measure Measurement Outcome (lesson objective) Given a unit of measurement, students will be able to convert it to other units of measurement and will be able to use it to solve contextual

More information

Tallahassee Community College PERIMETER

Tallahassee Community College PERIMETER Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides

More information

Measurement/Volume and Surface Area Long-Term Memory Review Grade 7, Standard 3.0 Review 1

Measurement/Volume and Surface Area Long-Term Memory Review Grade 7, Standard 3.0 Review 1 Review 1 1. Explain how to convert from a larger unit of measurement to a smaller unit of measurement. Include what operation(s) would be used to make the conversion. 2. What basic metric unit would be

More information

To Multiply Decimals

To Multiply Decimals 4.3 Multiplying Decimals 4.3 OBJECTIVES 1. Multiply two or more decimals 2. Use multiplication of decimals to solve application problems 3. Multiply a decimal by a power of ten 4. Use multiplication by

More information

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left. The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

More information

Negative Exponents and Scientific Notation

Negative Exponents and Scientific Notation 3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal

More information

Quick Reference ebook

Quick Reference ebook This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

More information

CHAPTER 4 DIMENSIONAL ANALYSIS

CHAPTER 4 DIMENSIONAL ANALYSIS CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.

More information

Task: Representing the National Debt 7 th grade

Task: Representing the National Debt 7 th grade Tennessee Department of Education Task: Representing the National Debt 7 th grade Rachel s economics class has been studying the national debt. The day her class discussed it, the national debt was $16,743,576,637,802.93.

More information

Lesson 21. Circles. Objectives

Lesson 21. Circles. Objectives Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine

More information

HFCC Math Lab General Math Topics -1. Metric System: Shortcut Conversions of Units within the Metric System

HFCC Math Lab General Math Topics -1. Metric System: Shortcut Conversions of Units within the Metric System HFCC Math Lab General Math Topics - Metric System: Shortcut Conversions of Units within the Metric System In this handout, we will work with three basic units of measure in the metric system: meter: gram:

More information

4.5.1 The Metric System

4.5.1 The Metric System 4.5.1 The Metric System Learning Objective(s) 1 Describe the general relationship between the U.S. customary units and metric units of length, weight/mass, and volume. 2 Define the metric prefixes and

More information

Area and Circumference

Area and Circumference 4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert

More information

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

More information

Area of Parallelograms (pages 546 549)

Area of Parallelograms (pages 546 549) A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

More information

Section 1 Tools and Measurement

Section 1 Tools and Measurement Section 1 Tools and Measurement Key Concept Scientists must select the appropriate tools to make measurements and collect data, to perform tests, and to analyze data. What You Will Learn Scientists use

More information

Calculating Area and Volume of Ponds and Tanks

Calculating Area and Volume of Ponds and Tanks SRAC Publication No. 103 Southern Regional Aquaculture Center August 1991 Calculating Area and Volume of Ponds and Tanks Michael P. Masser and John W. Jensen* Good fish farm managers must know the area

More information

Student Exploration: Unit Conversions

Student Exploration: Unit Conversions Name: Date: Student Exploration: Unit Conversions Vocabulary: base unit, cancel, conversion factor, dimensional analysis, metric system, prefix, scientific notation Prior Knowledge Questions (Do these

More information

Chapter 1 Lecture Notes: Science and Measurements

Chapter 1 Lecture Notes: Science and Measurements Educational Goals Chapter 1 Lecture Notes: Science and Measurements 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory

More information

Introduction. Percent Increase/Decrease. Module #1: Percents Bus 130 1

Introduction. Percent Increase/Decrease. Module #1: Percents Bus 130 1 Module #1: Percents Bus 130 1 Introduction In this module, we are going to use the process of excavating soil to demonstrate the mathematical concept of percent changes and problem solving skills. When

More information

Geometry Notes PERIMETER AND AREA

Geometry Notes PERIMETER AND AREA Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

More information

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) = Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

More information

Measurement. Introduction... 3

Measurement. Introduction... 3 Introduction... 3 Unit 1: Length Customary System Lesson 1: Length... 3 Lesson 2: Perimeter... 3 Lesson 3: Length Estimation... 4 Lesson 4: Selection of Units... 4 Lesson 5: Changing Units... 5 Unit 2:

More information

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. Chapter 3 Metric System You shall do no unrighteousness in judgment, in measure of length, in weight, or in quantity. Just balances, just weights, shall ye have. Leviticus. Chapter 19, verse 35 36. Exhibit

More information

Units of Measurement: A. The Imperial System

Units of Measurement: A. The Imperial System Units of Measurement: A. The Imperial System Canada uses the metric system most of the time! However, there are still places and occasions where the imperial system of measurement is used. People often

More information

Cylinder Volume Lesson Plan

Cylinder Volume Lesson Plan Cylinder Volume Lesson Plan Concept/principle to be demonstrated: This lesson will demonstrate the relationship between the diameter of a circle and its circumference, and impact on area. The simplest

More information

Area is a measure of how much space is occupied by a figure. 1cm 1cm

Area is a measure of how much space is occupied by a figure. 1cm 1cm Area Area is a measure of how much space is occupied by a figure. Area is measured in square units. For example, one square centimeter (cm ) is 1cm wide and 1cm tall. 1cm 1cm A figure s area is the number

More information

CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING

CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING Problems: 1-64, 69-88, 91-120, 123-124 2.1 Measuring Global Temperatures measurement: a number with attached units When scientists collect data, it is important

More information

Grade 8 FCAT 2.0 Mathematics Sample Questions

Grade 8 FCAT 2.0 Mathematics Sample Questions Grade FCAT. Mathematics Sample Questions The intent of these sample test materials is to orient teachers and students to the types of questions on FCAT. tests. By using these materials, students will become

More information

Exercise Worksheets. Copyright. 2002 Susan D. Phillips

Exercise Worksheets. Copyright. 2002 Susan D. Phillips Exercise Worksheets Copyright 00 Susan D. Phillips Contents WHOLE NUMBERS. Adding. Subtracting. Multiplying. Dividing. Order of Operations FRACTIONS. Mixed Numbers. Prime Factorization. Least Common Multiple.

More information

Revision Notes Adult Numeracy Level 2

Revision Notes Adult Numeracy Level 2 Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands

More information

Multiplying Fractions

Multiplying Fractions . Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

More information

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in

Area of a triangle: The area of a triangle can be found with the following formula: 1. 2. 3. 12in Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 Solve: Find the area of each triangle. 1. 2. 3. 5in4in 11in 12in 9in 21in 14in 19in 13in

More information

RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1. By Brad Lancaster, 2006. Appendix 3. Water-Harvesting Calculations

RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1. By Brad Lancaster, 2006. Appendix 3. Water-Harvesting Calculations RAINWATER HARVESTING FOR DRYLANDS - VOLUME 1 By Brad Lancaster, 2006 Appendix 3 Water-Harvesting Calculations List of Equations and Other Information Box A3.1. Abbreviations, Conversions, and Constants

More information

Area & Volume. 1. Surface Area to Volume Ratio

Area & Volume. 1. Surface Area to Volume Ratio 1 1. Surface Area to Volume Ratio Area & Volume For most cells, passage of all materials gases, food molecules, water, waste products, etc. in and out of the cell must occur through the plasma membrane.

More information

Healthcare Math: Using the Metric System

Healthcare Math: Using the Metric System Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,

More information

Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile

Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile THE METRIC SYSTEM The metric system or SI (International System) is the most common system of measurements in the world, and the easiest to use. The base units for the metric system are the units of: length,

More information

north seattle community college

north seattle community college INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

More information

MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD *BASE. deci. King Henry Died (from a) Disease Called Mumps. (k) (h) (da) gram (g) (d) (c) (m)

MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD *BASE. deci. King Henry Died (from a) Disease Called Mumps. (k) (h) (da) gram (g) (d) (c) (m) MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD Micro (mc) microgram 0 6 One millionth 0.00000 Milli (m) milligram milliliter* millimeter 0 3 One thousandth 0.00 Centi (c) centimeter 0 2 One hundredth

More information

Perimeter. 14ft. 5ft. 11ft.

Perimeter. 14ft. 5ft. 11ft. Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

More information

$566.30. What is the monthly interest rate on the account? (Round to the nearest hundredth of a percent.) 4 = x 12. 7)

$566.30. What is the monthly interest rate on the account? (Round to the nearest hundredth of a percent.) 4 = x 12. 7) Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1)What percent of 6 is 27? 1) 2)64.288 is 28.7% of what number? 2) 3)112% of what number is

More information

Fractions to decimals

Fractions to decimals Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

More information

Area and Volume Equations

Area and Volume Equations Area and Volume Equations MODULE 16? ESSENTIAL QUESTION How can you use area and volume equations to solve real-world problems? LESSON 16.1 Area of Quadrilaterals 6.8.B, 6.8.D LESSON 16. Area of Triangles

More information

Chapter 1 Problems. 1micron 1 10 6 m =1 10 9 microns. =1 10 4 cm. 1micron 1 10 6 m = 9.144 105 microns. 1 ft

Chapter 1 Problems. 1micron 1 10 6 m =1 10 9 microns. =1 10 4 cm. 1micron 1 10 6 m = 9.144 105 microns. 1 ft Chapter 1 Problems 1.3 The micrometer is often called the micron. (a) How man microns make up 1 km? (b) What fraction of a centimeter equals 1µm? (c) How many microns are in 1.0 yard We begin by calculating

More information

SPCC Plan - Calculation Guidance

SPCC Plan - Calculation Guidance SPCC Plan - Calculation Guidance The following example compares two different design criteria: one based on the volume of the tank and one based on precipitation. Scenario: A 20,000-gallon horizontal tank

More information

Area of Circles. 2. Use a ruler to measure the diameter and the radius to the nearest half centimeter and record in the blanks above.

Area of Circles. 2. Use a ruler to measure the diameter and the radius to the nearest half centimeter and record in the blanks above. Name: Area of Circles Label: Length: Label: Length: A Part 1 1. Label the diameter and radius of Circle A. 2. Use a ruler to measure the diameter and the radius to the nearest half centimeter and recd

More information

Don t worry! There is no right or wrong answer.be honest so that I can figure out the best way to help you next year!

Don t worry! There is no right or wrong answer.be honest so that I can figure out the best way to help you next year! AP Environmental Science Summer Assignment 2016-2017 Mrs. Carlson, rcarlson@g.aledoisd.org Welcome to AP Environmental Science! This class is highly intensive, with a lot of material that needs to be covered.

More information

Grade 6 FCAT 2.0 Mathematics Sample Questions

Grade 6 FCAT 2.0 Mathematics Sample Questions Grade FCAT. Mathematics Sample Questions The intent of these sample test materials is to orient teachers and students to the types of questions on FCAT. tests. By using these materials, students will become

More information

Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations

Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Benchmark (standard or reference point by which something is measured) Common denominator (when two or more fractions have the same denominator)

More information

MathSphere MATHEMATICS. Equipment. Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions

MathSphere MATHEMATICS. Equipment. Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions MATHEMATICS Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions Paper, pencil, ruler Fraction cards Calculator Equipment MathSphere 6365 Round decimals. Equivalence between fractions

More information

Metric Rules. Activity 7. In this activity you will: Introduction. The Problem. Math Concepts Measurement. Science Concepts Data collection

Metric Rules. Activity 7. In this activity you will: Introduction. The Problem. Math Concepts Measurement. Science Concepts Data collection . Math Concepts Measurement Geometry Activity 7 Science Concepts Data collection Metric Rules Materials TI-73 calculator Yardstick Meter stick In this activity you will: Collect data by measuring different

More information

GEOMETRY - MEASUREMENT Middle School, Science and Math Monica Edwins, Twin Peaks Charter Academy, Longmont Colorado

GEOMETRY - MEASUREMENT Middle School, Science and Math Monica Edwins, Twin Peaks Charter Academy, Longmont Colorado GEOMETRY - MEASUREMENT Grade Level: Written by: Length of Unit: Middle School, Science and Math Monica Edwins, Twin Peaks Charter Academy, Longmont Colorado Six class periods I. ABSTRACT This unit could

More information

Geometry - Calculating Area and Perimeter

Geometry - Calculating Area and Perimeter Geometry - Calculating Area and Perimeter In order to complete any of mechanical trades assessments, you will need to memorize certain formulas. These are listed below: (The formulas for circle geometry

More information

Oral and mental starter

Oral and mental starter Lesson Objectives Order fractions and position them on a number line (Y6) Vocabulary gauge, litre numerator, denominator order Resources OHT. individual whiteboards (optional) Using fractions Oral and

More information

Metric Units of Length

Metric Units of Length 7.2 Metric Units of Length 7.2 OBJECTIVES. Know the meaning of metric prefixes 2. Estimate metric units of length 3. Convert metric units of length NOTE Even in the United States, the metric system is

More information

6.4 Factoring Polynomials

6.4 Factoring Polynomials Name Class Date 6.4 Factoring Polynomials Essential Question: What are some ways to factor a polynomial, and how is factoring useful? Resource Locker Explore Analyzing a Visual Model for Polynomial Factorization

More information

Math. So we would say that the volume of this cube is: cubic units.

Math. So we would say that the volume of this cube is: cubic units. Math Volume and Surface Area Two numbers that are useful when we are dealing with 3 dimensional objects are the amount that the object can hold and the amount of material it would take to cover it. For

More information

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS

COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving

More information

Basic Math for the Small Public Water Systems Operator

Basic Math for the Small Public Water Systems Operator Basic Math for the Small Public Water Systems Operator Small Public Water Systems Technology Assistance Center Penn State Harrisburg Introduction Area In this module we will learn how to calculate the

More information

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

All the examples in this worksheet and all the answers to questions are available as answer sheets or videos. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

More information

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54

Keystone National High School Placement Exam Math Level 1. Find the seventh term in the following sequence: 2, 6, 18, 54 1. Find the seventh term in the following sequence: 2, 6, 18, 54 2. Write a numerical expression for the verbal phrase. sixteen minus twelve divided by six Answer: b) 1458 Answer: d) 16 12 6 3. Evaluate

More information

Chapter 1: Order of Operations, Fractions & Percents

Chapter 1: Order of Operations, Fractions & Percents HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

More information

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft]

BASIC MATH FORMULAS - CLASS I. A. Rectangle [clarifiers, ponds] I = length; w = width; A = area; area in square ft [sq ft] WASTEWATER MATH CONVERSION FACTORS 1. 1 acre =43,560 sq ft 2. 1 acre =2.47 hectares 3. 1 cu ft [of water] = 7.48 gallons 4. 1 cu ft [of water] = 62.4 Ibs/ft 3 5. Diameter =radius plus radius, D =r + r

More information

Numerator Denominator

Numerator Denominator Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

More information

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes

EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond

More information

Math Questions & Answers

Math Questions & Answers What five coins add up to a nickel? five pennies (1 + 1 + 1 + 1 + 1 = 5) Which is longest: a foot, a yard or an inch? a yard (3 feet = 1 yard; 12 inches = 1 foot) What do you call the answer to a multiplication

More information

GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST

GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST Chapter 17 Math Problem Solutions CHAPTER 17 GENERAL MATH PROBLEM CATEGORIES AND ILLUSTRATED SOLUTIONS MEASUREMENT STANDARDS WHICH MUST BE MEMORIZED FOR THE BROKER TEST Linear Measure 12 inches = 1 ft

More information

Practice Tests Answer Keys

Practice Tests Answer Keys Practice Tests Answer Keys COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear,

More information

Appendix 1: Units of Measure Used in the Lead-Based Paint Field

Appendix 1: Units of Measure Used in the Lead-Based Paint Field Appendix 1: Units of Measure Used in the Lead-Based Paint Field Many of the units, terms, and concepts used in these Guidelines are new to the users. Most of the measures cited are in the Metric System

More information

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013)

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013) Excel Invoice Format Excel Column Name Cell Format Notes Campus* Supplier Number* Invoice Number* Order Number* Invoice Date* Total Invoice Amount* Total Sales Tax Amount* Discount Amount Discount Percent

More information

Cattle Producer's Library - CL 1280 CONVERSIONS FOR COMMONLY USED WEIGHTS AND MEASURES

Cattle Producer's Library - CL 1280 CONVERSIONS FOR COMMONLY USED WEIGHTS AND MEASURES Cattle Producer's Library - CL 1280 CONVERSIONS FOR COMMONLY USED WEIGHTS AND MEASURES Ron Torell, Northeast Area Livestock Specialist University of Nevada, Reno Bill Zollinger, Extension Beef Specialist

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE

PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE 1 Property of Paychex, Inc. Basic Business Math Table of Contents Overview...3 Objectives...3 Calculator...4 Basic Calculations...6 Order of Operation...9

More information

OD 1401 9 PRECISION MEASURING INSTRUMENTS

OD 1401 9 PRECISION MEASURING INSTRUMENTS SUBCOURSE EDITION OD 1401 9 PRECISION MEASURING INSTRUMENTS PRECISION MEASURING INSTRUMENTS SUBCOURSE OD1401 EDITION 9 Unites States Army Combined Arms Support Command Fort Lee, VA 23801-1809 5 CREDIT

More information

ENGLISH CONTENT. Instructions for Using Your Computer Watch

ENGLISH CONTENT. Instructions for Using Your Computer Watch ENGLISH CONTENT Instructions for Using Your Computer Watch Two Rotation System of Scale Ring Rotate System Crown Rotate System Ring Rotate System Crown Rotate System Figure 1 Instructions for Using your

More information

Fourth Grade Math Standards and "I Can Statements"

Fourth Grade Math Standards and I Can Statements Fourth Grade Math Standards and "I Can Statements" Standard - CC.4.OA.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and

More information

Grade 6 Math. Oak Meadow. Coursebook. Oak Meadow, Inc. Post Office Box 1346 Brattleboro, Vermont 05302-1346 oakmeadow.

Grade 6 Math. Oak Meadow. Coursebook. Oak Meadow, Inc. Post Office Box 1346 Brattleboro, Vermont 05302-1346 oakmeadow. Grade 6 Math Oak Meadow Coursebook Oak Meadow, Inc. Post Office Box 1346 Brattleboro, Vermont 05302-1346 oakmeadow.com Item #b064010 Grade 6 Contents Introduction... ix Lessons... Lesson 1... 1 Multiplication

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, August 16, 2012 8:30 to 11:30 a.m. INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name

More information

Chapter 8 Unit Conversions

Chapter 8 Unit Conversions Chapter 8 Unit Conversions [M]athematics is the easiest of sciences, a fact which is obvious in that no one s brain rejects it. Roger Bacon (c. 1214-c. 1294), English philosopher and scientist Stand firm

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

Introduction to fractions A fraction is the ratio of two whole numbers, i.e. one whole number divided by another whole number:

Introduction to fractions A fraction is the ratio of two whole numbers, i.e. one whole number divided by another whole number: Fractions & Percentages Topics Covered: Fractions Simplifying fractions Equivalent fractions Improper fractions & mixed numers Operations with Fractions (addition, sutraction, multiplication, division)

More information

Appendix A: Units of Measure, Scientific Abbreviations, Symbols, Conversions, Variables, and Equations

Appendix A: Units of Measure, Scientific Abbreviations, Symbols, Conversions, Variables, and Equations 119 : Units of Measure, Scientific Abbreviations, Symbols, Conversions, Variables, and Equations These abbreviations are for scientific and technical writing, and are not applicable to general style. Technical

More information

1.05 Dimensional Analysis or Unit Factor Method

1.05 Dimensional Analysis or Unit Factor Method 1.05 Dimensional Analysis or Unit Factor Method 12in = 1 ft 1 dime= 10 pennies 1 in = 2.54 cm Dr. Fred Garces Chemistry 100 Miramar College 100 yd = 300 ft *If you plan to be in the nursing field please

More information

Scale Factors and Volume. Discovering the effect on the volume of a prism when its dimensions are multiplied by a scale factor

Scale Factors and Volume. Discovering the effect on the volume of a prism when its dimensions are multiplied by a scale factor Scale Factors and Discovering the effect on the volume of a prism when its dimensions are multiplied by a scale factor Find the volume of each prism 1. 2. 15cm 14m 11m 24m 38cm 9cm V = 1,848m 3 V = 5,130cm

More information

How to Solve Drug Dosage Problems

How to Solve Drug Dosage Problems How to Solve Drug Dosage Problems General Information ----------------------------------------- ----- ------------------ page 2 Converting between units -----------------------------------------------------------

More information

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM

TEKS TAKS 2010 STAAR RELEASED ITEM STAAR MODIFIED RELEASED ITEM 7 th Grade Math TAKS-STAAR-STAAR-M Comparison Spacing has been deleted and graphics minimized to fit table. (1) Number, operation, and quantitative reasoning. The student represents and uses numbers in

More information

Interpreting Graphs. Interpreting a Bar Graph

Interpreting Graphs. Interpreting a Bar Graph 1.1 Interpreting Graphs Before You compared quantities. Now You ll use graphs to analyze data. Why? So you can make conclusions about data, as in Example 1. KEY VOCABULARY bar graph, p. 3 data, p. 3 frequency

More information

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain

Georgia Online Formative Assessment Resource (GOFAR) AG geometry domain AG geometry domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 36 ) 1. Amy drew a circle graph to represent

More information

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams:

Area of a triangle: The area of a triangle can be found with the following formula: You can see why this works with the following diagrams: Area Review Area of a triangle: The area of a triangle can be found with the following formula: 1 A 2 bh or A bh 2 You can see why this works with the following diagrams: h h b b Solve: Find the area of

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1

Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1 Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1 I. (A) Goal(s): For student to gain conceptual understanding of the metric system and how to convert

More information

Section 1.5 Exponents, Square Roots, and the Order of Operations

Section 1.5 Exponents, Square Roots, and the Order of Operations Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.

More information

Drafting Terminology. Drafters. Drafting Technologists and Technicians

Drafting Terminology. Drafters. Drafting Technologists and Technicians Drafting Terminology Drafters Drafting Technologists and Technicians Acknowledgments Winnipeg Technical College and the Department of Labour and Immigration of Manitoba wish to express sincere appreciation

More information

How many are your works, Lord! In wisdom you made them all; the earth is full of your creatures. Psalm 104:24, niv

How many are your works, Lord! In wisdom you made them all; the earth is full of your creatures. Psalm 104:24, niv WELCOME When you look around, do you ever wonder where everything came from and how it was made? Have you ever contemplated why a tree is hard, a sponge is soft, and a breeze is invisible? By faith we

More information

Answer Key For The California Mathematics Standards Grade 7

Answer Key For The California Mathematics Standards Grade 7 Introduction: Summary of Goals GRADE SEVEN By the end of grade seven, students are adept at manipulating numbers and equations and understand the general principles at work. Students understand and use

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important These students are setting up a tent. How do the students know how to set up the tent? How is the shape of the tent created? How could students find the amount of material needed to make the tent? Why

More information

Cooperative Extension Service The University of Georgia College of Agricultural and Environmental Sciences Athens

Cooperative Extension Service The University of Georgia College of Agricultural and Environmental Sciences Athens Using Cooperative Extension Service The University of Georgia College of Agricultural and Environmental Sciences Athens Chemicals are applied to ponds and lakes to control aquatic weeds; to control fish

More information

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.

PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the

More information

A PRACTICAL GUIDE TO db CALCULATIONS

A PRACTICAL GUIDE TO db CALCULATIONS A PRACTICAL GUIDE TO db CALCULATIONS This is a practical guide to doing db (decibel) calculations, covering most common audio situations. You see db numbers all the time in audio. You may understand that

More information

Unit 7 The Number System: Multiplying and Dividing Integers

Unit 7 The Number System: Multiplying and Dividing Integers Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will

More information